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Recently, a fast approximate algorithm for the evaluation of expansions in terms
of standard L2

(
S2
)
-orthonormal spherical harmonics at arbitrary nodes on the

sphere S2 has been proposed in [S. Kunis and D. Potts. Fast spherical Fourier
algorithms. J. Comput. Appl. Math., 161:75 – 98, 2003]. The aim of this paper
is to develop a new fast algorithm for the adjoint problem which can be used to
compute expansion coefficients from sampled data by means of quadrature rules.

We give a formulation in matrix-vector notation and an explicit factorisation of
the spherical Fourier matrix based on the former algorithm. Starting from this, we
obtain the corresponding factorisation of the adjoint spherical Fourier matrix and
are able to describe the associated algorithm for the adjoint transformation which
can be employed to evaluate quadrature rules for arbitrary weights and nodes on
the sphere. We provide results of numerical tests showing the stability of the ob-
tained algorithm using as examples classical Gauß-Legendre and Clenshaw-Curtis
quadrature rules as well as the HEALPix pixelation scheme and an equidistribu-
tion.
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1 Introduction

Discrete Fourier analysis on a multi-dimensional torus plays an important role in a wide
range of applications, among them signal processing in general, image processing, computed
tomography, and a lot more. However, in many fields of interest, data naturally arises on
a geometry that can be identified with the surface of the two-dimensonal unit-sphere – two-
sphere in short – S2 :=

{
x ∈ R3 : ‖x‖2 = 1

}
, embedded into the three-dimensional euclidean

space R3. As a small indication of the impact on current research we mention here the solution
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of inverse problems arising in astrophysics or the solution of systems of differential equations
in weather forecast computation as related examples.

In the context of Fourier analysis on the sphere S2, the spherical analogue of the usual
Fourier basis functions eikx in L2 ([0, 2π)), namely the standard orthonormal spherical har-
monics Y n

k in L2
(
S2
)

play a fundamental role. Recently, a fast algorithm for evaluating a
function f ∈ L2(S2) with finite orthogonal expansion

f(ϑ, ϕ) =
M∑
k=0

k∑
n=−k

ankY
n
k (ϑ, ϕ) (M ∈ N0) (1.1)

in terms of spherical harmonics Y n
k on a set of arbitary nodes (ϑd, ϕd) with d = 1, . . . , D,

D ∈ N, in spherical coordinates was given in [9]. The key idea is to first perform a change of
basis such that the function f in (1.1) takes the form

f(ϑ, ϕ) =
M∑

n=−M

M∑
k=−M

cnkeikϑeinϕ (1.2)

of an ordinary two-dimensional Fourier sum with new complex coefficients cnk . Then, the eval-
uation of the function f can be performed using the fast Fourier transform for nonequispaced
nodes (NFFT; see for example [14, 20]).

In this paper, we are intrested in the adjoint problem, i.e. the fast evaluation of sums

ãnk :=
D∑
d=1

f (ϑd, ϕd)Y n
k (ϑd, ϕd) (1.3)

for given function values f (ϑd, ϕd) ∈ C and all indices k = 0, . . . ,M and n = −k, . . . , k. Note
that this usually does not yet recover the coefficients ank from (1.1) for which we denote the
computed coefficients ãnk . The coefficients ank can be obtained from values of the function
f on a set of arbitrary nodes (ϑd, ϕd) provided that a quadrature rule with weights wd and
sufficient high degree of exactness is available (see also [5, 10]). Then the sum in (1.3) changes
to

ank =
D∑
d=1

wdf (ϑd, ϕd)Y n
k (ϑd, ϕd). (1.4)

The computation of spherical Fourier coefficients from discrete sampled data has major
importance in the whole field of data analysis on the sphere S2. In many applications how-
ever, the distribution of the available data on the sphere is predetermined by the underlying
measurement process or as well by data storage and access considerations. This often requires
the use of techniques like spherical hyperinterpolation ([16]) or approximate quadrature rules
that differ from classical quadrature formulae. The implementation of the algorithm for the
adjoint problem (1.3) developed in this paper provides for the first time a means of evaluating
quadrature formulae for arbitrary nodes in a fast way and thus allows for the efficient use of
new quadrature schemes.

The outline of this paper is as follows: Section 2 introduces basic notation and definitions,
and recalls the fast algorithm for evaluating the expansion (1.1) from [9]. We give a matrix-
vector formulation of the algorithm where we distinguish the initial change of basis to arrive
at (1.2) and the application of the NFFT algorithm. In Section 3, we describe the change
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of basis by means of a fast polynomial transform in more detail. In Section 4, following the
algorithm, the factorisation of the corresponding transform matrix into a product of sparse
matrices is derived. Consequently, once obtained a fast algorithm for (1.1), a fast algorithm
for the adjoint problem (1.3) comes by taking the adjoint matrix product in Section 5. Finally,
Section 6 provides results of numerical tests showing properties of the described algorithm by
using a range of different test functions and quadrature formulae.

2 Discrete spherical Fourier transforms

This section reviews basic notation, definitions, and the fast algorithm for (1.1) from [9].

2.1 Fourier analysis on the sphere S2

In spherical coordinates we identify each point x ∈ S2 with a tuple (ϑ, ϕ) ∈ [0, π]× [0, 2π) of
two angles ϑ and ϕ. The space L2

(
S2
)

is the Hilbert space of square integrable functions on
the sphere S2 with the usual inner product given by

〈f, g〉L2(S2) :=
∫ π

0

∫ 2π

0
f(ϑ, ϕ)g(ϑ, ϕ) dϕ sinϑ dϑ.

With the standard orthonormal basis of spherical harmonics Y n
k with indices k = 0, 1, . . . and

n = −k, . . . , k for the space L2
(
S2
)
, any function f from L2

(
S2
)

can be developed into a
generally infinite orthogonal expansion

f(ϑ, ϕ) =
∞∑
k=0

k∑
n=−k

ankY
n
k (ϑ, ϕ). (2.1)

The functions Y n
k are harmonic homogeneous polynomials of degree k and are defined by

Y n
k : S2 → C, Y n

k (ϑ, ϕ) :=

√
2k + 1

4π
P
|n|
k (cosϑ)einϕ. (2.2)

2.2 Associated Legendre functions and polynomials

The functions P |n|k are the associated Legendre functions,

Pnk : [−1, 1]→ R, Pnk (x) :=
(

(k − n)!
(k + n)!

)1/2 (
1− x2

)n/2 dn

dxn
Pk(x) (2.3)

for n = 0, 1, . . . and k = n, n + 1, . . ., where the classical Legendre polynomials Pk are given
by their Rodrigues formula

Pk : [−1, 1]→ R, Pk(x) :=
1

2kk!
dk

dxk
(
x2 − 1

)k
.

For a concise notation, we let P−1(x) := 0. The associated Legendre functions Pnk have the
three-term recurrence relation

Pnk+1(x) = vnkxP
n
k (x) + wnkP

n
k−1(x) (k ≥ n) (2.4)
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with initial values

Pnn−1(x) := 0, Pnn (x) = λn
(
1− x2

)n/2
, λn :=

√
(2n)!

2nn!

and the coefficients

vnk :=
2k + 1

((k − n+ 1)(k + n+ 1))1/2
, wnk := − ((k − n)(k + n))1/2

((k − n+ 1)(k + n+ 1))1/2
. (2.5)

A simple but at the same time powerful idea is to define the associated Legendre functions
Pnk also for k = 0, . . . , n by means of the modified three-term recurrence relation

Pnk+1(x) = (αnkx+ βnk )Pnk (x) + γnkP
n
k−1(x) (2.6)

for k ≥ 0 with

αn0 :=


1 if n = 0,
0 if n odd,
−1 if n even, n 6= 0,

αnk :=
{

(−1)k+1 if 0 < k < n,
vnk if n ≤ k,

βnk :=
{

1 if 0 ≤ k < n,
0 if n ≤ k, γnk :=

{
0 if 0 ≤ k < n,
wnk if n ≤ k.

(2.7)

Here, we let Pn−1(x) := 0, and Pn0 (x) := λn for even n and Pn0 (x) := λn
(
1− x2

)1/2 for odd
n. For k ≥ n, this definition coincides with the recurrence (2.4). As easily verified by the
defining equation (2.3), Pnk is a polynomial of degree k if n is even, while (1 − x2)−1/2Pnk is
a polynomial of degree k − 1 if n is odd. Based on the recurrence coefficients from (2.7) and
introducing a shift parameter c ∈ N0, we define the associated Legendre polynomials Pnk ( · , c)
by

Pn−1(x, c) := 0, Pn0 (x, c) := 1,
Pnk+1(x, c) =

(
αnk+cx+ βnk+c

)
Pnk (x, c) + γnk+cP

n
k−1(x, c) (k ≥ 0).

(2.8)

It is not difficult to prove the following lemma by a straightforward induction. ([1]):

Lemma 2.1. Let c, k, n ≥ 0 and let the functions Pnk and Pnk ( · , c) be given as in (2.6), (2.7),
and (2.8). Then we have

Pnk+c(x) = Pnc (x, k)Pnk (x) + γnkP
n
c−1(x, k + 1)Pnk−1(x).

2.3 Discrete Fourier transforms on the sphere S2

We recall that our goal in this section is the evaluation of a finite expansion

f(ϑ, ϕ) =
M∑
k=0

k∑
n=−k

ankY
n
k (ϑ, ϕ) =

∑
(k,n)∈IM

ankY
n
k (ϑ, ϕ). (2.9)

of a function f in terms of spherical harmonics Y n
k , where IM denotes the index set

IM := {(k, n) : k = 0, . . . ,M ; n = −k, . . . , k} .
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The sum in (2.9) is the spherical Fourier sum of the function f and M ∈ N0 is called the band-
width of f . Likewise, the function f is said to be a bandlimited function on the sphere S2 with
bandwidth M . The complex expansion coefficients ank ∈ C are the spherical Fourier coeffi-
cients of the function f . The index k denotes the degree and n is the order with respect to the
orthonormal basis of spherical harmonics Y n

k . Alluding to the geographic coordinate system,
the angles ϑ are called co-latitudes and the angles ϕ longitudes. A set X := {(ϑd, ϕd)}Dd=1,
D ∈ N, of arbitrary nodes on the sphere S2 is called a sampling set.

2.4 Matrix-vector notation

From a linear algebra point of view, evaluating the bandlimited function f with bandwidth
M as in (2.9) on a sampling set X amounts to evaluating matrix-vector product

fX = YM,X aM

with

fX := (fd)
D
d=1 ∈ CD, fd := f (ϑd, ϕd) ,

YM,X := (Y n
k (ϑd, ϕd))d=1,...,D;(k,n)∈IM ∈ CD×(M+1)2 ,

aM := (ank)(k,n)∈IM ∈ C(M+1)2 .

We write fX , YM,X and aM to emphasise the dependence of these quantities on the concrete
sampling set X and the bandwidth M . Furthermore, we introduce the notation

anM := (ank)Mk=|n| ∈ CM−|n|+1

with n = −M, . . . ,M for subvectors anM of aM , each containing the spherical Fourier coeffi-
cients ank for a fixed order n.

2.5 A fast Fourier transform algorithm for arbitrary nodes on the sphere S2

We are now ready to describe the fast evaluation of a bandlimited function f with bandwidth
M on an arbitrary sampling set X on the sphere S2, or equivalently, the fast evaluation of
the matrix-vector product fX = YM,X aM . First, we rearrange terms in the spherical Fourier
sum and obtain

f(ϑ, ϕ) =
M∑
k=0

k∑
n=−k

ankY
n
k (ϑ, ϕ) =

M∑
n=−M

M∑
k=|n|

ankY
n
k (ϑ, ϕ)

=
M∑

n=−M

 M∑
k=|n|

ank

√
2k + 1

4π
P
|n|
k (cosϑ)


︸ ︷︷ ︸

:=hn(cosϑ)

einϕ,
(2.10)

Then we consider polynomials of degree M

gn(x) :=
M∑

k=|n|

ankP
|n|
k (x) (2.11)
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for even n, and of degree M − 1

gn(x) := (1− x2)−1/2
M∑

k=|n|

ankP
|n|
k (x) (2.12)

for odd n with the given complex spherical Fourier coefficients ank . It is not difficult to verify
that

hn(cosϑ) =
{
gn(cosϑ) if n even,
(sinϑ)gn(cosϑ) if n odd.

We perform a change of basis via a fast polynomial transform (see [12]) and obtain hn(cosϑ)
in Chebyshev representation

hn(cosϑ) =



M∑
k=0

bnkTk(cosϑ), if n even,

(sinϑ)
M−1∑
k=0

bnkTk(cosϑ), if n odd,

(2.13)

with the Chebyshev polynomials of the first kind Tk : [−1, 1] → R, Tk(x) := cos(k arccosx).
Since Tk(cosϑ) = cos(kϑ), we can write

hn(cosϑ) =



M∑
k=0

bnk cos(kϑ), if n even,

(sinϑ)
M−1∑
k=0

bnk cos(kϑ), if n odd.

In addition, we use cos(kϑ) = 1
2

(
eikϑ + e−ikϑ

)
and arrive at

hn(cosϑ) =



M∑
k=−M

b̃nkeikϑ, if n even,

(sinϑ)
M−1∑

k=−(M−1)

b̃nkeikϑ, if n odd,

where we let

b̃nk :=

{
bn0 if k = 0,
1
2b
n
|k| if 0 < |k| ≤M.

(2.14)

In view of that sinϑ = 1
2i

(
eiϑ − e−iϑ

)
, a last manipulation finally yields the representation

hn(cosϑ) =
M∑

k=−M
cnkeikϑ, (2.15)

with the coefficients

cnk :=



b̃nk , if n even,

− 1
2i b̃

n
k+1, if n odd and k = −M,−M + 1,

1
2i b̃

n
k−1, if n odd and k = M,M − 1,

1
2i(b̃

n
k−1 − b̃nk+1), if n odd and k = −M + 2, . . . ,M − 2.

(2.16)
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For the function f in (2.10), this now yields the ordinary two-dimensional Fourier sum

f(ϑ, ϕ) =
M∑

n=−M

M∑
k=−M

cnkeikϑeinϕ. (2.17)

The double sum in (2.17) can be evaluated by the NFFT algorithm on an arbitrary sampling
set X with D nodes with O

(
M2 logM + log2 (1/ε)D

)
floating point operations (flops), where

ε is a prescribed accuracy. In matrix-vector notation, the complete procedure reads

fX = FM,X CM BM aM . (2.18)

Here, the block-diagonal matrix BM with blocks Bn
M , n = −M, . . . ,M , on its main diagonal

stands for the fast polynomial transform algorithm acting with block Bn
M on the subvector

anM of aM which comprises the Fourier coefficients ank for a fixed order n. The matrix CM

represents the intermediate steps to convert the Chebyshev coefficients bnk in (2.13) into the
final Fourier coefficients cnk in (2.15), and the matrix FM,X realises the evaluation of the
ordinary Fourier sum in (2.17). The matrices CM and BM do not depend on the sampling
set X but only on the bandwidth M .

Let us state the entries of these matrices. We have

FM,X :=
(

ei(kϑd+nϕd)
)
d=1,...,D;(k,n)∈IM

∈ CD×(2M+1)2

and according to (2.14) and (2.16)

BM := diag [Bn
M ]Mn=−M ∈ R(2M+1)(M+1)×(M+1)2 ,

Bn
M ∈ R(M+1)×(M−|n|+1),

CM := CM,2 CM,1 ∈ R(2M+1)2×(2M+1)(M+1),

CM,1 := I2M+1 ⊗ C̃M,1 ∈ R(2M+1)2×(2M+1)(M+1),

C̃M,1 :=



1
2

. .
.

1
2

1
2

1
1
2

1
2

. . .
1
2


∈ R(2M+1)×(M+1),

CM,2 := diag
(

(δ0,n mod 2)Mn=−M

)
⊗ C̃M,2 ∈ R(2M+1)2×(2M+1)2 ,

C̃M,2 := tridiag
[
(−i/2)2M−1

l=0 , (0)2nl=0 , (i/2)2M−1
l=0

]
∈ R(2M+1)×(2M+1).

(2.19)

As usual, δj,k denotes the Kronecker delta function for j, k ∈ Z. The matrices BM and CM

are real matrices acting on complex vectors. The matrix CM decomposes into a product of
two matrices CM,1 and CM,2, where CM,1 represents step (2.14) and CM,2 stands for (2.16).
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The adjoint counterpart of the method just described is obtained from the factorisation of
the spherical Fourier matrix YM,X in the matrix-vector product (2.18) and reads

ãM = BT
M CT

M FH
M,X fX . (2.20)

This represents the adjoint Fourir sum in (1.3) in matrix-vector notation. Again, we use
tildes to emphasize that the adjoint transform in general does not yield the spherical Fourier
coefficients ank . The multiplication with the matrix FH

X , which is identical to the evaluation
of sums

c̃nk :=
D∑
d=1

f (ϑd, ϕd) e−ikϑde−inϕd

for indices (k, n) ∈ IM , can also be carried out by the NFFT as described in [14]. The
transposed algorithm for the intermediate steps, hence the multiplication with the matrix CT

M ,
can be derived directly from the explicit representation in (2.19). The details of the transposed
polynomial transform algorithm, or, equivalently, the multiplication with the matrix BT

M , are
derived in Section 5 after the matrix BM has been further decomposed in Section 4. The
final adjoint algorithm is called adjoint non-uniform fast spherical Fourier transform (adjoint
NFSFT).

3 Fast Legendre function transform

In this section, we review a fast algorithm for the transformation of sums

gn(x) =

{ ∑M
k=|n| a

n
kP

n
k (x), if n even,

(1− x2)−1/2
∑M

k=n a
n
kP

n
k (x), if n odd

of associated Legendre functions Pnk into their respective Chebyshev representation

gn(x) =
M∑
k=0

bnkT
n
k (x)

in terms of Chebyshev polynomials of the first kind Tk. This algorithm is called a fast Legendre
function transform (FLFT).

3.1 Existing algorithms

The first originating paper [4] is due to Driscoll and Healy describing an exact algorithm for
the transposed problem, i.e. projecting a sum of Chebyshev polynomials Tk onto associated
Legendre functions Pnk . In [13], an exact algorithm is derived, introducing for the first time
a stabilisation technique to compensate for errors due to finite precision arithmetic. Both,
the Driscoll-Healy algorithm for the transposed problem and the latter algorithm in its initial
version are subject to numerical instabilities. In [7], Healy, Kostelec, Moore, and Rockmore
show variations of the Driscoll-Healy algorithm also including stabilization techniques.

Mohlenkamp ([11]) introduces the first related approximate algorithm. Further approxi-
mate algorithms are developed by Suda and Takami ([17]) using a stabilisation method relying
on fast multipole methods and optimised interpolation nodes. Rokhlin and Tygert ([15]) ex-
ploit a relation to semi-separable matrices. We follow the lines in [13] and [9].

8



3.2 An exact algorithm

Let now M ≥ 4, t := dlog2Me, and N := 2t. Furthermore, set ank := 0 for 0 ≤ k < |n| and
M < k ≤ N . In the first step, we define ñ := min(|n|, N − 2) and M̃ := min(M,N − 1). We
can write

gn =
M̃∑
k=ñ

ank,0P
n
k (3.1)

with the polynomials

ank,0(x) := ank (k = 0, . . . , N − 3),

anN−2,0(x) := anN−2 + γnN−1a
n
N ,

anN−1,0(x) := anN−1 +
(
αnN−1x+ βnN−1

)
anN .

(3.2)

of degree at most one. By grouping terms we arrive at

gn =

l
M̃+1

4

m
−1∑

l=b ñ4 c

(
3∑

k=0

an4l+k,0P
n
4l+k

)
, (3.3)

which is a partition of the sum (3.1) into blocks of four consecutive summands. We note that
we immediately know the Chebyshev representation of each of the polynomials ank,0 involved
which is due to the fact that these polynomials have degree at most one, and that T0(x) = 1
and T1(x) = x. The generalised recurrence in Lemma 2.1 implies(

Pnk+c
Pnk+c+1

)
= Un

c (·, k)T
(
Pnk−1

Pnk

)
, (3.4)

where

Un
c (·, k)T :=

(
γnkP

n
c−1(·, k + 1) γnkP

n
c (·, k + 1)

Pnc (·, k) Pnc+1(·, k)

)
. (3.5)

From the matrix-vector form (3.4) and with c = 1 and k = l + 1 it follows that

(
Pn4l+2, P

n
4l+3

)(an4l+2,0

an4l+3,0

)
=
(
Pn4l, P

n
4l+1

)
Un

1 (·, 4l + 1)
(
an4l+2,0

an4l+3,0

)
.

This lets us rewrite the sum (3.3) as

gn =

l
M̃+1

4

m
−1∑

l=b ñ4 c

(
an4l,1P

n
4l + an4l+1,1P

n
4l+1

)
with new polynomials of degree at most three,(

an4l,1
an4l+1,1

)
:=
(
an4l,0
an4l+1,0

)
+ Un

1 (·, 4l + 1)
(
an4l+2,0

an4l+3,0

)
. (3.6)

We can use a fast cosine transform to compute the polynomial products in (3.6) and obtain the
polynomials an4l,1 and an4l+1,1 in Chebyshev representation again. Applying this idea repeatedly
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τ = 0

τ = 1

τ = 2

τ = 3

τ = 4

0 0 0 0 a4
4 a4

5 a4
6 a4

7 a4
8 a4

9 a4
10 a4

11 a4
12 a4

13 a4
14 a4

15 a4
16

0 0 0 0 a4
4,0 a4

5,0 a4
6,0 a4

7,0 a4
8,0 a4

9,0 a
4
10,0 a

4
11,0 a

4
12,0 a

4
13,0 a

4
14,0 a

4
15,0

U 4
1 (·, 5) U 4

1 (·, 9) U 4
1 (·, 13)

0 0 a4
4,1 a4

5,1 a4
8,1 a4

9,1 a4
12,1 a4

13,1

U 4
3 (·, 1) U 4

3 (·, 9)

a4
0,2 a4

1,2 a4
8,2 a4

9,2

U 4
7 (·, 1)

a4
0,3 a4

1,3

b4
0 b4

1 b4
2 b4

3 b4
4 b4

5 b4
6 b4

7 b4
8 b4

9 b4
10 b4

11 b4
12 b4

13 b4
14 b4

15 b4
16

Figure 3.1: Schematic representation of the FLFT cascade summation for M = 16 (t = 4)
and n = 4. The steps τ = 0 and τ = 4 are the first and the last step, respectively.

leads to a cascade summation scheme as illustrated in Figure 3.1. For τ = 1, . . . , t − 1, we
compute (

an2τ+1l,τ

an2τ+1l+1,τ

)
=

(
an2τ+1l,τ−1

an2τ+1l+1,τ−1

)
+ Un

2τ−1

(
·, 2τ+1l + 1

)( an2τ+1l+2τ ,τ−1

an2τ+1l+2τ+1,τ−1

)
(3.7)

for l = bñ/2τ+1c, . . . , d(M̃+1)/2τ+1e−1. It is not difficult to see that an2τ+1l,τ = an2τ+1l+1,τ = 0
for larger or smaller l. After step τ = t− 1, we arrive at gn = an0,t−1P

n
0 + an1,t−1P

n
1 , where we

have the Chebyshev coefficients b0,k and b1,k for k = 0, . . . , N − 1 of the polynomials an0,t−1

and an1,t−1 with degree at most N − 1, respectively. Since

λn =
{
Pn0 (x), if n even,
(1− x2)−1/2Pn0 (x), if n odd,

Pn1 (x) = (αn0x+ βn0 )Pn0 (x),

we have

gn(x) = λn
(
an0,t−1(x) + (αn0x+ βn0 ) an1,t−1(x)

)
. (3.8)

Now, using xT0(x) = x = T1(x) and xTk(x) = 1
2 (Tk+1(x) + Tk−1(x)) for k ≥ 1, we finally

obtain in the last step the sought Chebyshev coefficients bnk for k = 0, . . . ,M if n even or
k = 0, . . . ,M−1 if n odd of the polynomial gn(x) of degree at most M or M−1, respectively,
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by computing

bn0 = λn

(
b0,0 + βn0 b1,0 +

αn0
2
b1,1

)
,

bn1 = λn

(
b0,1 + βn0 b1,1 + αn0

(
b1,0 +

b1,2
2

))
,

bnk = λn

(
b0,k + βn0 b1,k +

αn0
2

(b1,k−1 + b1,k+1)
)

(k = 2, . . . , N − 2),

bnN−1 = λn

(
b0,N−1 + βn0 b1,N−1 +

αn0
2
b1,N−2

)
,

bnN = λn
αn0
2
b1,N−1.

(3.9)

In total, the FLFT algorithm consists of t + 1 = O(logM) steps. The first step (τ = 0)
and the last step (τ = t) clearly have a complexity of O(M) flops. The rest is the cascade
summation where each step has a complexity ofO(M logM) flops due to the DCT applications
used for the multiplication with the matrices Un

2τ−1

(
·, 2τ+1l + 1

)
. In total, this accumulates

to O
(
M log2M

)
flops for the whole algorithm.

3.3 Stabilisation

The described algorithm is only exact in exact arithmetic. Unfortunately, it becomes unstable
in finite precision arithmetic for |n| > 16 ([13]). The computation is subject to numerical
instabilities owing to small errors introduced by the DCT algorithm that get multiplied by
large function values of the associated Legendre polynomials Pnk (x, c) for certain admissible
triples (k, n, c) and |x| ≈ 1 ([9]). A simple but effective idea (see [13]) is to replace the ordinary
multiplication steps by so-called ’stabilisation’ steps, whenever the values Pnk (x, c) exceed a
certain threshold κ > 0. The multiplication with the matrix Un

2τ+1

(
·, 2τ+1l + 1

)
is replaced

by a multiplication with the matrix Un
2τ (2l+1)−1(·, 1) fulfilling(

Pn2τ+1l+2τ

Pn2τ+1l+2τ+1

)
= Un

2τ (2l+1)−1 (·, 1)T
(
Pn0
Pn1

)
.

This is nothing else than taking the polynomials an2τ+1l+2τ ,τ−1 and an2τ+1l+2τ+1,τ−1 out of the
cascade and updating(

an0,t−1

an1,t−1

)
:=
(
an0,t−1

an1,t−1

)
+ Un

2τ (2l+1)−1 (·, 1)

(
an2τ+1l+2τ ,τ−1

an2τ+1l+2τ+1,τ−1

)
(3.10)

after the cascade summation is completed. These ’stabilisation’ steps are costly compared
to the cascade summation without stabilisation. We sacrifice runtime efficiency for accuracy.
Unfortunately, an upper bound for the number

sn := # {(k, n, c) : (k, n, c) is admissible and Pnk (·, c) exceeds the threshold κ}

of stabilisation steps with respect to M for a given threshold κ is not known. If sn = O(logM),
we would still have an O

(
M log2M

)
algorithm. Figure 3.2 shows time measurements sup-

porting that this might be a reasonable conjecture. Figure 3.3 shows accuracy measurements
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Figure 3.2: The time T := T̃
M log2M

in seconds, with T̃ being the time for a single fast Legendre
function transform, as a function of the bandwidth M up to M = 1024 and orders
n = 0 (solid), n = M

4 (dashed), n = M
2 (dashed-dotted), and n = 3M

4 (dotted).
The time measurements have been averaged over 10.000 single transforms for each
bandwidth M support an estimate of the arithmetic complexity of O(M log2M).
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Figure 3.3: The errors E2 (left) and E∞ (right) from (3.11) for single fast Legendre function
transforms as a function of the bandwidth M up to M = 1024 and orders n =
0 (solid), n = M

4 (dashed), n = M
2 (dashed-dotted), and n = 3M

4 (dotted),
respectively. We used uniformly distributed pseudo-random coefficients ank from[
−1

2 ,
1
2

]
×i
[
−1

2 ,
1
2

]
. Reference values where calculated with Mathematica 5.0 using

arbitrary precision arithmetic up to accuracy ε = 10−32.

with respect to the relative error measures

E∞ :=
‖g − g̃‖∞
‖g‖∞

, E2 :=
‖g − g̃‖2
‖g‖2

, (3.11)

where the vectors g and g̃ represent a sum

gn(cosϑ) =
M∑

k=|n|

ankP
|n|
k (cosϑ)

12



evaluated at the M + 1 Chebyshev nodes ϑl = π(2l + 1)/(2(M + 1)), l = 0, . . . ,M using
Mathematica 5.0 with arbitrary precision arithmetic for g, and the stabilized FLFT algorithm
followed by a DCT-III for g̃, respectively.

4 A factorization of the matrix Bn
M

In this section, we represent the FLFT algorithm as a linear mapping acting on a vector of
coefficients anM = (ank)Mk=|n| ∈ CM−|n|+1 for fixed order n with |n| ≤ M . For the sake of
simplicity, we restrict ourselves to the case when M is a power of two, hence M = N . For
values of M no being a power of two, we set ank := 0 for M < k ≤ N . Furthermore, we let
ank := 0 for 0 ≤ k < |n| as before and use the extended vector

anM := (ank)Nk=0 ∈ CN+1

We also omit the stabilisation procedure from Section 3.3 here and do not exploit the fact
that ank = 0 for 0 ≤ k < n or M < k ≤ N in the following.

As seen before in Section 2.4, the FLFT algorithm can be represented as a matrix Bn
M ∈

R(N+1)×(N+1) that multiplied with the vector anM results in a vector bnM := (bn0 , b
n
1 , . . . , b

n
N )T ∈

CN containing the Chebyshev coefficients bnk of the polynomial gn(x) from (2.11) or (2.12),
admitting the representation

gn(x) =
N∑
k=0

bnkTk(x)

In matrix-vector notation, this reads

bnM = Bn
M anM .

The FLFT algorithm implies a factorisation of the matrix Bn
M into a product of sparse

matrices. We will use this fact later on in Section 5 to obtain an algorithm for the transposed
problem, i.e. computing a matrix-vector product of the form ãM,n = Bn

M
T b̃M,n.

In general, the FLFT algorithm consists of t + 1 steps, such that the matrix Bn
M can be

decomposed into the matrix product

Bn
M = Bn

M,t · Bn
M,t−1 · . . . · Bn

M,1 · Bn
M,0, (4.1)

with the matrices

Bn
M,τ ∈


R2N×(N+1) if τ = 0,
R2N×2N if 1 ≤ τ < t,

R(N+1)×2N if τ = t.

4.1 The First Step

The first step converts the spherical Fourier coefficents ank , k = 0, . . . , N , into polynomials
ank,0, k = 0, . . . , N−1 of degree at most one in Chebyshev representation, i.e. vectors ank,0 ∈ C2

containing the coefficients of their expansions in terms of the Chebyshev polynomials Tk for
k = 0, 1. In matrix-vector notation, this reads

anM,0 = Bn
M,0 anM

13



where the result vector

anM,0 :=

 ãn0,0
...

ãnN−1,0

 ∈ C2N

is a vector of length 2N . For k = 0, . . . , N − 3 we have

ãnk,0 = e ank , with e :=
(

1
0

)
since these new polynomials remain constants. The last polynomial anN,0 is mapped onto the
preceeding ones, anN−1,0 and anN−2,0, by means of the three-term recurrence relation (2.6), i.e.

anN,0 =
(
αnN−1x+ βnN−1

)
anN−1,0 + γnN−1a

n
N−2,0.

Consequently, the matrix Bn
M,0 can be written as

Bn
M,0 = [IN ⊗ e, ẽ] , (4.2)

with ẽ :=
(
0, 0, . . . , 0, γnN−1, 0, β

n
N−1, α

n
N−1

)T ∈ R2N .

4.2 Steps τ = 1, . . . , t− 1 (Cascade Summation)

These steps represent the cascade summation applied to a sum of associated Legendre func-
tions Pnk as in Figure 3.1. Notice that after the first step, we have N polynomials ank,0 for
k = 0, . . . , N − 1, where N is a power of two. In each step now following, half the func-
tions Pnk are eliminated by mapping the polynomials ank,0 in front of them onto the remaining
ones, employing the three-term recurrence. The input of step τ , the vector anM,τ−1, con-
taining the Chebyshev coefficients of the polynomials an2τ+1l+j,τ−1 as vectors ãn2τ+1l+j,τ−1 and
j = 0, 1, 2τ , 2τ +1, is grouped by the idnex j into consecutive blocks ânl,τ−1 of four polynomials
for l = 0, . . . , N/2τ+1 − 1, hence

anM,τ−1 :=


ân0,τ−1
...

ânN
2τ+1−1,τ−1

 ∈ C2N , ânl,τ−1 :=


ãn2τ+1l,τ−1

ãn2τ+1l+1,τ−1

ãn2τ+1l+2τ ,τ−1

ãn2τ+1l+2τ+1,τ−1

 ∈ C2τ+2

In every block ânl,τ−1, the first and the second polynomial, an2τ+1l,τ−1 and an2τ+1l+1,τ−1 remain
unchanged. The third and the fourth polynomial, an2τ+1l+2τ ,τ−1 and an2τ+1l+2τ+1,τ−1, get mul-
tiplied by the matrix Un

2τ−1

(
·, 2τ+1l + 1

)
and the result is added to an2τ+1l,τ−1 and an2τ+1l+1,τ−1

yielding an2τ+1l,τ and an2τ+1l+1,τ .
The output vector anM,τ of this step contains only half as many polynomials as before, but

due to the multiplication with the matrix Un
2τ−1

(
·, 2τ+1l + 1

)
, the degree of each polynomial

nearly doubles each time so that twice the space is needed to store the Chebyshev coefficients,
hence the vectors ãn2τ+1l,τ and ãn2τ+1l+1,τ . In total, the result vector anM,τ still has length 2N .

Reviewing this polynomial multiplication and addition scheme, we need to keep the first
two polynomials, but with their vectors zero-padded to twice the length. Furthermore, we
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have to add the vectors of Chebyshev coefficients due to the multiplication of the third and
fourth polynomial with the matrix Un

2τ−1

(
·, 2τ+1l + 1

)
. By writing these steps now as

[
ãn2τ+1l,τ

ãn2τ+1l+1,τ

]
= Vn

l,τ


ãn2τ+1l,τ−1

ãn2τ+1l+1,τ−1

ãn2τ+1l+2τ ,τ−1

ãn2τ+1l+2τ+1,τ−1

 = Vn
l,τ ânl,τ−1

we introduce the matrices

Vn
l,τ := [Zτ ,Ul,τ ] ∈ R2τ+2×2τ+2

,

Zτ :=


I2τ 0
0 0
0 I2τ

0 0

 ∈ R2τ+2×2τ+1
,

Un
l,τ ∈ R2τ+2×2τ+1

where the matrix Un
l,τ representing the multiplication of the third and fourth polynomial with

the matrix Un
2τ−1

(
·, 2τ+1l + 1

)
can be further factorised as:

Un
l,τ := DII,τ Sτ Pn

l,τ DIII,τ , (4.3)

defining the matrices

DII,τ := I2 ⊗ (D2τ+1C2τ+1) ∈ R2τ+2×2τ+2
,

Sτ := I2 ⊗
[

I2τ+1 , I2τ+1

]
∈ R2τ+2×2τ+3

,

Pn
l,τ := diag

([
γn2τ+1l+1P

n
2τ−2(2τ+1l + 1 + 1), γn2τ+1l+1P

n
2τ−1(2τ+1l + 1 + 1),

Pn
2τ−1(2τ+1l + 1),Pn

2τ (2τ+1l + 1)
])

∈ R2τ+3×2τ+3
,

DIII,τ := I2 ⊗
((

I2 ⊗CT
2τ+1

)
Zτ
)

∈ R2τ+3×2τ+1
,

and using the DCT related matrices D2τ+1 and C2τ+1 given by

CN :=
(

cos
j(2k + 1)π

2N

)N−1

j,k=0

, DN := diag
(

(εj)
N−1
j=0

)
(N ∈ N),

with ε0 := 1
2 and εj := 1 for j = 1, . . . , N − 1.

The matrix DIII,τ realizes the zero-padding (see the definition of Zτ from above) of the
two polynomials an2τ+1l+2τ ,τ−1 and an2τ+1l+2τ+1,τ−1, second, the evaluation at the Chebyshev

nodes cos
(

(2j+1)π
2τ+2

)
for j = 0, . . . , 2τ+1 − 1 by the DCT-III related matrix CT

2τ+1 , and finally,
a duplication of the resulting vector to allow for multiplication with two different associated
Legendre polynomials. Combined, the zero-padding and evaluation are an interpolation of
function values of the polynomials at additional nodes.

The diagonal matrix Pn
l,τ contains the values of the associated Legendre polynomials in the

matrix Un
2τ−1

(
·, 2τ+1l + 1

)
Chebyshev nodes cos

(
(2j + 1)π/2τ+2

)
for j = 0, . . . , 2τ − 1 on

its main diagonal. It represents a pointwise multiplication with the interpolated polynomial
function values of an2τ+1l+2τ ,τ−1 and an2τ+1l+2τ+1,τ−1.
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The matrix S(τ) forms the sums for the two rows of the result, and finally, the matrix
DII,τ transforms the newly obtained polynomials an2τ+1l.τ and an2τ+1l+1,τ back into Chebyshev
representation by applying the DCT-II related matrix product D2τ+1 C2τ+1 to each vector of
polynomial function values.

From the factorisation in (4.3), the compact representation

Un
l,τ =

(
D2τ+1C2τ+1 γnc ( Pn

2τ−2(c+ 1)CT
2τ+1Z1,τ + Pn

2τ−1(c+ 1)CT
2τ+1Z2,τ )

D2τ+1C2τ+1 ( Pn
2τ−1(c)CT

2τ+1Z1,τ + Pn
2τ (c)CT

2τ+1Z2,τ )

)
with c = 2τ+1l + 1 and

Z1,τ :=
(
I2τ 0
0 0

)
∈ R2τ+1×2τ+1

, Z2,τ :=
(

0 I2τ

0 0

)
∈ R2τ+1×2τ+1

is obtained.
The whole step T(τ)

n can then be represented as

anM,τ = Bn
M,τ anM,τ−1,

Bn
M,τ :=


Vn

0,τ

Vn
1,τ

. . .

Vn
2t−τ−1−1,τ

 . (4.4)

4.3 The Last Step

The last step consists in obtaining the polynomial gn = an0,t−1P
n
0 + an1,t−1P

n
1 in Chebyshev

representation, i.e. the vector bnM = (bnk)Nk=0 ∈ CN+1. Using (3.9) we write

gnM = λn

(
ĨNan0,t−1 +

(
αn0WN + βn0 ĨN

)
an1,t−1

)
.

Here, we have defined

Ĩk :=
[

IN
0

]
∈ R(N+1)×N , WN :=



0 1
2

1 0 1
2

1
2 0

. . .

. . .
. . . 1

2
1
2 0

1
2


∈ R(N+1)×N .

The last step is computing
bnM = Bn

M,t a
n
M,t−1

where, depending on n, we distinguish three cases:

i) If n is odd we have αn0 = 0, βn0 = 1, and

Bn
M,t = λn

[
ĨN , ĨN

]
∈ R(N+1)×2N . (4.5)
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ii) For n = 0 holds αn0 = 1, βn0 = 0, and we find

Bn
M,t = λn

[
ĨN+1,WN

]
∈ R(N+1)×2N . (4.6)

iii) Finally, if n is even and n 6= 0, one verifies αn0 = −1 and βn0 = 1 resulting in

Bn
M,t = λn

[
ĨN , ĨN −WN

]
∈ R(N+1)×2N . (4.7)

5 Transposed Fast Legendre Function Transform

After having analysed the FLFT algorithm in more detail by factorising the associated matrix,
the transposed fast Legendre Function transform (transposed FLFT) reads

ãnM = Bn
M

T b̃nM (5.1)

with the vectors b̃nM :=
(
b̃nk

)N
k=0
∈ CN+1 and ãnM := (ãnk)Nk=0 ∈ CN+1. Notice that we are

only interested in the coefficients ãnk for |n| ≤ k ≤M afterwards.
Following the lines of the preceeding sections, in particular the formulas in (4.1), (4.2),

(4.4), and (4.5) – (4.7), we immediately obtain a factorisation of the transposed matrix Bn
M

T

as
Bn
M

T = Bn
M,0

T · Bn
M,1

T · . . . · Bn
M,t−1

T · Bn
M,t

T. (5.2)

For τ = 0 and τ = t, we have immediatly

Bn
M,0

T =
(
IN ⊗ eT

1

ẽT

)
, Bn

M,t
T = λn



[
ĨN

ĨN

]
if if n odd,[

ĨN

WT
N

]
if if n = 0,[

ĨN

ĨN −WT
N

]
if if n even, n 6= 0.

(5.3)

For the rest of the steps, i.e. the ’transposed’ cascade summation for τ = t−1, . . . , 1, we have

Bn
M,τ

T =


Vn

0,τ
T

Vn
1,τ

T

. . .

Vn
2t−τ−1−1,τ

T

 ,

Vn
l,τ

T =
[

ZτT,

Un
l,τ

T

]
,

Un
l,τ

T =
[
γn2τ+1l+1

(
ZT

1 C2τ+1Pn
2τ−2(2τ+1l + 1 + 1) + ZT2 C2τ+1Pn

2τ−1(2τ+1l + 1 + 1)
)
CT

2τ+1 ,(
ZT

1 C2τ+1Pn
2τ−1(2τ+1l + 1) + ZT

2 C2τ+1Pn
2τ (2τ+1l + 1)

)
CT

2τ+1

]
.

(5.4)
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Following this decomposition, a fast algorithm for computing the transposed FLFT, hence
computing the matrix-vector product ãM = Bn

M
T b̃M can be obtained immediately.

At each level τ = t − 1, . . . , 1 in the now backwards traversed cascade, we apply two
transformations corresponding to the transposed matrix Vn

l,τ
T to each pair of polynomials

ãn2τ+1l,τ , ãn2τ+1l+1,τ for l = 0, . . . , N
2τ+1 − 1:

First, we cut off the higher half of Chebyshev coefficients of every polynomial. This is a
multiplication with the matrix ZτT and can be interpreted as a projection onto a polynomial
subspace spanned by Chebyshev polynomials Tk up to degree 2τ . This yields the polynomials
ãn2τ+1l,τ−1 and ãn2τ+1l+1,tau−1.

The second transformation corresponds to the multiplication with the matrix Un
l,τ

T and
consists in polynomial multiplications with the associated Legendre polynomials contained in
Un

2τ−1

(
·, 2τ+1l + 1

)
followed by projections onto different polynomial subspaces, concretely

the set of polynomials up to the degree 2τ (multiplication with Z1,τ
T) and the set of polyno-

mials with strictly higher degree up to 2τ+1 (multiplication with Z2,τ
T).

6 Examples

We present numerical examples in order to demonstrate the stability, accuracy, and efficiency
of our approach. All algorithms were implemented in C and tested on an AMD AthlonTMXP
2700+ with 2GB main memory, SuSe-Linux (kernel 2.6.5-7.151-default, gcc 3.3.5) using double
precision arithmetic. Moreover, we have used the libraries FFTW 3.0.1 [6] and the NFFT 3.0
library [8], now including the fast NFSFT algorithms. Throughout our experiments we have
applied the NFFT routines with precomputed Kaiser–Bessel functions and an oversampling
factor of two. For the NFSFT routines we used the threshold κ = 1000 for the stabilisation.

In our tests, we used a collection of test functions f1, f2, . . . , f4 from [21]:

f1(x) := x1x2x3,

f2(x) := 0.1 ‖x‖1 ,
f3(x) := 1/ ‖x‖1 ,
f4(x) := 0.1 sin2 (1 + ‖x‖1) .

Function f1 is a cubic polynomial, i.e. the spherical Fourier coefficients ank vanish for k
greater than three, while the other functions, not being polynomials, have more or less rapidly
decreasing spherical Fourier coefficients ank as k grows. In addition, we used the test function
f5 with

f5(ϑ, ϕ) :=

{
1, if ϑ ∈ [0, π/2],(
1 + 3 cos2 ϑ

)−1/2
, if ϑ ∈ (π/2, π]

which we took from [2]. It consists of a half-sphere joined with a half-ellipsoid. It is smooth
everywhere except at the equator, where the two parts are joined.

We tested our algorithms on a variety of different quadrature formulae each identified with
a tuple (X ,W ) consisting of a set of nodes X =

{
(ϑd, ϕd) ∈ S2 : d = 1, . . . , D

}
and positive

weights W := {w (ϑd, ϕd) > 0 : d = 1, . . . , D} to compute spherical Fourier coefficients ank
from the formula

ank = 〈f, Y n
k 〉L2(S2) =

∫ 2π

0

∫ π

0
f(ϑ, ϕ)Y n

k (ϑ, ϕ) sinϑ dϑ dϕ

18



by discretising to the sums
D∑
d=1

wdf(ϑd, ϕd)Y n
k (ϑd, ϕd). (6.1)

We considered the following quadrature formulae (X ,W ):

i) The Gauss-Legendre quadrature grid XG
S of size S ∈ N0 is the Cartesian product

XG
S :=

{
ϑG
j : j = 0, . . . , S

}
×
{
ϕG
k : k = 0, . . . , 2S + 1

}
with longitudinal nodes ϕG

k := kπ
S+1 . For the co-latitudinal direction we use the Gauss-

Legendre quadrature with nodes ϑG
j and weights wG

j which can be obtained as the
solution of an eigenvalue problem (see [3, pp. 95]). The weights

WG
S :=

{
wG
d = wG

j,k : j = 0, . . . , S; k = 0, . . . , 2S + 1
}

for the entire quadrature formula are then given by wd = wG
j,k := 2π

2S+2w
G
j . The number

of nodes is
∣∣XG

S

∣∣ = 2S2 + 4S + 2. The quadrature formula
(
XG
S ,W

G
S

)
is exact for

polynomials up to degree M ≤ 2S + 1 so that (6.1) gives exact Fourier coefficients for
f a polynomial of degree at most S.

ii) The Clenshaw-Curtis quadrature grid XC
S of size S ∈ N0 is the Cartesian product

XC
S :=

{
ϑC
j : j = 0, . . . , 2S

}
×
{
ϕC
k : k = 0, . . . , 2S + 1

}
with longitudinal nodes ϕC

k := kπ
S+1 and co-latitudinal nodes ϑC

j := jπ
2S . The weights

WC
S :=

{
wC
j,k : j = 0, . . . , 2S; k = 0, . . . , 2S + 1

}
for the quadrature formula are determined by

wC
j,k := wC

2S−j,k :=
4πε2Sj

S(2S + 2)

S∑
l=0

εSl
1

1− 4l2
cos

jlπ

S

for j = 0, . . . , S and k = 0, . . . , 2S + 1. They can be computed efficiently by a DCT or
a FFT (see e.g. [19]). Here, we have defined

εJj :=
{

1
2 if j = 0 or j = J ,
1 if 0 < j < J ,

for J ∈ N0. We have
∣∣XC

S

∣∣ = 4S2 + 6S + 2. The quadrature formula
(
XC
S ,W

C
S

)
is exact

for polynomials up to degree M ≤ 2S so that (6.1) gives exact Fourier coefficients for
f a polynomial of degree at most S. The Clenshaw-Curtis quadrature rule is computa-
tionally attractive since its nodes and weights are easily computed and allow for using
fast FFT-based algorithms for evaluation, see also [18].

iii) The HEALPix grid XC
S of size S = 2t, t ∈ N0, is a hierarchical area partitioning scheme

on the sphere and has importance as data storage standard in several applications like
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cosmic microwave background estimation. It comprises
∣∣XH

S

∣∣ = 12S2 nodes, where S
must be a power of two, and is given explicitly by

NS :=

{(
arccos

(
1− k2

3S2

)
,
π
(
n+ 1

2

)
2k

)
: k = 1, . . . , S − 1; n = 0, . . . , 4k − 1

}
,

ES :=


arccos

(
2(2S − k)

3S

)
,
π
(
n+ δ0,k mod 2

2

)
2S

 : k = S, . . . , 3S; n = 0, . . . , 4S − 1

 ,

SS :=

{(
arccos

(
−
(

1− k2

3S2

))
,
π
(
n+ 1

2

)
2k

)
: k = 1, . . . , S − 1; n = 0, . . . , 4k − 1

}
,

XH
S := NS ∪ ES ∪ SS .

A drawback is that HEALPix grids lack an exact integration scheme with easily com-
putable weights and a degree of exactness. Nevertheless, it can be used to compute
spherical Fourier coefficients ank up to certain accuracy. For simplicity, we use for the
weights WH

S :=
{
wH
d : d = 1, . . . , 12S2

}
the uniform estimate wH

d := 4π/
∣∣XH

S

∣∣.
iv) The last grid used is a so-called equidistribution grid XE

S of size S ∈ N for which
in the limit S → ∞ the exact quadrature weights approach the uniform distribution
wE
j,k = 4π

|XE
S |

(see [5, Chapter 7]). We took the ensemble from Example 7.1.9 in [5, pp.

171] with nodes given by

XE
S := {x0,0 = (0, 0), xS,0 = (π, 0)}∪

S−1⋃
j=1

{
xj,k =

(
jπ

S
,

(
k − 1

2

)(
2π
Sj

))
: k = 1, . . . , Sj

}
,

Sj :=

 1, if j = 0 or j = S,⌊
2π/arccos

((
cos

π

S
− cos2 jπ

S

)
/ sin2 jπ

S

)⌋
, if 0 < j < S.

An upper bound for the number of nodes contained is
∣∣XE

S

∣∣ ≤ 2 + 4
πS

2. Instead of using
uniform weights we employed the Clenshaw-Curtis quadrature rule again and obtained
for the weights WE

S :=
{
w

E

j,k : j = 0, . . . , S; k = 1, . . . , Sj
}

wE
0,0 := wE

S,0 :=
2π
SjS

bS/2c∑
j=0

ε
S/2
j

1
1− 4j2

,

wE
j,k := wE

S−j,k :=
4π
SjS

bS/2c∑
j=0

ε
S/2
j

1
1− 4j2

cos
jkπ

S/2
.

Example 6.1. We first examine the accuracy of the adjoint algorithm. Since we cannot
compute the exact output of the adjoint algorithms as reference without extraordinary amount
of time, e.g. using Mathematica with arbitrary precision arithmetic and direct evaluation of
the appearing sums, we investigate the combined accuracy of the adjoint and non-adjoint
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Figure 6.1: (a) The error E∞ for the fast NFSFT algorithms with NFFT cut-off parameter
m = 3 (dash-dotted), m = 6 (dashed) and S = M = 16, 32, 48, . . . , 1024, and the
direct NDSFT algorithms for S = M = 16, 32, 64, 128, 256, 512, 1024 (solid).
(b) The error E∞ for the test functions f2, f3, f4, f5 with S = 1024 and M =
16, 32, 48, . . . , 1024.
In both examples, we used the quadrature rule

(
XG
S ,W

G
S

)
.

algorithms. We therefore evaluate the test function f1, which is a polynomial of degree three
on Gauss-Legendre grids XG

S of increasing size S, compute spherical Fourier coefficients ank
up to the appropriate degree of exactness M = S, and evaluate the obtained trigonometric
polynomial, which should be identical with the function f1, on the same Gauss-Legendre grid
XG
S using the non-adjoint transform algorithm. In matrix-vector notation, this reads

f̃ = YM,XG
M

(
YM,XG

M

)H
WM f .

The relative infinity error

E∞ :=
‖f − f̃‖∞
‖f‖∞

.

with the vectors f and f̃ of exact and computed function values, respectively, gives an
indication of the backward stability of the adjoint algorithm. Figure 6.1 shows the re-
sults of the fast NFSFT algorithms for two different NFFT cut-off parameters m = 3, 6
and S = M = 16, 32, 48, . . . , 1024 plus the direct NDSFT algorithms and S = M =
16, 32, 64, 128, 256, 512, 1024. While the NFFT cut-off parameter for m = 3 limits the achiev-
able accuracy uniformely for all transform sizes, the accuracy of the computations for m = 6
decrease with increasing transform size owing to the properties of the polynomials used in the
stabilized polynomial transform algorithm. Also the direct NDSFT algorithms show a slight
decay of accuracy.
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Example 6.2. We use Gauss-Legendre quadrature rules to compute and evaluate polynomial
approximants to the test functions f2, f3, f4 and f5 with the fast NFSFT algorithms and
m = 6. More exactly, we evaluate the test functions on the fixed Gauss-Legendre grid XG

1024

of size S = 1024 and compute spherical Fourier coefficients ank up to increasing degrees
M = 16, 32, 48, . . . , 1024. We then evaluate the approximants on the grid XG

1024 again using
the relative error measure E∞. In matrix-vector notation, this reads

f̃j = YM,XG
1024

(
YM,XG

1024

)H
W1024 fj

for the test functions fj and j = 3, 4, 5, 6.

Example 6.3. In Examples 6.1 and 6.2, the sampling sets are spherical grids, but for example
Maskhar et al. ([10]) show that suitable quadrature rules also allow reconstruction from scat-
tered sampling sets. Furthermore, one is often also intrested in quadrature rules which only
approximate the spherical Fourier coefficients. We therefore considered the Gauss-Legendre
grids XG

S , the Clenshaw-Curtis grids XC
S , the HEALPix grids XH

S and the equidistributions XE
S

for various sizes S. Up to the fixed degree M = 128, we choose spherical Fourier coefficients
ank randomly from

[
−1

2 ,
1
2

]
. We now evaluate this random polynomial of degree M = 128

on the different node sets for increasing sizes S = 16, 32, 48, . . . , 1024 for XG
S , XC

S , XE
S and

S = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 for XH
S . Using this function values, we try to recover

the spherical Fourier coefficients ank up to the degree M = 128 and compare the resulting
polynomial with the original function on a set of 1000 uniformly distributed random nodes,
using the relative error measure E∞. In matrix-vector notation this reads

f̃x = Y128,XG
S

(
Y128,XG

S

)H
WS fx.

Figure 6.2 (a) compares the error E∞ for the different quadrature rules and the absolute
number of nodes used.

Example 6.4. We finally compared the computation time of the adjoint NDSFT and adjoint
NFSFT algorithms. Figure 6.2 (b) shows the CPU time required for one transformation as a
function of the bandwidth M . For given M we chose the number of nodes as M2. For larger
M , the NFSFT algorithm outperforms the NDSFT algorithm.
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