Fast and stable algorithms for
discrete spherical Fourier transforms

Daniel Potts, Gabriele Steidl, and Manfred Tasche

Abstract. In this paper, we propose an algorithm for the stable and efficient
computation of Fourier expansions of square integrable functions on the unit
sphere S C R?, as well as for the evaluation of these Fourier expansions at
special knots. The heart of the algorithm is an efficient realization of discrete
Legendre function transforms based on a modified and stabilized version of
the Driscoll-Healy algorithm.

1991 Mathematics Subject Classification. Primary 33C35, 33C25, 65T99,
42C10

Key words and phrases. Spherical Fourier transform, spherical harmonics,
sampling theorem, fast Legendre function transform, fast cosine transform,
Chebyshev nodes, cascade summation

1 Introduction

Fourier analysis on the sphere S C R? has practical relevance in tomogra-
phy, geophysics, seismology, meteorology and crystallography. It can be used
in spectral methods for solving partial differential equations on the sphere
(see [4, 15]). In [11], the authors utilize spherical Fourier transforms for the
decomposition and reconstruction of functions defined on the sphere with
respect to spherical frames.

In this paper, we propose an algorithm for the efficient and stable computa-
tion of Fourier expansions of square integrable functions on S. The Fourier
expansion of a function f € L*(S) with band-width N is given by

k

F=3> Ck+1)ap(HYr,

k=0 n=-k

where af(f) are the Fourier coefficients of f with respect to the orthogonal
basis of spherical harmonics Y;”. To compute these Fourier coefficients we
first prove a sampling theorem which is based on Clenshaw—Curtis quadra-
ture and restricts the evaluation of the integrals a(f) to the computation of
discrete spherical Fourier transformes.

Note that for N < 360 there exist numerous realizations of discrete spherical
Fourier transforms. For the interesting case N > 360 we can refer only to
[8].

Since the spherical harmonics Y*(8,) are scaled products of complex expo-
nentials ¢ and Legendre functions P]ln| (cos @), the discrete spherical Fourier
transform splits into ordinary discrete Fourier transforms for complex expo-
nentials, which can be realized by fast Fourier transform techniques and
discrete Legendre function transforms. The main part of this paper deals
with an efficient and stable algorithm for these discrete Legendre function
transforms.

For n = 0, i.e. in the case of the discrete Legendre transform, we apply the al-
gorithm for the fast polynomial transform introduced in [12]. This algorithm
with an arithmetical complexity of O(N log® N) can be considered as a mod-
ified version of the transposed Driscoll-Healy algorithm [6, 7] in which the
original fast Fourier transforms were replaced by fast cosine transforms. Due
to the consequent application of polynomial arithmetic and cascade summa-
tion, our approach seems to be simpler and more straightforward than the
original Driscoll-Healy algorithm. Note that a different algorithm for the
evaluation of Legendre expansions was proposed in [1].

By convenient cascade summation a fast polynomial transform can be modi-
fied for a fast Legendre function transform (FLFT). Unfortunately, its imple-

2

mentation demonstrates numerical instability for large n > 16. The reason
for this is that some of the associated Legendre functions P}(z,c) involved
in the algorithm become very large for |z| &~ 1 while other functions P}(z, c)
become relatively small. The multiplications of these large and small values
result in unacceptable cancellations. To avoid this negative effect, we intro-
duce special stabilization steps in the algorithm. This heuristic stabilization
method can be compared with the so—called method of “stable bypass op-
erations” in [8, 9], which was used to stabilize the Driscoll-Healy algorithm
on the sphere. The introduction of the exceptional steps closes the gap in
the stability of the algorithm at the expense of a loss of runtime efficiency.
However, for n < 3N/4, our algorithm performs faster than the Clenshaw
algorithm. For n &~ N/2, we need half of the CPU-time of the Clenshaw
algorithm.

This paper is organized as follows: First we present a sampling theorem for
band-limited functions f € L?*(S). Taking into account that our algorithm
for the efficient discrete spherical Fourier transform is mainly based on fast
realizations of discrete cosine transforms, Section 3 deals with discrete cosine
transforms. An algorithm for the fast discrete Legendre function transform
is described in Section 4. Finally, Section 5 contains a stabilized version of
the algorithm and numerical results.

2 Band-limited functions on S

Starting with the Legendre polynomaials

Py(z) := ST @(CL‘ —1)" (ze[-1,1]; k € Ny),
we define the associated Legendre functions P (n € No; k=n,n+1,...) by

—n)! 1/2 n
Pl (z) = <%> (1 — 2?2 dd;u” Py(z) (ze[-1,1]).

For any fixed n € Ny, the functions P! (k = n,n +1,...) form a complete
orthogonal system in L*[—1,1] with

[. 1

5/_1 Pl(z)P(z) de = il dky (meNg; kyil=nn+1,...).
Moreover, the associated Legendre functions fulfil the three—term recurrence
relation

((2n))"?

on pl

Pr(z):=0, PMz):= (1—a%)"/,

Pr(@) = of aPP(a) 4w Ply(e) (h=mont1.) (21)
with

2k 4+ 1 k—n)(k 1/2
vp = - wp = — ((n)(k+n))

(k=n+1)(k+n+1))1/2" (k—n+1)(k+n+1)/2"

We are interested in the Hilbert space L*(.S) of all square integrable functions
on the 2—sphere S with the scalar product

)= 1= [[1000 s dp a0 (1.9 € 175)

and with the corresponding norm || - ||. Set
I:= {(k,n): k€ Ny, n=—Fk,....k}.

An orthogonal basis of L?(S) is given by the set {Y;* : (k,n) € I} of spherical
harmonics

\ S CRIE Plln|(COS 0) "¢ .
It is easy to check that

n m 1 ! n m 1 o i(n—m
I I L O
1 .
= 2]{—|—15k715n7m ((k‘,n), (Z,m)EI)

We consider the Fourier expansion of f € L*(.S) with respect to the spherical
harmonics

F=Y @k+D)a(HY, a(f) =Y.

(k,n)Ei

Let l2(i) be the Hilbert space of all complex sequences (CLZ)(k,n)Ei with

Z (2k + 1) |a?)* < oo

(k,n)el
Then we refer to F': L*(S) — l2(i) defined by
Ff=(ai(f)gmer (f € L*(S))

as spherical Fourier transform.

For y € Ny we set

Foi= {(s,0) : s=0,...,2% 1=0,...,27" —1},
Vo= {(k,n) 1 k=0,...,2:;n=—k,....,k}.

We consider the sampling spaces of level 5 (5 € Np)

Vii=span{Y;": (k,n) e’}

consisting of so—called band-limited functions of band-width 2/. For band-

limited functions, it holds the following sampling theorem:

Theorem 2.1. Let f € V! (j € Ny) with

f=>Y awy

(k,n)EiJ

be given. Then we have for (k,n) € [i
1 : . : L
9i+1 Z 5£J+1)w£]+1)f(}7i,t) Yy (Pi,t)
(s,t)el

i Ts mi
Psyt i — Qjﬁag)

e =l i=97 D=1 (s=1,...,20 = 1)
and with the Clenshaw—Curtis weights

ay =

with

23

< 1 N A sum .
,(+1).__§:() — +1
wd T = S e 1z 1% (s=0,...,277").

u=0

Proof: By definition of V7 it suffices to consider the functions f(6

Y™ (0,0) ((I,m) € iﬁ) Their Fourier coefficients can be written as

an=3 [Hr@re e L [T g
Now it holds for m, n = —27,...,27 that
R S B ST
b= on), € A =g ;

,p) =

(2.3)

Hence, for m # n, we are done. For m = n, we verify that Pllnlpllnl is an
algebraic polynomial of degree < 2/*! such that Clenshaw—Curtis quadrature

gives
1 ! Ea : . +1 +1
5 | PR @) de = 37 B (@) B ()
-1 s=0

with the Chebyshev nodes ¢ := cos 2. Together with (2.3) and (2.4) this

completes the proof.]

Note that a similar sampling theorem for band-limited functions on S was
proved in [6].

We are interested in the efficient solution of the following two problems:

1. For given Fourier—coefficients a7 € C ((k,n) € I’) compute the values
f(pl,) ((s,t) € V) of f defined by (2.2).

2. For given values f(pgt) ((s,t) €) of f € VI compute the Fourier—
coefficients a} € C ((k,n) € i])

By definition of Y} and by Theorem 2.1, we suggest the following algorithms
for 1. and 2., respectively.

Algorithm 2.2 (Discrete spherical Fourier transform)
Input: For fixed j € Ny, let f(pit) € C ((s,t) € IV) be given.

1. For every s = 0,...,2/%! form by fast Fourier transform
. 1 rEr , ,
=g 2 Tl) e (n= 2220 (2.5)
t=0
2. For every n = —27,...,2/ compute
2+1
ap o=y UG i PP (k= nl,..,20) 0 (26)
s=0

Output: & € C ((k,n) € i])

Algorithm 2.3 (Inverse discrete spherical Fourier transform)
Input: For fixed j € Ny, let a3 € C ((k,n) € i]) be given.

6

1. For every n = —27,...,2 compute

Gla= > ap Py (s=0,...,27). (2.7)
k=|n|
2. For every s = 0,...,2/*! form by fast Fourier transform
27
Fph) = Y, gl ™™ (t=0,...2% —1). (2.8)
n=-—2J

Output: f(pi,t) € C ((s,t) e IV).

The fast Fourier transforms in (2.5) and (2.8) require O((j + 1)2/*!) arith-
metical operations for fixed n. Hence, it remains to develop an algorithm for
the fast evaluation of (2.6) and (2.7), respectively.

A fast algorithm for (2.7) implies the factorization of the transform matrix

P|n| — (P]ln| (CQJ+1)) 2941 95

s s=0,k=|n|

into a product of sparse matrices. Consequently, once a fast algorithm for
(2.7) is known, a fast algorithm for the “inverse” problem (2.6) with the
transform matrix (P"1)™ is available too by transposing the sparse matrix
product. Therefore, we restrict our attention to the fast computation of (2.7).

3 Discrete cosine transforms

The heart of our fast transform consists in the fast polynomial multiplication
via fast cosine transforms. Let

N)
Cnyr = (C%)j,kzo \ Dyy = diag (5?)?[:0 ,
Cy = (Cigk-kl))é\fk_:lo) Dy := diag (5§'V)§y=_(31

with el = el :=1/2, el := 1 (k = 1,...,N — 1) be given. Then the
following transforms are referred as discrete cosine transforms (DCT) of type
I - II1, respectively:

DCT-T(N + 1): RN+ = RN+1 with
a = CN_|_1 DN+1a,

a = (ag)ily, &= (4;))L, € RN e,

N N
Z er a]\Lzzﬁkakﬂ()
=0

DCT-II(N): RV — RN with

b := Cyb,
b= (bk)i\]:_olv b:= (Z;j)éy:_ol e RV, ie
N-1 N-1
b; = b 3 (3pa1) by Ti(cipe)
k=0 k=0

b= ¢ Dyb.
1e.
N-1 N-1
b]‘ = Z bk Ck(2]+1) = Z 5?]61@ Tk(cgé\-fl—l) .
k=0 k=0

In the following, let N = 2 (¢ € N). There exist various fast algorithms
performing the above discrete cosine transforms with O(N log N) instead of
O(N?) arithmetical operations. For DCT-IIT and DCT-II we prefer the fast
algorithms in [13] because of their low arithmetical complexity and since the
corresponding data permutations allow a simple, efficient implementation
(see [8]). Fast algorithms for DCT-I based on [13] can be found in [2] (see
also [14]). Concerning the inverse DCT’s, it is easy to check (see [2]):

Lemma 3.1. [t holds that

N
Cnt1 Dny1 Cny1 Dyyr =) Ingq,
~ o~ o~ - o~ N
CyDyCy =EyER Dy = Sy,

Hence (Cy41Dny1)™! = %CN_HDN_H and (CN)_ CT DN such that
the inverse DCT-I(N + 1) corresponds to the DCT-I(N + 1) multiplied by
2/N, and the inverse DCT-II(NV) corresponds to the DCT-III(V) multiplied
by 2/N.

le

Let P € II,, (n € N) be given with respect to the basis of Chebyshev poly-

nomials, i.e.
n

P = Zaka

k=0
with known real coefficients ag. Further, let @ € 11, (m € N) be a fixed
polynomial with known values Q(c2 +1) fory=0,...,.M — 1, where M = 2°
(s € N) with M/2 <m +n < M is chosen. Then the Chebyshev coefficients
by (k=0,...,m+n)in

n+m

Ri=PQ=> bT,

k=0

can be computed in a fast way by the following procedure:
Algorithm 3.2 (Fast polynomial multiplication)

Input: M =2° (s € N) with M/2 <m+n< M,
Q(62]+1) ER(j=0,....,M—1) with Q € 1I,,,,
akER(k‘ZO,...,n).

1. Compute
(PR = Ch ()
by fast DCT-I1 (M) of (ap)M5" with ap :=0 (k=n+1,...,M —1).
2. Evaluate the M products
R(Cgﬁl) = P(ngﬂ) Q(Cgﬁl) (J =0,....M - 1)-

3. Compute
I
(bk)iwzol = MDM Cum (R(ng]\il))éwol
by fast DCT-II(M) of (R(c3¥)5

Output: by (k=0,...,m+ n).

The fast DCT-II1(2*) computed by [13] requires 2°~! s multiplications and
2571 (3s — 2) 4+ 1 additions. Hence, Algorithm 3.2 realizes the polynomial
multiplication of P € II,, and ¢ € II,, with respect to the basis of Cheby-
shev polynomials in 2°(s+2) 4+ 2 multiplications and 2°(3s —2) 4+ 2 additions.

4 Fast transform for Legendre functions

The simplest realization of (2.7) by the Clenshaw algorithm utilizes the three—
term recurrence relation (2.1) and requires O((2/ —n)2’) arithmetical opera-
tions for fixed n. In the sequel, we propose a new algorithm for the evaluation
of (2.7) which is faster than Clenshaw’s algorithm for sufficiently large 2/ —n.
Especially, for n < 16 it requires only (O(275%) arithmetical operations. We
restrict our attention to even n € N. Then

23

Po= Y Py (4.1)

k=n

is a polynomial of degree < 27 which must be evaluated at the Chebyshev
nodes c?”l (s=0,...,27*Y. If n is odd, then

P(z) = (1 -2 Q(x)
with the polynomial

J
2 n
n—1

Q(z) =) ap(1-2°)"% d Pu(z) € ly_,

dz™
k=n

of degree < 2/ — 1. Here our algorithm evaluates Q(c?”l) (s =0,...,21%1)
2]+1) —

in a similar manner as for even n. Finally, we have to compute P(c?

Q™) sin s .

In the following, we develop an algorithm for the fast evaluation of (4.1) at
the Chebyshev nodes for fixed even n € No. We introduce the polynomials
P by
((2m)) "/

27 n!

Pl (x) = (af @ + B7) Pi(e) + 4 PlLy(z) (k=0,1,...) (4.2)

ﬁfl(l‘) =0,]5(?(;1:) =

?

10

with

0o (=D k<n,
R vp k>n,
gn . 1 k<n,
Pk 0 E>n,
"o 0 £<n,
Te T wp k>n.
By definition, it holds that]513 = P (k > n). For simplicity we drop

the tilde. To realize the cascade summation in the following algorithm in a
convenient way, we consider

P=Y a Py (4.3)

with a} :=0 (k=0,...,n—1) instead of (4.1).
Shifting the index n € Ny in (4.2) by ¢ € Ny, we obtain the associated
polynomials P(- ,¢) of P} defined by

Pr(z,¢) = 0, Pi(x,e):=1,
Pia(z,e) = (afpr+0g) P(z,c) + v Py (e,e) (k=12,...).

Now induction yields (see [3])

Lemma 4.1 For ¢, n € Ny, it holds
Plp(z) = Pz, c) P (x) + vl Pl (e e+ P (2).

Lemma 4.1 implies

(i,) = v () “

c+k+1
with

n o 7?+1P1:L—1($7C‘|‘1) 7?+1P1:L($7C‘|‘1)
k(e) := (Pr(r,c) Pro(ee))

The main part of our algorithm realizes the basis exchange from { P }2_ to
the basis of Chebyshev polynomials {7} }?_, and produces the real coefficients
Zlk n

Po=Y" Ty (4.5)

Knowing the coeficients @z, the values P(¢?") (s =
computed for example via fast DCT-T (271 4+ 1) in O(3
erations in a final step (see [14])

0,...,2/F!) can be
27) arlthmetlcal op-

(P(c}")}Z0 = Car(ar)ilo-

Let us turn to the basis exchange. Set N = 2/. In the initial step we use
(4.2) and the fact that 7}(z) = x to obtain

N-1 N/4—-1 3
0 n n
PSS = Y (z aagﬂpw)

k=0 k=0 (=0
with
CI,ECO)(SC) = ap (k=0,...,N—=3),
ag\?) 2(5”) = ay_y + YNo1aN (4.6)
“g\?) 1(T) = ay_y + Byay + ay_ay Tl(x)-

Now we proceed by cascade summation as shown in Figure 1. By (4.4) with

k=land c=4l41(l=mn,...,N/4—1) it follows that
0 0 Py 0 n Py
(o o) (P2) = il o) O3 ()

Thus

N/4—1

P= 3 () Put ail Pun)

(=0

at) at) Ay
= + UT(-, 4+ 1)) (4.7)
(1) (0) (0)
a1y a1 4143

The degree of the polynomial products in (4.7) is at most 3 such that their

with

computation with respect to the basis of Chebyshev polynomials can be
realized by Algorithm 3.2 with M = 4.

We continue in the obvious manner. In step 7 (1 < 7 < j) we compute by
(4.4) with & = 27 — 1 the Chebyshev coefficients of the polynomials a(;,lll,
al?) € Uyrtiy (1=0,...,N/27t" — 1) defined by

27141
(7) (r-1) (r-1)
Aoriny Aori1g - a2‘r+1l+2‘r
= —I_UZT 1(72 l—l_l) ’ (48)
e 1) 1)
27+1 141 27+1141 27+ 42741

12

where we apply Algorithm 3.2 (with M = 27*1) for the polynomial products.
After the step 5 — 1, our cascade summation arrives at

P=adVVpr 4 oY pr

Now Py(z) = ((Qn)!)l/Q, Pr(z) = (af z + B7) Py(z) and

27 n!

eTo(z) = Ti(z), xTy(z) = %(THl(m)—}—Tk_l(m)) (k=1,2,...).

Hence, if
. N_l .
agj_l) agj,k_l) T,
k=0

then

N

a) = a7V P = Z al') Ty

k=0

with
(Do = (07 Thyy + B Inan)(a¥s) (4.9)

where we set a(lfg,l) := 0 and where Ty is the tridiagonal (N +1, N 4+ 1)
matrix

0 1
/2 0 1/2
TN+1 = . (410)
/2 0 1/2
1 0
This leads to (2n)1)172
2n)! P ;
P =g (@7 +)
and the final addition of Chebyshev coefficients of aéj_l) and agj) yields the
desired Chebyshev coefficients of P, i.e.

@ = O (G, + @) . @

on pl

13

0 00 0] aallalat] alag] atyal] atyat] atiats] ot
|
0 0 [0 0 [Pl PR oel] a2 o
| | |
o o [D D] b
Us(-,1) Us(-,9)
| |
Cl(()2) a(12) aé2) agZ)
U7(-,1)
|
CL(()3) CL(13)
(k)i

Figure 1: Cascade summation for the computation of the basis exchange

for N=16and n =4

14

We summarize:

Algorithm 4.2 (Fast Legendre function transform (FLFT))

Input: n, j € N with n < N := 27,
it €R (k=n,...,N),
UST—1(C(27;%)7 27t 4+ 1) (r=1,...,5—1; 1= 0,...,2i—71,
s=0,...,27t —1).

Step 0. Compute s := |logyn| and agco) (k=0,...,N —1) by (4.6).
Forr=1,...,7—1do
For every k = |2°7771|,..., 20771 — 1 do
Step 7.k . Form (4.8) by fast polynomial multiplications.
Step j. Compute @, (n =0,...,N) by (4.9) and (4.11).
Output: @, € R (n=0,...,N).

Algorithm 4.2 requires O(N log® N) arithmetical operations. Straightforward
calulation of (4.1) needs O(N(N — n)) operations.

5 Stabilized fast Legendre function transform

For fixed n and given a} € R (k =n,...,27) we have computed

27

h=Y @ Pl (1=0,...,2) (5.1)

k=n
by the Clenshaw algorithm (CA) [5] in double precision arithmetic, by the
Clenshaw algorithm realized in Maple with high precision arithmetic of 64
decimal digits (CAgy), and by our fast Legendre function transform (FLFT)
in double precision arithmetic (53 bits for the mantissa, 10 bits for the expo-
nent). The algorithm was implemented in C and tested on a Sun SPARCsta-
tion 20. Table 1 compares the results for N = 1024 and various parameters
n. The second column of Table 1 contains the given coeflicients aj, while
the third and last columns contain the relative error e(CA) of the Clenshaw
algorithm defined by

e(CA) := Jmax, [/i(CA) — fl(CA64)|/OT§ﬂli;>2<j |/i(CAe4)|

15

and the relative error of Algorithm 4.2 given by

e(FLFT) :=

0<1<27

Here fi(CA), fi(CAgs) and fi(FLFT) denote the corresponding results of

max |fi(FLFT) — fi(CAg4)

(5.1) using CA, CAgy, and FLFT, respectively.

‘ n | ay ‘ e(CA) ‘ e(FLFT) ‘
0 1 |1.95F —12 | 2.18F — 11
8 1 [1.02F —12 | 6.13F — 11
16 | 1 | 6.83F —13 | 5.34F — 13
24 | 1 | 7.62F — 13 | 5.28F — 08
32| 1 | 410 —13 | 7.16 E — 06
48 1 1 | 2.02F — 13 | 2.58F — 01
64 | 1 | 3.26F —13 | 1.00E — 00

|/ qmax 1fi(CAea)

Table 1: Relative error of the CA versus the FLFT for N = 1024

Note that the extensive error analysis of the Driscoll-Healy algorithm for
the case n = 0 in [6] which demonstrates the stability of the algorithm
for Legendre polynomials can be developed for our algorithm in a similar
way. While the relative error is acceptable for 0 < n < 16, it becomes
considerably large if n further increases. Similar results appear for other
transform lengths N. The instability results from the fact that for some
special tripels (n,k,c) € {(n,2" — 1,27+ 1):n=0,....N; 7=1,...,j —
1; 1 =0,...,N/27"'} the absolute values of some entries of the matrices
U%(z, ¢) become very large for |z| ~ 1 while the entries of UZ(z, 1) (or more
general of U%(z,c¢) with ¢ < n) become very small. The multiplications of
small and large values result in unacceptable cancellations. Consequently,
the simplest idea consists in replacing the ordinary cascade summation step
by “special” stabilization steps whenever the values |P/*(z,c)| involved in
the algorithm cross some threshold. This straightforward idea was firstly
formulated in [8] as so-called “stability bypass operations” in connection with
the Driscoll-Healy algorithm. To avoid the multiplications with large values,
we replace the multiplications with U7(- ,¢) by those with Uy, _,(- ,1).
By

UZ-}—C—I(71) = U;L—l(71) U?—n—2('7n+ 1) UZ(-,C)

with
n 0 0
Un—1(1’a 1) = ((1 _ $2)(n—2)/2(1 + x) (1 _ 1;2)”/2)

16

the entries of Uy, _,(-,1) are significantly smaller than those of U}(-,c¢)
for |z| & 1. In other words, instead of step 7. k in Algorithm 4.2 we compute

(7) (7) (7—1)

0,new Qg n a27+1k+2"
= + U T(2k+1)—1('71) (r—1)

)) .
1,new 1 27+1 k42741

by fast polynomial multiplications. Unfortunately, the number of arithmeti-
cal operations required by an exceptional step is considerably larger than
those of the corresponding ordinary step 7.k since we need DCT of length
21+ llogz (27 +e=1)] instead of length 27", Moreover, the number of exceptional

steps increases with n while n < N/2.

Figure 2: Location of stabilization steps (n,k,c) for N = 1024,
16 < n < 128 and threshold 10*

17

Example. For N = 1024, Figure 2 indicates the tripels (n,k,¢) (16 < n <
128) with the property that some entries of U%(-,¢) have absolute values
> 10*. For 16 < n < 32 only some entries of UZ(- ,17), Ug(- ,33),
Sy (- ,63), Ugy(- ,129), Upye(- ,257), Upye(- ,313), Ugyo(- -513) can
become > 10* such that we have to introduce at most 7 exceptional steps.
For 32 < n < 48 we have to stabilize 10 steps and so on.

Table 2 demonstrates that our stabilized FLFT with threshold 10* realizes
(4.1) with almost double precision accuracy.

(n [& [=(CAJ [(°’LFT) |
24 1 7.62FE — 13 | 8.06F — 12
32 1 4108 — 13 | 1.38E — 10
48 1 202FE —13 | 1.09F — 10
1
1

64 326 — 13 | 4.45E — 10
80 2.83F — 13 | 3.095 — 10
80 | 1/(k+1)|2.71E —13 | 7.47E — 10
96 | 1/(k+1) | 1.70E —13 | 7.48E — 10
12 | 1/(k+1) | 2.07E —13 | 4.17E — 10
224 | 1/(k+1) | T.67TE — 14 | 4.34E — 10
768 | 1/(k+1) | 4.48E — 14 | 1.42E — 10

Table 2: Relative error of the CA versus the stabilized FLFT for
N = 1024 and threshold 10*

By choosing higher thresholds, we can decrease the number of stabilization
steps and hence the number of arithmetical operations at the cost of a lower
accuracy. For example, a threshold of 10® implies an error of ~ 10~7 in the
above calculations.

Table 3 lists the CPU~times {(CA) and {(FLFT) (in seconds) for the Clen-
shaw algorithm and for the stabilized FLEFT while Figure 3 shows the number
of multiplications required by the stabilized FLFT (star) and by the Clen-
shaw algorithm (cross). Here the coefficients a} (k = n, ..., 2'%) are randomly
distributed in the interval [—0.5,0.5]. The last column of Table 3 contains
the relative error

E(FLFT) := max |fi(FLFT) — f;(CA)|/Or<nle<L>2<] |fi(CA)|.

0<I<2)

18

‘ n ‘ {(CA) ‘ H{FLFT) ‘ E(FLFT) ‘

0 4.15 0.38 221F - 11
128 | 4.09 0.74 8.74F — 11
256 | 3.52 1.18 1.67F — 10
384 | 3.33 1.38 1.84F — 10
512 | 2.45 1.63 7.38E — 10
640 | 2.09 1.53 6.43F — 11
768 | 1.49 1.42 1.11E - 10

Table 3: CPU-time of the CA versus the stabilized FLFT for N = 1024
and threshold 10*

x x x x x x x x x x x x x
I
3E406 + -
I
L + -
I
I
2E+06 |- +]
+
n + _
I
1E+06 !
+06 - * + .
* * *
. * * * 4
L * -
*
* *
0 | | | | | | | | | | | | |

0 64 128 192 256 320 384 448 512 576 640 704 768

Figure 3: Number of multiplications of the CA (cross) and the stabilized
FLFT (star) for N = 1024, n = 64/ (I =0,...,12) and threshold 10*

Finally, Figure 4 compares the number of multiplications of the CA and the
stabilized FLFT for different transform lengths N, n = 0, N/4, N/2, 3N/4
and the thresholds 10* and 10°.

19

0.8
0.6
0.4
0.2

I I I I I I I | I I I I I I
[— 1 —
*ﬁ_‘\k - 0.8 -
| %n:3N/4 06 *":/—I— +
L ! n=N/2
— - n= 04+
N o — |
— T —} — n=N/4 0.2 *\\F
n=0
0
| | | | | | | | | | | | | | |
300 500 700 900 N 300 500 700 900

Figure 4: Quotient of the number of multiplications of the stabilized

FLFT and the CA for the thresholds 10* (right) and 10° (left)

We emphazise that the above complexity considerations are not adequate for
the discussion in the supercomputer area. They rather give a rough idea of
the potential performance improvements.

References

1]

2]

3]

[4]

[5]

[6]

[7]

B.K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of
Legendre expansions, STAM J. Sci. Statist. Comput. 12 (1991), 158 —
179.

GG. Baszenski and M. Tasche, Fast polynomial multiplication and con-
volutions related to the discrete cosine transform, Linear Algebra Appl.

252 (1997), 1 - 25.

S. Belmehdi, On the associated orthogonal polynomials, J. Comput.
Appl. Math. 32 (1991), 311 — 319.

G.L. Browning, J.J. Hack, and P.N. Swarztrauber, A comparison of
three numerical methods for solving differential equations on the sphere,

Monthly Weather Rev., 117 (1989), 1058 — 1075.

C.W. Clenshaw, A note on the summation of Chebyshev series, Math.
Comp. 9 (1955), 118 - 120.

J.R. Driscoll and D.M. Healy, Computing Fourier transforms and con-
volutions on the 2-Sphere, Adv. in Appl. Math. 15 (1994), 202 — 240.

J.R. Driscoll, D.M. Healy, and D. Rockmore, Fast discrete polynomial
transforms with applications to data analysis for distance transitive
graphs, STAM J. Comput., in print.

20

| n=3N/4

_| n=N/2

[8]

[9]

[12]

[13]

[14]

[15]

S.5.B. Moore, Efficient stabilization methods for fast polynomial trans-
forms, Thesis, Dartmouth College, 1994.

S.5.B. Moore, D.M. Healy and D.N. Rockmore, Symmetry stabilization
for fast discrete monomial transforms and polynomial evaluation, Linear

Algebra Appl. 192 (1993), 249 — 299.
Muiller, C., Spherical Harmonics, Springer, Berlin, 1966.

D. Potts, G. Steidl, and M. Tasche, Kernels of spherical harmonics and
spherical frames, in: Advanced Topics in Multivariate Approximation, F.
Fontanella, K. Jetter and P.—J. Laurent (eds.), World Scientific Publ.,
Singapore, 1996, 287 — 301.

D. Potts, G. Steidl, and M. Tasche, Fast algorithms for discrete polyno-
mial transforms, preprint, TH Darmstadt, 1996.

G. Steidl, Fast radix—p discrete cosine transform, Appl. Algebra in
Engrg. Comm. Comput. 3 (1992), 39 — 46.

G. Steidl and M. Tasche, A polynomial approach to fast algorithms for
discrete Fourier—cosine and Fourier—sine transforms, Math. Comp. 56

(1991), 281 — 296.

P.N. Swarztrauber, The vector harmonic transform method for solving
partial differential equations in spherical geometry, Monthly Weather
Rev. 121 (1993), 3415 — 3437.

Fachbereich Mathematik

Universitat Rostock

D-18051 Rostock

E-mail address: daniel.potts@stud.uni-rostock.de

Fakultat fuir Mathematik und Informatik
Universitat Mannheim
D-68131 Mannheim

F-mail address: steidl@kiwi.math.uni-mannheim.de

Fachbereich Mathematik
Universitat Rostock
D-18051 Rostock

F-mail address: tasche@mathematik.uni-rostock.de

21

