Aufgabe 5.85

Geben Sie $(3+4i)^{1+i}$ in algebraischer und trigonometrischer Darstellung an!

Lösung:

Vgl. Aufgabe 5.66: Ausdrücke mit komplexen Exponenten sind zunächst nur zur Basis e definiert: $e^{i\varphi} = \cos \varphi + i \sin \varphi$. Andere Basen müssen deshalb durch Logarithmieren auf diese Basis zurückgeführt werden: $a = e^{\ln a}$.

Exponentielle Darstellung von 3+4i:
$$|3+4i| = \sqrt{3^2+4^2} = 5$$
, $\varphi = \arctan \frac{4}{3} + 2k\pi$ (I. Quadrant), $3+4i = 5 e^{i(\arctan \frac{4}{3} + 2k\pi)} = e^{\ln 5 + i(\arctan \frac{4}{3} + 2k\pi)}$.

(Da der Exponent noch mit (1+i) multipliziert werden wird, ist u.a. auch $2k\pi i$ mit i zu multiplizieren, dadurch entsteht im Exponenten auch der reelle Ausdruck $-2k\pi$. Dieser kann nicht weggelassen werden, da $e^{-2k\pi} \neq 1$ gilt. Braucht man nur die exponentielle Darstellung von 3+4i, so kann man wegen $e^{2k\pi i} = 1$ den Term $2k\pi i$ im Exponenten weglassen.)

(Nichteindeutigkeit des Logarithmus im Komplexen: $ln(3+4i) = ln + i (arctan \frac{4}{3} + 2k\pi)$)

$$\begin{split} (3+4\mathrm{i})^{1+\mathrm{i}} &= e^{\left(\ln 5 + \mathrm{i} \left(\arctan \frac{4}{3} + 2k\pi\right)\right)(1+\mathrm{i})} = e^{\left(\ln 5 - \arctan \frac{4}{3} - 2k\pi\right) + \mathrm{i} \left(\ln 5 + \arctan \frac{4}{3} + 2k\pi\right)} \\ &= e^{\left(\ln 5 - \arctan \frac{4}{3} - 2k\pi\right) + \mathrm{i} \left(\ln 5 + \arctan \frac{4}{3}\right)} \approx 1.97811e^{-2k\pi} (\cos 2.53673 + \mathrm{i} \sin 2.53673) \\ &\approx \left(-1.62716 + 1.12485\,\mathrm{i}\right)e^{-2k\pi}, \quad k \text{ ganz} \end{split}$$

(Beachte $e^{2k\pi i} = 1$, daher gilt auch $1^i = (e^{2k\pi i})^i = e^{-2k\pi}$!)