Fast evaluation of
quadrature formulae on the sphere

Jens Keiner* Daniel Potts'

Recently, a fast approximate algorithm for the evaluation of expansions in terms
of standard L2 (SQ)—orthonormal spherical harmonics at arbitrary nodes on the
sphere S? has been proposed in [S. Kunis and D. Potts. Fast spherical Fourier
algorithms. J. Comput. Appl. Math., 161:75 — 98, 2003]. The aim of this paper
is to develop a new fast algorithm for the adjoint problem which can be used to
compute expansion coefficients from sampled data by means of quadrature rules.

We give a formulation in matrix-vector notation and an explicit factorisation of
the spherical Fourier matrix based on the former algorithm. Starting from this, we
obtain the corresponding factorisation of the adjoint spherical Fourier matrix and
are able to describe the associated algorithm for the adjoint transformation which
can be employed to evaluate quadrature rules for arbitrary weights and nodes on
the sphere. We provide results of numerical tests showing the stability of the ob-
tained algorithm using as examples classical Gauf}-Legendre and Clenshaw-Curtis
quadrature rules as well as the HEALPix pixelation scheme and an equidistribu-
tion.
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1 Introduction

Discrete Fourier analysis on a multi-dimensional torus plays an important role in a wide
range of applications, among them signal processing in general, image processing, computed
tomography, and a lot more. However, in many fields of interest, data naturally arises on
a geometry that can be identified with the surface of the two-dimensonal unit-sphere — two-
sphere in short — §? := {x € R¥: ||x||, = 1}, embedded into the three-dimensional euclidean
space R3. As a small indication of the impact on current research we mention here the solution
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of inverse problems arising in astrophysics or the solution of systems of differential equations
in weather forecast computation as related examples.

In the context of Fourier analysis on the sphere S?, the spherical analogue of the usual
Fourier basis functions e** in L2 ([0, 27)), namely the standard orthonormal spherical har-
monics Y, in L2 (82) play a fundamental role. Recently, a fast algorithm for evaluating a
function f € L?(S?) with finite orthogonal expansion

Z Z atyr(0,¢) (M € Ny) (1.1)

k=0n=—k

in terms of spherical harmonics Y;" on a set of arbitary nodes (J4,pq) with d = 1,..., D,
D € N, in spherical coordinates was given in [9]. The key idea is to first perform a change of
basis such that the function f in (1.1) takes the form

Z Z Cn ik mAp (12)

—M k=—M

of an ordinary two-dimensional Fourier sum with new complex coefficients ¢;'. Then, the eval-
uation of the function f can be performed using the fast Fourier transform for nonequispaced
nodes (NFFT; see for example [14, 20]).

In this paper, we are intrested in the adjoint problem, i.e. the fast evaluation of sums

ay = Z f (9a, 0a) Y (Va, pa) (1.3)

for given function values f (¥4, pq) € C and all indices k =0,...,M and n = —k,..., k. Note
that this usually does not yet recover the coefficients a} from (1.1) for which we denote the
computed coefficients aj}. The coefficients aj can be obtained from values of the function
f on a set of arbitrary nodes (¥4, ¢4) provided that a quadrature rule with weights wy and
sufficient high degree of exactness is available (see also [5, 10]). Then the sum in (1.3) changes
to

ﬁda@d kn (ﬂd,SOd)- (14)

Mb

ap =
d=1

The computation of spherical Fourier coefficients from discrete sampled data has major
importance in the whole field of data analysis on the sphere S?. In many applications how-
ever, the distribution of the available data on the sphere is predetermined by the underlying
measurement process or as well by data storage and access considerations. This often requires
the use of techniques like spherical hyperinterpolation ([16]) or approximate quadrature rules
that differ from classical quadrature formulae. The implementation of the algorithm for the
adjoint problem (1.3) developed in this paper provides for the first time a means of evaluating
quadrature formulae for arbitrary nodes in a fast way and thus allows for the efficient use of
new quadrature schemes.

The outline of this paper is as follows: Section 2 introduces basic notation and definitions,
and recalls the fast algorithm for evaluating the expansion (1.1) from [9]. We give a matrix-
vector formulation of the algorithm where we distinguish the initial change of basis to arrive

t (1.2) and the application of the NFFT algorithm. In Section 3, we describe the change



of basis by means of a fast polynomial transform in more detail. In Section 4, following the
algorithm, the factorisation of the corresponding transform matrix into a product of sparse
matrices is derived. Consequently, once obtained a fast algorithm for (1.1), a fast algorithm
for the adjoint problem (1.3) comes by taking the adjoint matrix product in Section 5. Finally,
Section 6 provides results of numerical tests showing properties of the described algorithm by
using a range of different test functions and quadrature formulae.

2 Discrete spherical Fourier transforms

This section reviews basic notation, definitions, and the fast algorithm for (1.1) from [9].

2.1 Fourier analysis on the sphere S?

In spherical coordinates we identify each point x € S? with a tuple (9, ) € [0, 7] x [0, 27) of
two angles ¥ and ¢. The space L2 (SQ) is the Hilbert space of square integrable functions on
the sphere S? with the usual inner product given by

21
(f, 9>L2(§2) :Z/O ; F,¢)g(¥, p) de sind dv.

With the standard orthonormal basis of spherical harmonics Y;" with indices k = 0,1, ... and
n = —k,...,k for the space L? (82), any function f from L2 (82) can be developed into a
generally infinite orthogonal expansion

Z Z ay (9, ). (2.1)
k=0n=—k

The functions Y} are harmonic homogeneous polynomials of degree k and are defined by

2k +1
4

VP iS2 5 C, Y9, ) = P/"(cos 9)e™?. (2.2)

2.2 Associated Legendre functions and polynomials

The functions P,Ln‘ are the associated Legendre functions,

Pri-1,1] =R, Pr(z):= (k=) 1/2(1—332)"/“1—”13(:75) (2.3)
K (k+n)! dzn " '
forn=0,1,... and k = n,n + 1,..., where the classical Legendre polynomials P, are given

by their Rodrigues formula

1 d*

k

For a concise notation, we let P_i(z) := 0. The associated Legendre functions P}’ have the
three-term recurrence relation

B (@) = g P (z) + wp Py (2) - (k> n) (2.4)



with initial values

vo(@) =0, Plz)=M(1- :C2)n/2, Ap 1=

n—1 n

and the coefficients

o 2k +1 wr e (E=n)(k +n))'/2 (2.5)
Pk —=n+1)(k+n+1)1/27 P ((k=n+1)(k+n+1)/2 '

A simple but at the same time powerful idea is to define the associated Legendre functions
P also for k =0, ...,n by means of the modified three-term recurrence relation

Py (z) = (agz + By) By (z) + v Py (2) (2.6)
for k > 0 with

1 if n =0,

LYk s
ag =< 0 ifn odd, ay ::{ (nl) g0212<n,
—1 if n even, n # 0, Uk = (2.7)
g 1 if0<k<n, n._ |0 HO0<Ek<n,
FT1 0 ifn <k, TET wp iftn <k

Here, we let P" () := 0, and P(x) := Ay, for even n and P} (z) := A\, (1 — x2)1/2 for odd
n. For k > n, this definition coincides with the recurrence (2.4). As easily verified by the
defining equation (2.3), P}’ is a polynomial of degree k if n is even, while (1 — m2)_1/2P,? is
a polynomial of degree k — 1 if n is odd. Based on the recurrence coefficients from (2.7) and
introducing a shift parameter ¢ € Ny, we define the associated Legendre polynomials P'( -, c)
by

P (z,c) =0, Py(z,c) =1,

P (z,¢) = (oo + Bire) P (@, ¢) + iy Pia(z,0) - (k> 0).

It is not difficult to prove the following lemma by a straightforward induction. ([1]):

(2.8)

Lemma 2.1. Let ¢, k,n > 0 and let the functions P} and P](-,c) be given as in (2.6), (2.7),
and (2.8). Then we have

B o(@) = Pl (a, k)P () + i Py (e, b+ 1) B ().

2.3 Discrete Fourier transforms on the sphere S?

We recall that our goal in this section is the evaluation of a finite expansion

M k
F@0) =D Y aiVi' W, 0) = Y a9, 9). (2.9)
k=0n=—k (k,n)eIM

of a function f in terms of spherical harmonics Y}*, where Z); denotes the index set

Ty = {(k,n) - k=0,...,M; n=—k,....k}.



The sum in (2.9) is the spherical Fourier sum of the function f and M € Nj is called the band-
width of f. Likewise, the function f is said to be a bandlimited function on the sphere S? with
bandwidth M. The complex expansion coefficients aj € C are the spherical Fourier coeffi-
cients of the function f. The index k denotes the degree and n is the order with respect to the
orthonormal basis of spherical harmonics Y;". Alluding to the geographic coordinate system,

the angles ¥ are called co-latitudes and the angles ¢ longitudes. A set X' := {(Jy, god)}gzl,
D € N, of arbitrary nodes on the sphere S? is called a sampling set.
2.4 Matrix-vector notation

From a linear algebra point of view, evaluating the bandlimited function f with bandwidth
M as in (2.9) on a sampling set X amounts to evaluating matrix-vector product

fy =Yy xay
with

fr = (f2)iy € CP, fa:= f (4, 0a),

YM,X = (Ykn (ﬁd,SDd))d:L...,D;(k,n)eIM S
(M+1)%

(CDX(M+1)2

an = (ag) g nyezy, €C

We write fy, Yy x and apr to emphasise the dependence of these quantities on the concrete
sampling set X and the bandwidth M. Furthermore, we introduce the notation
M M—|n|+1
afly = (aj)ply, € CMIM
with n = —M, ..., M for subvectors a’}; of aps, each containing the spherical Fourier coeffi-
cients aj for a fixed order n.

2.5 A fast Fourier transform algorithm for arbitrary nodes on the sphere S?

We are now ready to describe the fast evaluation of a bandlimited function f with bandwidth
M on an arbitrary sampling set X on the sphere S?, or equivalently, the fast evaluation of
the matrix-vector product fx = Y s x apr. First, we rearrange terms in the spherical Fourier
sum and obtain

M k
fWe) =3 > a0, ¢) = Z Z Ayl (9, )
k=0n=-k n=—M k=|n|

M T _ (2.10)

n:—M - |n\

:=hn (cos )

Then we consider polynomials of degree M

M
g(z) =Y i (2) (2.11)

k=|n|



for even n, and of degree M — 1

gn(z) = (1 — 22712 Z ap P ( (2.12)

for odd n with the given complex spherical Fourier coefficients al. It is not difficult to verify

that
gn(cos V) if n even,

fin(cos V) = { (sin?)gn(cosd) if mn odd.

We perform a change of basis via a fast polynomial transform (see [12]) and obtain h,(cos )
in Chebyshev representation

M
Z b Ty (cosv), if n even,
hn(cosd) = ¢ k=0 (2.13)
(sind) Y bpTi(cos), if n odd,
k=0

with the Chebyshev polynomials of the first kind T} : [-1,1] — R, T;(z) := cos(k arccos ).
Since Ty (cos ) = cos(kd), we can write

M

Z b, cos(k1), if n even,
hp(cos?) =

(sin®) Z by cos( if n odd.

In addition, we use cos(kd) = 1 (el*’ + e_lkﬂ) and arrive at

M ~ .
Z bpelh? if n even,
hn(cos¥) = =M M-1
(sing) > bpe*’, ifnodd,
k=—(M—1)
where we let
- by if k=0, A
EES 2.1
F o, A0 < [k < M. (2.14)
In view of that sin = % (eh9 — e_w), a last manipulation finally yields the representation
M .
hn(cos?) = > cpel”, (2.15)
=M
with the coefficients
13’,;”, if n even,
o — &b, if nodd and k = —M, —M + 1, 2.16)
S ifnodd and k= M, M —1, '

& (bp_, — b)), ifnoddand k=—M+2,...,M—2.



For the function f in (2.10), this now yields the ordinary two-dimensional Fourier sum

M M
fW0)= > Y ce*leme, (2.17)

n=—M k=—M

The double sum in (2.17) can be evaluated by the NFFT algorithm on an arbitrary sampling
set X with D nodes with O (M?log M + log® (1/¢) D) floating point operations (flops), where
€ is a prescribed accuracy. In matrix-vector notation, the complete procedure reads

fX:FM,X CM BM apns. (2.18)

Here, the block-diagonal matrix B, with blocks B%,, n = —M, ..., M, on its main diagonal
stands for the fast polynomial transform algorithm acting with block B}, on the subvector
a’y, of aps which comprises the Fourier coefficients aj for a fixed order n. The matrix Cys
represents the intermediate steps to convert the Chebyshev coefficients b} in (2.13) into the
final Fourier coefficients ¢ in (2.15), and the matrix Fjs x realises the evaluation of the
ordinary Fourier sum in (2.17). The matrices Cjs and Bjs do not depend on the sampling
set X but only on the bandwidth M.
Let us state the entries of these matrices. We have

Fuyux = (ei(kﬁfrnw)) c CDx(2M+1)?
’ d:1,...,D;(k,7L)€IJ\/[

and according to (2.14) and (2.16)

BM = dlag [B}’LW]i\,ifM e R(2M+1)(M+1)><(M+1)2’
7](4 e R(M+1)X(Mf\n|+l)7

Cy :=Cun2Cu1 € REMAD?x@M+1)(M+1)

Cu =1 ® Car € REM+1)?x2M+1)(M+1)

1
2
1
2
3 (2.19)
éMl =11 c R(2M+1)><(M+1)7
’ 1
? 1
2
1
2
Cu 2 = diag <(50,n mod 2)nM:,M> ® Chra e REM+1)*x(2M+1)?

Cz = tridiag [ (~1/27207", (077, (/272 7!| - € REMFIx@MFD),

As usual, 9, denotes the Kronecker delta function for j,k € Z. The matrices By and Cyy
are real matrices acting on complex vectors. The matrix Cj; decomposes into a product of
two matrices Cys1 and Cjy 2, where Cjyq represents step (2.14) and Cjy o stands for (2.16).



The adjoint counterpart of the method just described is obtained from the factorisation of
the spherical Fourier matrix Yz x in the matrix-vector product (2.18) and reads

ay = By, Ci; Fiy v fr. (2.20)

This represents the adjoint Fourir sum in (1.3) in matrix-vector notation. Again, we use
tildes to emphasize that the adjoint transform in general does not yield the spherical Fourier
coefficients aj’. The multiplication with the matrix FE, which is identical to the evaluation
of sums

D
52 = Z f (’l9d, gpd) e_lkﬁde_ln¢d
d=1

for indices (k,n) € Iy, can also be carried out by the NFFT as described in [14]. The
transposed algorithm for the intermediate steps, hence the multiplication with the matrix C}/[,
can be derived directly from the explicit representation in (2.19). The details of the transposed
polynomial transform algorithm, or, equivalently, the multiplication with the matrix B}}, are
derived in Section 5 after the matrix Bj; has been further decomposed in Section 4. The
final adjoint algorithm is called adjoint non-uniform fast spherical Fourier transform (adjoint

NFSFT).

3 Fast Legendre function transform

In this section, we review a fast algorithm for the transformation of sums

) { Z}]c\/[:|n| ap By (z), if n even,
g"(r) =
(1—2®) 20 apPy(x), if n odd

of associated Legendre functions P’ into their respective Chebyshev representation
M
g"(x) =Y BT} ()
k=0

in terms of Chebyshev polynomials of the first kind 7). This algorithm is called a fast Legendre
function transform (FLFT).

3.1 Existing algorithms

The first originating paper [4] is due to Driscoll and Healy describing an exact algorithm for
the transposed problem, i.e. projecting a sum of Chebyshev polynomials T} onto associated
Legendre functions P;'. In [13], an exact algorithm is derived, introducing for the first time
a stabilisation technique to compensate for errors due to finite precision arithmetic. Both,
the Driscoll-Healy algorithm for the transposed problem and the latter algorithm in its initial
version are subject to numerical instabilities. In [7], Healy, Kostelec, Moore, and Rockmore
show variations of the Driscoll-Healy algorithm also including stabilization techniques.

Mohlenkamp ([11]) introduces the first related approximate algorithm. Further approxi-
mate algorithms are developed by Suda and Takami ([17]) using a stabilisation method relying
on fast multipole methods and optimised interpolation nodes. Rokhlin and Tygert ([15]) ex-
ploit a relation to semi-separable matrices. We follow the lines in [13] and [9].



3.2 An exact algorithm

Let now M > 4, t := [logy M|, and N := 2'. Furthermore, set af := 0 for 0 < k < |n| and
M < k < N. In the first step, we define 1 := min(|n|, N — 2) and M := min(M, N —1). We
can write

M
g = aioly (3.1)
k=
with the polynomials
apo(z) == ag (k=0,...,N—3),
aN_20(T) = aj_o +YN_10R, (3.2)

an_10(T) =ay_1 + (x4 BR_1) af.
of degree at most one. By grouping terms we arrive at

]

3
RIS (z P) | (33)

=[3) \k=0

which is a partition of the sum (3.1) into blocks of four consecutive summands. We note that
we immediately know the Chebyshev representation of each of the polynomials aZ?O involved
which is due to the fact that these polynomials have degree at most one, and that Tp(z) =1
and T1(z) = x. The generalised recurrence in Lemma 2.1 implies

P ) T (P"_
n ¢ :UZ(7k) knl ) (34)
<Pk+c+1 Pk

where ( ) ( )
PP (L k+1) P k41
UQ-,kT::<7’H;’ ke ln > 3.5
( ) Pc (7k) PC+1('7k) ( )
From the matrix-vector form (3.4) and with ¢ = 1 and k = [+ 1 it follows that
n n Afi120) _ (pn pn n @120
(Piiso: Piirs) <an ’ ) = (Pfi, Piiy) UL (5 41+ 1) <an ’ > :
41+43,0 4143,0

This lets us rewrite the sum (3.3) as

[1\71+1"_1
g" = Z (@ffl,ﬂjﬂ + aZl+1,1Pfl+1)
1)

with new polynomials of degree at most three,

g a0 Y
B e B I o U OV B e I (3.6)

Ayi41,1 Ag141,0 41430
We can use a fast cosine transform to compute the polynomial products in (3.6) and obtain the
polynomials aj; ; and a}; ; ; in Chebyshev representation again. Applying this idea repeatedly

N



4 4| 4 4] 4 4l 4 4| 4 4|4 4] 4
0 010 0 |a a5|as a7|ag ag|ajy ap|aQp a|ay ajs | g
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Figure 3.1: Schematic representation of the FLFT cascade summation for M = 16 (¢t = 4)
and n = 4. The steps 7 = 0 and 7 = 4 are the first and the last step, respectively.

leads to a cascade summation scheme as illustrated in Figure 3.1. For 7 =1,...,t — 1, we
compute

Ayt (71 Ayr i1
T T —_ T T r—
2 I, —_ 2 l,r—1 + UnT, (‘7 27’+1l + 1) 2 1+27,7—1 (37)
an a 271 a’
2T+ 41,7 27+ 41,71 2T+ 427 41,71

for | = |a/27t1], ..., [(M+1)/27t'] —1. It is not difficult to see that Alyriry ;= Ayriagy g =0
for larger or smaller [. After step 7 =t — 1, we arrive at g" = ag,_ ' +af;_, P[', where we
have the Chebyshev coefficients by and by g for £ = 0,..., N — 1 of the polynomials ag, ,
and af, ; with degree at most IV — 1, respectively. Since

P (), if n even, n n ny pr
A _{ 0 () Pi'(z) = (agx + By) o' (2),

T (1 —2?)TY2Py (), ifn odd,

we have
g"(x) = A (a5 (%) + (agz + Gg) al 1 (2)) - (3.8)
Now, using zTp(z) = = = Ti(z) and 2 Ty(z) = 3 (Tpy1(z) + Th—1(x)) for k > 1, we finally

obtain in the last step the sought Chebyshev coefficients b} for k = 0,..., M if n even or
kE=0,...,M—1if n odd of the polynomial ¢g"(x) of degree at most M or M — 1, respectively,

10



by computing
n
An | boo + Bybro + Ob1,1> ;

i =

n_ (s b1,2
1= o1+ 08ybig+og | o+ —= 5 ;
by, =

An(bowﬁ(;blw(blk 1+b1k+1)> (k=2,...,N-2), (3.9)
N1 =An | boN—1+ Bybi,N— 1+7b1N 2>

B = An—Zby 1.

m\c%

In total, the FLFT algorithm consists of ¢t + 1 = O(log M) steps. The first step (7 = 0)
and the last step (7 = t) clearly have a complexity of O(M) flops. The rest is the cascade
summation where each step has a complexity of O(M log M) flops due to the DCT applications
used for the multiplication with the matrices U%._; (-,277'1 + 1). In total, this accumulates
to O (M log? M ) flops for the whole algorithm.

3.3 Stabilisation

The described algorithm is only exact in exact arithmetic. Unfortunately, it becomes unstable
in finite precision arithmetic for [n| > 16 ([13]). The computation is subject to numerical
instabilities owing to small errors introduced by the DCT algorithm that get multiplied by
large function values of the associated Legendre polynomials PJ'(x,c) for certain admissible
triples (k, n, c) and |z| ~ 1 ([9]). A simple but effective idea (see [13]) is to replace the ordinary
multiplication steps by so-called ’stabilisation’ steps, whenever the values P'(z,c) exceed a
certain threshold £ > 0. The multiplication with the matrix Uy, ,, (~, 27+ 4+ 1) is replaced
by a multiplication with the matrix U2T(2l - 1(+, 1) fulfilling

Py ) P
27—+ll+27— = UnT — (’7 1)T < 0 ) .
<P27+1l+27+1 @)=L P

This is nothing else than taking the polynomials a’217+1l+2777_1 and a37+1l+27+1j_1 out of the
cascade and updating

ags—1\ ._ (@041 un Ayriiy9r 71
n T n + 27(2141)—-1 ( 1) n (310)
111 a1 Qor+1y40r 4171
after the cascade summation is completed. These ’stabilisation’ steps are costly compared

to the cascade summation without stabilisation. We sacrifice runtime efficiency for accuracy.
Unfortunately, an upper bound for the number

sn = #{(k,n,c): (k,n,c) is admissible and P;'(-,c) exceeds the threshold x}

of stabilisation steps with respect to M for a given threshold & is not known. If s,, = O(log M),
we would still have an O (M log? M ) algorithm. Figure 3.2 shows time measurements sup-
porting that this might be a reasonable conjecture. Figure 3.3 shows accuracy measurements

11
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3.2: The time T := #gQM in seconds, with 7 being the time for a single fast Legendre
function transform, as a function of the bandwidth M up to M = 1024 and orders
n =0 (solid), n = 2 (dashed), n = & (dashed-dotted), and n = 2} (dotted).
The time measurements have been averaged over 10.000 single transforms for each

bandwidth M support an estimate of the arithmetic complexity of O(M log? M ).
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3.3: The errors Es (left) and E (right) from (3.11) for single fast Legendre function
transforms as a function of the bandwidth M up to M = 1024 and orders n =
0 (solid), n = % (dashed), n = & (dashed-dotted), and n = 33 (dotted),
respectively. We used uniformly distributed pseudo-random coefficients a;} from
[—%, %] X1 [—%, %] . Reference values where calculated with Mathematica 5.0 using

arbitrary precision arithmetic up to accuracy e = 10732,

with respect to the relative error measures

_ lg—sl

_ g~ &l By =
[P

By = (3.11)
18lloo

where the vectors g and g represent a sum

12

M
g"(cosv) = Z a};‘PILn‘(COSl?)
k=|n|



evaluated at the M + 1 Chebyshev nodes 9¥; = (2l +1)/(2(M + 1)), I = 0,..., M using
Mathematica 5.0 with arbitrary precision arithmetic for g, and the stabilized FLFT algorithm
followed by a DCT-III for g, respectively.

4 A factorization of the matrix B},

In this section, we represent the FLFT algorithm as a linear mapping acting on a vector of
coefficients a’y, = (GZ)Q/[:“L' e CM-In+1 for fixed order n with |n| < M. For the sake of
simplicity, we restrict ourselves to the case when M is a power of two, hence M = N. For
values of M no being a power of two, we set a}} := 0 for M < k < N. Furthermore, we let

ap :=0 for 0 < k < |n| as before and use the extended vector
afly == (af)py € CVT!

We also omit the stabilisation procedure from Section 3.3 here and do not exploit the fact
that aj =0 for 0 <k <nor M <k < N in the following.

As seen before in Section 2.4, the FLFT algorithm can be represented as a matrix B, €
RVADX(N+1) that multiplied with the vector a}, results in a vector b%, := (b8, b7, .. ., bﬁ,)T €
CY containing the Chebyshev coefficients b7 of the polynomial g"(z) from (2.11) or (2.12),
admitting the representation

N
g"(x) = bpTi(z)
k=0
In matrix-vector notation, this reads
v = Bhy aly.

The FLFT algorithm implies a factorisation of the matrix B, into a product of sparse
matrices. We will use this fact later on in Section 5 to obtain an algorithm for the transposed
problem, i.e. computing a matrix-vector product of the form ay;, = B}}/[T b Mn-

In general, the FLFT algorithm consists of ¢ + 1 steps, such that the matrix B, can be
decomposed into the matrix product

n _ n n n n
m=Bhrs - By o oo - By - Bl (4.1)

with the matrices
R2VX(NH) - f 7 =0,

M. € RN if 1<7<t,
RWVHLEN - if 7 = ¢,

4.1 The First Step

The first step converts the spherical Fourier coefficents aj}, &k = 0,..., N, into polynomials
ago: k=0,...,N-1 of degree at most one in Chebyshev representation, i.e. vectors ag, € C?
containing the coefficients of their expansions in terms of the Chebyshev polynomials T}, for
k = 0,1. In matrix-vector notation, this reads

n _ n n
ap,o = BM,O Ay
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where the result vector
577,
0,0
alyo = : ec
an
an_10

is a vector of length 2N. For £k =0,..., N — 3 we have

apo=-eay, withe:= <é>

since these new polynomials remain constants. The last polynomial ay , is mapped onto the
preceeding ones, aR,_; , and a_, ,, by means of the three-term recurrence relation (2.6), i.e.

ano = (o124 Br_1) an_10+tIN-10N_2,0-
Consequently, the matrix B, ; can be written as
Bio=[In®e, €, (4.2)

. ~ T
with & := (0,0,...,0,9%_1,0,8%_;,a%_;) € R¥.

4.2 Steps 7 =1,...,t — 1 (Cascade Summation)

These steps represent the cascade summation applied to a sum of associated Legendre func-
tions Py as in Figure 3.1. Notice that after the first step, we have N polynomials aj , for
k=0,...,N — 1, where N is a power of two. In each step now following, half the func-
tions P! are eliminated by mapping the polynomials ap o in front of them onto the remaining
ones, employing the three-term recurrence. The input of step 7, the vector af, _;, con-
taining the Chebyshev coefficients of the polynomials ag, ,,, +jr_1 88 vectors ajs i J’rjﬁ_l and
J=0,1,27,27+1, is grouped by the idnex j into consecutive blocks &', _; of four polynomials

for | =0,...,N/2™! — 1, hence

=n
AT a2"+1l,7'—1
a1 -
a
n L : 2N Am L 27+ 41,71 oT+2
aMﬂ__l = . c C 5 alﬂ.il = ~n S C
A" Agriippor o1
N s
71 1,7’ 1 ~-n
Aprt1yyor 1,71

an 3 n n 3
In every block a' g, the first and the second polynomial, Uyriry g and Uyri1yyq ,_q TEMAIN

unchanged. The third and the fourth polynomial, a7217+ll+27,771 7217+1l+27+1,7-71’ get mul-

tiplied by the matrix Ug,_; (-, 2T+ 4+ 1) and the result is added to agf+1l77_1 and agf+1l+1,r—1

. . n n
yielding ag. .1, - and ag- i1y,

The output vector ajy, - of this step contains only half as many polynomials as before, but

and a

due to the multiplication with the matrix U3, _; (-, 27 4 1), the degree of each polynomial
nearly doubles each time so that twice the space is needed to store the Chebyshev coefficients,
hence the vectors égﬁq LT and 5§L¢+1 17 In total, the result vector 3?4,7 still has length 2N.

Reviewing this polynomial multiplication and addition scheme, we need to keep the first
two polynomials, but with their vectors zero-padded to twice the length. Furthermore, we
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have to add the vectors of Chebyshev coefficients due to the multiplication of the third and
fourth polynomial with the matrix U%,_; (-, 27 4 1). By writing these steps now as

n

Ayrty 71
=n =n
a2"Jfll,7' _yvn a2"+1l+1,7-—1 —V"_a"
an — Vi an - YiTr9r—-1
2T+ 41,7 27+ 427 7—1
anr
2T+ 427 41,71
we introduce the matrices
n . 27’+2><27'+2
l,T = [ZTa Ul,’T] 6 R 5
I, O
0 0 2T+2 2T+1
Z, = eRe X
T 0 127' ’
0 0
T+2 T4+1
ZT c ]R2 X2

where the matrix U} representing the multiplication of the third and fourth polynomial with
the matrix U%,_; (-, 277! + 1) can be further factorised as:

U}, == Du,r S; P/’ D s, (4.3)
defining the matrices

DII,T =1 ® (D2-r+1 CQT+1) S R2T+2X2T+2,
S, =L ® [ Iy, Iyria ] c R2T+2X2T+3
L= diag ([15re1y 0 PE o (27 4+ 14 1), 980 Po (27T + 14 1),

)

51271+ 1), PL (27 + 1)]) e RYX
Dy =1 ® ((Io ® Cyr11) Zr) e RZHx2

and using the DCT related matrices Dy-+1 and Cy-+1 given by

j(2k + 1)77)N_1 : N-1
Cy = <cos - , Dy :=diag ((g;);_ (N €N),
2N )0 ( 773=0 )

with gg := % andej:=1forj=1,...,N -1
The matrix Dryy, realizes the zero-padding (see the definition of Z, from above) of the
two polynomials aj, ., yorr—y and agy iy o0, second, the evaluation at the Chebyshev

nodes cos (%) for j =0,...,27*1 — 1 by the DCT-III related matrix CT..,, and finally,

a duplication of the resulting vector to allow for multiplication with two different associated
Legendre polynomials. Combined, the zero-padding and evaluation are an interpolation of
function values of the polynomials at additional nodes.

The diagonal matrix P}, contains the values of the associated Legendre polynomials in the
matrix Us-_, (-,27+1l + 1) Chebyshev nodes cos ((2]' + 1)7r/27+2) for j =0,...,27 — 1 on

its main diagonal. It represents a pointwise multiplication with the interpolated polynomial

n n

or+11 497 r—1 and Gor+1yq 9741721

function values of a
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The matrix S(7) forms the sums for the two rows of the result, and finally, the matrix
Dy1 - transforms the newly obtained polynomials aSTH L and agﬂrl . back into Chebyshev
representation by applying the DCT-II related matrix product Dgr+1 Cyr+1 to each vector of
polynomial function values.

From the factorisation in (4.3), the compact representation

no_ < Dyr1Corer 42 (PR 5(c+1)CoZi; + P (c+1)Ch 112, ) >
e =\ Dy Cyis ( PL_(0CL..Z, + P2 (c)CL,, Z, )

with ¢ = 27t + 1 and

L :[27' 0 27’+1><2‘r+1 L O IQT 27‘+1><27'+1
Zl,T = ( 0 0) eR , Z2’7— =\lo o eER

is obtained.
The whole step T%T) can then be represented as

n _ nn n
aM,T - BM,T aM,T—l?
n
VO,T
n
1,7

A%

n
2t—m—1_1.7

4.3 The Last Step

The last step consists in obtaining the polynomial ¢g" = ag, ;P + a4 P{" in Chebyshev
representation, i.e. the vector b}, = (bg);ﬂvzo € CN*1. Using (3.9) we write

gir = Mo (Tvag, o + (W + 5Ty ) a4 ).

Here, we have defined

1
0 3 X
10 35
1 "
I, = [ I(])V ] e RINFOXN Wy = 3 0 ' e RINFDXN
o1
T2
1
3 0
1
2
The last step is computing
M = BPrgani—1
where, depending on n, we distinguish three cases:
i) If n is odd we have af =0, ) =1, and
= [iN,iN] e RIV+Dx2N. (4.5)
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ii) For n =0 holds o =1, B} =0, and we find

M= n |:iN+13WNi| € RINFx2N, (4.6)
ili) Finally, if n is even and n # 0, one verifies af = —1 and [ = 1 resulting in
= [iN, Iy — WN} e RINFDx2N, (4.7)

5 Transposed Fast Legendre Function Transform

After having analysed the FLFT algorithm in more detail by factorising the associated matrix,
the transposed fast Legendre Function transform (transposed FLFT) reads

an, =BY," by, (5.1)

~ ~\N
with the vectors b}, := (bg)k ) € CN*! and a7, := (ZLZ);CVZO € CN*1. Notice that we are
only interested in the coefficients ap for |n| <k < M afterwards.

Following the lines of the preceeding sections, in particular the formulas in (4.1), (4.2),
(4.4), and (4.5) — (4.7), we immediately obtain a factorisation of the transposed matrix B}, T
as

B%T = %,OT ’ BTM1T e 7J\L/[,t—1T ) BTJ\L/I,tT' (5-2)

For 7 = 0 and 7 = ¢, we have immediatly

[ 1
N it if nodd,
L IN
T [ Iy
n T = <IN?}61>, B, T =\, if ifn=0, (5.3)
3 e ) I WJ'I\‘T
[T
- o if if n even, n # 0.
| Iy - Wy
For the rest of the steps, i.e. the 'transposed’ cascade summation for 7 =¢—1,...,1, we have
vy, T
n T V?,TT

= [V3rs101 (Z1 CorniPE (277 4+ 14 1) + 25 Corn Py (2771 + 14 1)) Cyr,
Cor+1PY (27 + 1) + Z3 Copr i PR (2771 4+ 1)) CJia |

~~ —
N
=3

(5.4)

17



Following this decomposition, a fast algorithm for computing the transposed FLFT, hence
computing the matrix-vector product a;; = B%T byas can be obtained immediately.

At each level 7 = t — 1,...,1 in the now backwards traversed cascade, we apply two
transformations corresponding to the transposed matrix V{’LTT to each pair of polynomials
i1y o @inyyy , for =0, iy — 1

First, we cut off the higher half of Chebyshev coefficients of every polynomial. This is a
multiplication with the matrix Z,T and can be interpreted as a projection onto a polynomial
subspace spanned by Chebyshev polynomials T}, up to degree 27. This yields the polynomials
Ayrirgpy AN Aorpry g 4oy 1

The second transformation corresponds to the multiplication with the matrix U?TT and
consists in polynomial multiplications with the associated Legendre polynomials contained in

54 (‘, 27+ 1) followed by projections onto different polynomial subspaces, concretely
the set of polynomials up to the degree 2™ (multiplication with ZLTT) and the set of polyno-
mials with strictly higher degree up to 27! (multiplication with Z27TT).

6 Examples

We present numerical examples in order to demonstrate the stability, accuracy, and efficiency
of our approach. All algorithms were implemented in C and tested on an AMD Athlon ™ XP
2700+ with 2GB main memory, SuSe-Linux (kernel 2.6.5-7.151-default, gce 3.3.5) using double
precision arithmetic. Moreover, we have used the libraries FFTW 3.0.1 [6] and the NFFT 3.0
library [8], now including the fast NFSFT algorithms. Throughout our experiments we have
applied the NFFT routines with precomputed Kaiser—Bessel functions and an oversampling
factor of two. For the NFSFT routines we used the threshold x = 1000 for the stabilisation.

In our tests, we used a collection of test functions fi, fo,..., f4 from [21]:
f1 (X) = T1x2T3,
fg(X) =0.1 ||$”1 )
fs(x) =1/|lzl,
fa(x) := 0.1sin? (1 + ||z||,) -

Function f; is a cubic polynomial, i.e. the spherical Fourier coefficients a} vanish for k
greater than three, while the other functions, not being polynomials, have more or less rapidly
decreasing spherical Fourier coefficients a} as k grows. In addition, we used the test function
f5 with

1 if ¥ € 0,7/2),

F5(0, ) = { (1 + 3cos? 19)_1/2, if ¥ € (7/2, 7]

which we took from [2]. It consists of a half-sphere joined with a half-ellipsoid. It is smooth
everywhere except at the equator, where the two parts are joined.

We tested our algorithms on a variety of different quadrature formulae each identified with
a tuple (X, W) consisting of a set of nodes X = {(ﬁd, 0d) €S? 1 d=1,... ,D} and positive
weights W := {w (¥q,0q4) >0 : d=1,...,D} to compute spherical Fourier coefficients a}}
from the formula

27 T -
ap = (f, Ykn>L2(§2) = /0 /0 F(0,0)YM(0, ) sindd dv de
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by discretising to the sums

D
> waf(Wa, 0a) Vi (94 pa). (6.1)
d=1

We considered the following quadrature formulae (X, W):

i)

ii)

iii)

The Gauss-Legendre quadrature grid XSG of size S € Ny is the Cartesian product
XSG = {193(; : j:O,...,S} X {gpg : k:07...,28+1}
km

with longitudinal nodes gpg := 547 For the co-latitudinal direction we use the Gauss-

Legendre quadrature with nodes 19;3 and weights wJG which can be obtained as the
solution of an eigenvalue problem (see [3, pp. 95]). The weights

W§ = {wd =wf, : j=0,...,8 k=0,...,25+1}

for the entire quadrature formula are then given by wg = wfk = 2;12 w]G. The number

of nodes is ’XE’ = 252 + 4S5 + 2. The quadrature formula (XS,WE’) is exact for
polynomials up to degree M < 25 + 1 so that (6.1) gives exact Fourier coefficients for
f a polynomial of degree at most S.

The Clenshaw-Curtis quadrature grid X 59 of size S € Ny is the Cartesian product
XSG ={05 : j=0,...,25} x {¢ : k=0,...,25+1}

with longitudinal nodes gog = Sk—fl and co-latitudinal nodes 19]@ = % The weights

W§ = {w : j=0,...,28 k=0,...,2S + 1}

for the quadrature formula are determined by

Ame2S S 1 il
c ._,C - J S T
Yok T 25—k T G981 ) 2T g

=0

for j=0,...,Sand £k =0,...,25 + 1. They can be computed efficiently by a DCT or
a FFT (see e.g. [19]). Here, we have defined

5~.’-—{ 1 ifj=0o0rj=1J,
J 1 if0o<j<dJ,

for J € Ng. We have ’XE’ = 45% + 685 + 2. The quadrature formula (Xg, Wg) is exact
for polynomials up to degree M < 25 so that (6.1) gives exact Fourier coefficients for
f a polynomial of degree at most S. The Clenshaw-Curtis quadrature rule is computa-
tionally attractive since its nodes and weights are easily computed and allow for using
fast FF'T-based algorithms for evaluation, see also [18].

The HEALPix grid X SC of size S = 2!, t € Ny, is a hierarchical area partitioning scheme
on the sphere and has importance as data storage standard in several applications like
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cosmic microwave background estimation. It comprises ’Xéﬂ = 1252 nodes, where S
must be a power of two, and is given explicitly by

2\ m(n+3)
NS::{<arccos(1—3SQ>,2k ck=1,...,5-1;n=0,...,4k—1 >,

6 mo
2(28 — k) W<"+7°’k2 “)
35 ) 29

k2 7r(n+%)
85.—{(&1"CCOS<— <1_SS2>>’21<: ck=1,...,8—-1;n=0,...,4k— 1,

ng{ = NgUEg5USs.

k=5,...,35n=0,...,45 -1 3,

Eg 1= arccos <

A drawback is that HEALPix grids lack an exact integration scheme with easily com-
putable weights and a degree of exactness. Nevertheless, it can be used to compute
spherical Fourier coefficients aj up to certain accuracy. For simplicity, we use for the
weights WE = {wgl cd=1,..., 1282} the uniform estimate wg =4m/ ’X§I|

iv) The last grid used is a so-called equidistribution grid XSE of size § € N for which
in the limit S — oo the exact quadrature weights approach the uniform distribution

w?k = ’j‘(’;’ (see [5, Chapter 7]). We took the ensemble from Example 7.1.9 in [5, pp.
’ S

171] with nodes given by

XE = {x00 = (0,0), 250 = (7,0)} U

U{%kz (‘7; <k—;> <2S7;>) : k::1,...,5j},

j=1
1, ifj=0o0rj =35,

55 1= LQﬂ/arccos <<cosg — cos? g) / sin® ‘ZT)J , ifo<y<S.

An upper bound for the number of nodes contained is }XSE ’ <2+ %S? Instead of using
uniform weights we employed the Clenshaw-Curtis quadrature rule again and obtained

for the weights WSE = {wfk :j:O,...,S;k:I,...,Sj}

9 15/2] 1
wio = W = — e/? 2
) AU J _ )
S;S = 1—4y
S/2
J =0

Example 6.1. We first examine the accuracy of the adjoint algorithm. Since we cannot
compute the exact output of the adjoint algorithms as reference without extraordinary amount
of time, e.g. using Mathematica with arbitrary precision arithmetic and direct evaluation of
the appearing sums, we investigate the combined accuracy of the adjoint and non-adjoint
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Figure 6.1: (a) The error Ey for the fast NFSFT algorithms with NFFT cut-off parameter
m = 3 (dash-dotted), m = 6 (dashed) and S = M = 16,32,48,...,1024, and the
direct NDSFT algorithms for S = M = 16, 32,64, 128,256,512, 1024 (solid).

(b) The error Ey for the test functions fa, f3, f4, f5 with S = 1024 and M =
16,32, 48, ...,1024.
In both examples, we used the quadrature rule (X g, Wg )

algorithms. We therefore evaluate the test function fi, which is a polynomial of degree three
on Gauss-Legendre grids Xg’ of increasing size S, compute spherical Fourier coefficients aj
up to the appropriate degree of exactness M = S, and evaluate the obtained trigonometric
polynomial, which should be identical with the function f;, on the same Gauss-Legendre grid
X S@ using the non-adjoint transform algorithm. In matrix-vector notation, this reads

~ H
The relative infinity error
”f — f‘Hoo
Fyp =———7.
> [1£]loo

with the vectors f and f of exact and computed function values, respectively, gives an
indication of the backward stability of the adjoint algorithm. Figure 6.1 shows the re-
sults of the fast NFSFT algorithms for two different NFFT cut-off parameters m = 3,6
and S = M = 16,32,48,...,1024 plus the direct NDSFT algorithms and S = M =
16, 32,64, 128, 256,512, 1024. While the NFFT cut-off parameter for m = 3 limits the achiev-
able accuracy uniformely for all transform sizes, the accuracy of the computations for m = 6
decrease with increasing transform size owing to the properties of the polynomials used in the
stabilized polynomial transform algorithm. Also the direct NDSFT algorithms show a slight
decay of accuracy.
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Example 6.2. We use Gauss-Legendre quadrature rules to compute and evaluate polynomial
approximants to the test functions fs, f3, f4 and f; with the fast NFSFT algorithms and
m = 6. More exactly, we evaluate the test functions on the fixed Gauss-Legendre grid XE’]M
of size S = 1024 and compute spherical Fourier coefficients a}! up to increasing degrees
M = 16,32,48,...,1024. We then evaluate the approximants on the grid X1%24 again using
the relative error measure F,. In matrix-vector notation, this reads

- H
f—v (Y ) W 004 £
J M,XS5, M,XS54 1024 15

for the test functions f; and j = 3,4, 5, 6.

Example 6.3. In Examples 6.1 and 6.2, the sampling sets are spherical grids, but for example
Maskhar et al. ([10]) show that suitable quadrature rules also allow reconstruction from scat-
tered sampling sets. Furthermore, one is often also intrested in quadrature rules which only
approximate the spherical Fourier coefficients. We therefore considered the Gauss-Legendre
grids Xg , the Clenshaw-Curtis grids XSC , the HEALPix grids &' 5}} and the equidistributions XSE
for various sizes S. Up to the fixed degree M = 128, we choose spherical Fourier coefficients
ap randomly from [—%, %] We now evaluate this random polynomial of degree M = 128
on the different node sets for increasing sizes S = 16,32,48,...,1024 for XE, Xg, XSE and
S =1,2,4,8,16,32,64, 128, 256,512 for XE. Using this function values, we try to recover
the spherical Fourier coefficients aj up to the degree M = 128 and compare the resulting
polynomial with the original function on a set of 1000 uniformly distributed random nodes,

using the relative error measure E,. In matrix-vector notation this reads

-~ H
= Y128,X§ <Y128,X§> Wi £,

Figure 6.2 (a) compares the error E, for the different quadrature rules and the absolute
number of nodes used.

Example 6.4. We finally compared the computation time of the adjoint NDSFT and adjoint
NFSFT algorithms. Figure 6.2 (b) shows the CPU time required for one transformation as a
function of the bandwidth M. For given M we chose the number of nodes as M?2. For larger
M, the NFSFT algorithm outperforms the NDSFT algorithm.
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