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ABSTRACT

We propose two algorithms for boosting random Fourier feature models for approximating high-
dimensional functions. These methods utilize the classical and generalized analysis of variance
(ANOVA) decomposition to learn low-order functions, where there are few interactions between the
variables. Our algorithms are able to find an index set of important input variables and variable
interactions reliably.
Furthermore, we generalize already existing random Fourier feature models to an ANOVA setting,
where terms of different order can be used. Our algorithms have the advantage of interpretability,
meaning that the influence of every input variable is known in the learned model, even for dependent
input variables. We give theoretical as well as numerical results that our algorithms perform well for
sensitivity analysis. The ANOVA-boosting step reduces the approximation error of existing methods
significantly.

Keywords ANOVA decomposition · global sensitivity analysis · random Fourier features · high-dimensional
approximation

1 Introduction

Developing predictive models based on empirical data is a current field of research with diverse applications. The con-
tinuous growth in data collection leads to complex datasets, necessitating the handling of regression or classification
tasks in high-dimensional spaces. Traditional machine learning techniques such as support vector machines, neural
networks, and decision trees are commonly used to address these challenges. However, a crucial concern alongside
prediction accuracy is the interpretability of these models, which is essential for understanding the underlying reason-
ing behind predictions.

Many current approaches, although effective with smaller or moderate number of input variables, stop working when
confronted with high-dimensional challenges. The main problem to practical computability is often related to high
dimension of the multivariate integration or interpolation problem, known as the curse of dimensionality. A well-
known foundation of a dimensional decomposition is the analysis of variance (ANOVA) decomposition, first presented
by Hoeffding in the 1940s. Since then, the ANOVA decomposition has been studied a lot in the literature, see for
example [3, 27, 19, 13, 9, 6, 24].

However, the classical ANOVA decomposition is only available for independent, product-type probability measures of
the input density. In practice, there could be notable correlations or dependencies among input variables. Therefore,
the classical decomposition must be generalized for an arbitrary, non product type probability measure. Achieving this
will require modifying the original orthogonality conditions. Indeed, inspired by Stone [37] and employing a set of
weakened annihilating conditions, Hooker [10] provided an existential proof of a unique ANOVA decomposition for
dependent variables, referred to as the generalized ANOVA decomposition in this paper, subject to a mild restriction
on the probability measure. Afterwards, different approaches for calculating the component functions are studied for
example in [14, 29].
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The methodology presented in this paper offers an alternative to traditional machine learning methods by proposing an
initial ANOVA boosting step for random feature methods, but also provides a natural means to assess the importance
and influence of attributes on the predicted outcomes. The generalization of the classical ANOVA decomposition, e.g.
in [10, 29] forms the basis for our algorithm, which can be applied to possibly dependent input variables. We calculate
an approximation by a least squares regression, which penalizes the non-orthogonality between ANOVA terms.

Consider the following standard supervised learning setup. Let X = {x1, . . . ,xM} ⊂ Rd be a set of discrete samples.
We consider the problem of reconstructing a multivariate function f : Rd → C from discrete function samples on
the set of nodes X , which are sampled from the density µ : Rd → R+. We study the scattered-data problem, i.e. we
have given as labels the (possibly noisy) function values f = (f(x) + ϵx)x∈X . In contrast, in [30] the authors give
explicit advice on the location of good sampling points for approximating high-dimensional functions as finite sums
of lower-dimensional functions.

It is natural to express the model output f(x) as a finite hierarchical expansion in terms of the input variables,

f(x) = f∅ +

d∑
i=1

fi(xi) +
∑

1≤i<j≤d

f{i,j}(xi, xj) + . . .+ f{1,...,d}(x1, x2, . . . , xd), (1.1)

where the zero-th order component function f∅ is a constant representing the mean of f(x), the first order component
function fi(xi) gives the independent contribution to f(x) by the i -th input variable acting alone, the second order
component function f{i,j}(xi, xj) gives the pair cooperative contribution to f(x) by the input variables xi and xj ,
etc. The last term f{1,...,d}(x1, x2, . . . , xd) contains any residual d-th order cooperative contribution of all the input
variables. The classical ANOVA decomposition, [3, 19, 9], of a function is a tool for capturing high-dimensional
behaviour by demanding orthogonality with respect to the measure µ between the terms in (1.1) for functions f ∈
L2(Rd, µ).

In many settings functions may arise naturally as sums of functions, each with a limited variable interaction. Such
low-order structure may also be used to reduce the curse of dimensionality, [3, 38, 34]. Another approach to capture
low-dimensional structures by Gaussian mixtures was done in [8]. In this regard, two classes of problems arise: either
all of the input variables x = (x1, x2, . . . , xd) are independent or at least some portion of the variables in x are
correlated. Standard formulations of the ANOVA deal with the case of independent variables. We, on the other hand,
use the extension of [14] to also treat correlated variables.

Kernel-based approaches have been extensively used in high-dimensional function approximation since they often
perform well in practice. The random feature model [28] is a popular technique for approximating the kernel (and thus
the minimizer of kernel regression problems) using a randomized basis that can avoid the cost of full kernel methods.
An alternative perspective to view the random feature model is as a two-layer network with a randomized but fixed
single hidden layer, [28, 18]. The random feature model takes the form

f#(x) =

N∑
k=1

ake
i⟨ωk,x⟩ = a⊤ei⟨W ,x⟩, ωk ∈ Rd,

where x ∈ Rd is the input data, W ∈ Rd×N is a random weight matrix, and a ∈ CN is the final weight layer. The
entries of the matrix W are independent and identically distributed (i.i.d.) random variables generated by the (user
defined) probability density function ρ(ω). We construct the feature matrix

A = (ei⟨ω,x⟩)ω∈I,x∈X .

Given the collection of M = |X | measurements, f = (f(x) + ϵx)x∈X , the random feature regression problem
becomes training a by optimizing

min
a∈CN

∥f −Aa∥22 +R(a)

with some penalty functionR : CN → R. The most common choice forR is the ridge penaltyR(a) = λ ∥a∥22, which
leads to the random feature ridge regression problem [31, 15, 21]. We will use another penalty function R, which
incorporates the ANOVA decomposition of the function f . We propose a random Fourier feature-framework where
we explain the ANOVA decomposition within the random Fourier feature (RFF) structure. This specification allows us
to associate variances and covariances to input variables, leading to interpretability that is not present in existing RFF
models. Our algorithm aims to boost existing RFF algorithms like SHRIMP [39] (uses iterative magnitude pruning to
select features) or HARFE [32] (uses hard thresholding pursuit to select features) by introducing a first approximation
step, which is demonstrated by numerical examples.

This paper is organized as follows. In Section 2 we introduce the well-known ANOVA decomposition for independent
input variables and relate this decomposition to the Fourier transform of the function f . Furthermore, we introduce
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functions of lower order and show that they occur naturally in function spaces of mixed smoothness. In Section 3
we generalize the ANOVA decomposition to possibly dependent input variables. We summarize the idea of random
Fourier feature algorithms in Section 4 and apply them to the ANOVA setting. The resulting boosting algorithms are
summarized in Section 5, where we show how to do sensitivity analysis on an approximation with random Fourier
features. The theoretical analysis in Section 6 generalizes the theory in [7, 39] for random Fourier features and finally
in Section 7 we show with numerical examples the power of our boosting algorithms.

Our main contributions are as follows:

• We propose an ANOVA boosting, which extends and further develops the sparse random feature approxi-
mation from [7, 39, 32] to arbitrary index-sets U ⊂ P([d]) and give a new connection between the Fourier
transform of a function and the ANOVA terms. This leads to random features, which are adapted to the
function.

• Generalizing the theory of sparse random Fourier features: In many cases, for example in the target case
of functions of low order, the Fourier transform only exists in distributional sense. The norm on which
the existing literature is based on, contains a maximum norm of the Fourier transform, which has to be
generalized to the setting of tempered distributions.

• Introducing and analysing a first approximation step which calculates the important ANOVA terms for inde-
pendent or dependent input variables.

• We improve the interpretability of previous random feature models by reducing the importance of variables
that are only correlated with other variables and do not influence the function.

We will distinguish the two cases where the input variables are independent or dependent. In the first case, we will use
the classical ANOVA decomposition, whereas in the latter case we have to generalize this decomposition.

Related work

• The authors from [20] propose the notion of neural decomposition, which integrates the classical ANOVA
and deep neural networks for dimensionality reduction and variance decomposition. Similar to our approach
for dependent input variables, they show that identifiability for independent input variables can be achieved
by training models subject to constraints on the marginal properties of the decoder networks.

• The D-MORPH algorithm [14] uses orthogonal basis with respect to sampling density µ, which requires
knowledge about the sampling density. Our approach is applicable independent of the sampling density
µ. Furthermore, instead of calculating the solution of the minimization problem directly by using an SVD,
we solve the problem by an iterative algorithm. This work was followed, among other, by [2], where the
procedure was generalized to sampling from mixture densities, but also in this case an orthogonal basis is
necessary.
In [29] the generalized ANOVA decomposition is constructed by a constructive method by employing multi-
variate orthogonal polynomials as bases and calculating the expansion coefficients involved from the solution
of linear algebraic equations.

• The authors in [4] also study indices measuring the sensitivity of the output with respect to dependent input
variables, but they are restricted to independent pairs of dependent input variables.

• We generalize the approximation with random Fourier features, for already existing algorithms see for exam-
ple [7, 39, 32]. See also [18] for a nice overview of random features for kernel approximation.

Definitions and Notation

In this paper we denote by [d] the set {1, . . . , d} and its power set by P([d]). The d-dimensional input variable of
the function f is x, where we denote the subset-vector by xu = (xi)i∈u for a subset u ⊆ [d]. The complement of
those subsets is always with respect to [d], i.e., uc = [d]\u. For an index set u ⊆ [d] we define |u| as the number of
elements in u. Define the Fourier transform by

f̂(ω) :=

∫
Rd

f(x) e−i⟨ω,x⟩ dx for w ∈ Rd. (1.2)

If f ∈ L2(Rd) with f̂ ∈ L1(Rd), the Fourier inversion formula

f(x) =
1

(2π)d

∫
Rd

f̂(ω) ei⟨ω,x⟩ dω

3
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holds true for almost all x ∈ Rd. For f /∈ L2(Rd) the Fourier transform f̂ is defined only in distributional sense. Let
S(Rd) be the Schwartz space of rapidly decreasing functions on Rd. Then, for slowly increasing function f , we can
formulate the functional Tf : S(Rd)→ C,

⟨Tf , φ⟩ =
∫
Rd

f(x)φ(x)dx, φ ∈ S(Rd).

The Dirac distribution δ is defined by ⟨δ, φ⟩ = φ(0) for all φ ∈ S(Rd). The Fourier transform is a linear functional
on the Schwartz space,

⟨T̂f , φ⟩ = ⟨Tf , φ̂⟩.
We denote for γ > 0 some frequently used densities by

µN (x) =
1

(2πγ2)d/2
e−

∥x∥2
2γ Gaussian,

µC(x) =

d∏
i=1

1

πσ(1 + x2i /γ
2)

Cauchy.

Let s > 0. Then we define Sobolev spaces of dominating mixed smoothness by

Hs
mix(Rd) :=

{
f : Rd → C | ∥f∥Hs

mix(Rd) <∞
}
,

where the norm is defined by

∥f∥2Hs
mix(Rd) =

∫
Rd

|f̂(ω)|2
d∏

i=1

(1 + |ωi|2)s dω.

2 The ANOVA decomposition for independent input variables

In this section we study the case of independent input variables, which coincides with the density µ having tensor
product structure. For periodic functions there is a connection between the Fourier coefficients of the ANOVA terms,
which is used to construct approximation algorithms for high-dimensional functions with low effective dimension in
an efficient and fast manner, see [26]. This was the motivation to study the more general setting, seeking a connection
between the Fourier transform f̂ and the ANOVA terms, which we will do in the following.

The curse of dimensionality comes into play when analysing data in high-dimensional spaces. A frequently used
concept is the following, [3, 19, 9]. See also [22, Chapter 8.4] or [24, Appendix] for a general introduction to functional
decompositions.
Definition 2.1. Let f be in L2(Rd, µ). For a tensor product density

µ(x) =

d∏
i=1

µi(xi) (2.1)

and for a subset u ⊆ [d] we define the ANOVA (Analysis of variance) terms recursively by

f∅ =

∫
Rd

f(x)µ(x)dx

fu(xu) =

∫
Rd−|u|

f(x)µ(xuc) dxuc −
∑
v⊂u

fv(xv). (2.2)

The ANOVA decomposition with respect to µ of a function f : Rd → C is then given by

f(x) = f∅ +

d∑
i=1

f{i}(xi) +

d∑
i ̸=j=1

f{i,j}(xi, xj) + · · ·+ f[d](x) =
∑
u⊆[d]

fu(xu). (2.3)

The terms (2.2) are the unique decomposition (2.3), such that

⟨fu, fv⟩µ :=

∫
Rd

fu(xu)fv(xu)µ(x)dx = 0 for v ̸= u ⊆ [d] (2.4)∫
R
fu(xu)µj(xj)dxj = 0 for j ∈ u.

4
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Note that in general, fu /∈ L2(R|u|), but fu ∈ L2(R|u|, µu). Furthermore, every density has the property that
µ ∈ L1(Rd), which implies that µi ∈ L1(R), such that the one-dimensional Fourier transforms µ̂i exists. For a better
readability of the following proofs, we introduce the notation

E(x,ω, µ,u) :=
∏
i∈u

(
eiωixi − µ̂i(−ωi)

) ∏
i∈uc

µ̂i(−ωi). (2.5)

In terms of the Fourier transform, the ANOVA terms (2.2) can then be described by the following.
Lemma 2.2. Let the sampling distribution µ have a product structure (2.1). Then the ANOVA decomposition (2.2) of
the function f ∈ L2(Rd, µ) is given by

fu(xu) =
1

(2π)d

∫
Rd

T̂f (ω)E(x,ω, µ,u) dω. (2.6)

Proof. The Fourier transform of the tensor product density µ can be decomposed as

µ̂(ω) =
∏
i∈[d]

µ̂i(ωi).

We prove (2.6) inductively over |u|. First, observe that

f∅ =

∫
Rd

f(x)µ(x) dx =

∫
Rd

1

(2π)d

∫
Rd

T̂f (ω) ei⟨ω,x⟩ dω µ(x) dx

=
1

(2π)d

∫
Rd

T̂f (ω)

∫
Rd

ei⟨ω,x⟩µ(x) dx dω =
1

(2π)d

∫
Rd

T̂f (ω)µ̂(−ω) dω

=
1

(2π)d

∫
Rd

T̂f (ω)E(x,ω, µ,∅) dω,

where E(x,ω, µ,∅) =
∏

i∈[d] µ̂i(−ωi) does not depend on x. The induction step follows using Definition 2.1,

fu(xu) =

∫
Rd−|u|

1

(2π)d

∫
Rd

T̂f (ω) ei⟨ω,x⟩ dωµ(xuc) dxuc −
∑
v⊂u

fv(xv)

=
1

(2π)d

∫
Rd

T̂f (ω)ei⟨ωu,xu⟩
∫
Rd−|u|

ei⟨ωuc ,xuc ⟩µ(xuc) dxuc dω − 1

(2π)d

∑
v⊂u

∫
Rd

T̂f (ω)E(x,ω, µ,v) dω

=
1

(2π)d

∫
Rd

T̂f (ω)ei⟨ωu,xu⟩µ̂uc(−ωuc) dω − 1

(2π)d

∑
v⊂u

∫
Rd

T̂f (ω)
∏
i∈v

(
eiωixi − µ̂i(−ωi)

) ∏
i∈vc

µ̂i(−ωi) dω

=
1

(2π)d

∫
Rd

T̂f (ω)µ̂uc(−ωuc)

ei⟨ωu,xu⟩ −
∑
v⊂u

∏
i∈v

(
eiωixi − µ̂i(−ωi)

) ∏
i∈u\v

µ̂i(−ωi)

 dω

=
1

(2π)d

∫
Rd

T̂f (ω)
∏
i∈u

(
eiωixi − µ̂i(−ωi)

) ∏
i∈uc

µ̂i(−ωi) dω

=
1

(2π)d

∫
Rd

T̂f (ω)E(x,ω, µ,u) dω.

This shows (2.6).

Example 2.3. Suppose

f : R2 → R f(x) = g1(x1) g2(x2) =
|x1|

(1 + x21)
2
·max (1− |x2| , 0) ∈ H3/2−ϵ

mix (R2, µ). (2.7)

This is a function of tensor product structure, which means that the ANOVA decomposition is

f1(x1) =
(
g1(x1)− f1

)
· f2, f1 :=

∫
R
g1(x1)µ1(x1)dx1,

f2(x2) =
(
g2(x2)− f2

)
· f1, f2 :=

∫
R
g2(x2)µ2(x2)dx2,

f1,2(x) =
(
g1(x1)− f1

)
·
(
g2(x2)− f2

)
,

where the constants with respect to standard Gaussian samples µ(x) = µN (x) = 1√
2π

d e
−∥x∥2/2 and uniform samples

on [−1, 1]2 are summarized here:

5
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µ Gaussian Uniform
f∅ 0.0792 0.125
f1 0.2148 0.25
f2 0.3687 0.5

The ANOVA decomposition is plotted in Figure 2.1 for these two cases. This example shows that tensor product type
function can be easily decomposed in the ANOVA terms independent of the sampling density µ. Furthermore, the
ANOVA decomposition depends on the sampling density µ. For more complicated functions this can have much more
influence.

−2 0 2 −1
0

10

0.2

x1
x2

f(x1, x2)
↓

ANOVA
decomposition
w.r.t. Gaussian

measure µ:

f∅ =
0.0792

−2 0 2

−5

0

5
·10−2

f1(x1)

−1 0 1
−0.1

0

0.1

f2(x2)

−2 0 2 −1
0
1−0.1

0

x1
x2

f12(x1, x2)

ANOVA
decomposition
w.r.t. uniform
measure on
[−1, 1]2:

f∅ = 1
8

−1 0 1

−0.1
−5 · 10−2

0

5 · 10−2

f1(x1)

−1 0 1

−0.1

0

0.1

f2(x2)

−1 0
1−1

0
1

−0.1

0

0.1

x1
x2

f12(x1, x2)

Figure 2.1: The ANOVA decomposition of the function (2.7).

Sensitivity analysis

The ANOVA decomposition is the basis for sensitivity analysis, which is the study of how the uncertainty in the output
of a mathematical model can be divided and allocated to different sources of uncertainty in its inputs. A measure
describing the proportion of how much the variables xu contribute to the variance of the function f itself are the
variances

σ2(fu) =

∫
R|u|
|fu(xu)|2µu(xu)dxu,

where
∑

u⊆[d] σ
2(fu) = σ2(f). This provides an explanation for the name analysis of variance decomposition to

this function decomposition. Sobol indices, first introduced by [33], are an often used tool for sensitivity analysis,
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namely

Su =
σ2(fu)

σ2(f)
. (2.8)

Relation to the case of periodic functions

The ANOVA decomposition in terms of the Fourier transform f̂ investigated in Lemma 2.2 is a generalization of the
periodic case. To see this, let µi(xi) =

1
2π 1[−π,π], the density belonging to the uniform density on the torus. For the

Fourier transform of this density we calculate

µ̂i(ωi) =
sin(πωi)

πωi
=

{
0 if ωi ∈ Z\0,
1 if ωi = 0.

(2.9)

For periodic functions the Fourier coefficients are defined by

ck(f) =

∫ π

−π

f(x)e−i⟨k,x⟩ dx.

It is possible to extend the definition (1.2) to include periodic functions by viewing them as tempered distributions.
This makes it possible to see a connection between the Fourier series and the Fourier transform for periodic functions
that have a convergent Fourier series. If f is a periodic function with period 1, that has convergent Fourier series, then:

f̂(ω) =
∑
k∈Z

ck(f)δ (ω − k) ,

where ck(f) are the Fourier coefficients of f and δ is the Dirac delta distribution. The corresponding multivariate case
is

f̂(ω) =
∑
k∈Zd

ck(f)δ (ω − k) ,

Applying Lemma 2.2 to this setting, we have

fu(xu) =
1

(2π)d

∫
Rd

f̂(ω)E(x,ω, µ,u) dω =
1

(2π)d

∑
k∈Zd

ck(f)δ (ω − k)E(x,ω, µ,u)

=
1

(2π)d

∑
k∈Zd

ck(f)E(x,k, µ,u) =
1

(2π)d

∑
k∈Iu

ck(f)e
i⟨ku,xu⟩,

where the index-set is Iu = {k ∈ Zd | suppk = u}. The last equality follows from (2.9) and the definition of the
term E in (2.5). This connection was shown in [26] and was starting point for efficient algorithms.

2.1 Functions of low order

Often, high-dimensional functions that arise from important physical systems are of low order, meaning the function
is dominated by a few terms, each depending on only a subset of the input variables, say q out of the d variables where
q ≪ d. For that reason, we formalize the notion of low order functions by extending the definition from [7].

Definition 2.4 (Functions of low order). Fix d, q ∈ N with q ≤ d. A function f : Rd → C is an order-q function, if

f(x) =
∑
u∈Uq

fu(xu) with Uq = {u ∈ [d] | |u| ≤ q}.

Low order functions arise naturally in the physical world and are used as a form of the reduced complexity model for
such systems.

The following gives a bound for the variances of the ANOVA terms, which is guided by a decomposition of the
frequency domain of f . The proof can be found in Appendix A.

Lemma 2.5. Let f ∈ L2(Rd) with f̂ ∈ L1(Rd), then the variances of the ANOVA terms fu defined in (2.6) are
bounded by

σ2(fu) ≤
1

(2π)2d
∥µ̂∥L1(Rd)

∫
Rd

|f̂(ω)|2|E(0,ω, µ,u)|dω.

7
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A summation of all inequalities for u ⊆ [d] from the previous result gives:∑
u⊆[d]

σ2(fu) = ∥f∥2L2(Rd,µ) =

∫
Rd

|f(x)|2µ(x)dx ≤ 1

(2π)2d
∥µ̂∥L1(Rd) ∥f̂∥

2
L2(Rd).

Example 2.6. Consider again the standard Gaussian distribution µ = µN , where µ̂N (ω) = e−
∥ω∥2

2 . By the functions
|E(0,ω, µ,u)| appearing in Lemma 2.5 we decompose the frequency domain Rd concerning the different ANOVA
indices u ⊆ [d]. We plot the two-dimensional example in Figure 2.2. One can see that (this is in general the case, not
only for this example)

lim
k→∞

|E(0, kω, µ,u)| =
{
1 if suppω = u,

0 otherwise .

The decomposition is the analogue of the discrete decomposition of the Fourier series into ANOVA terms, see [26,
Fig.1].

−5 0
5−5

0
50

0.5

ω1
ω2

u = ∅

−5 0
5−5

0
50

0.5

1

ω1
ω2

u = {1}

−5 0
5−5

0
50

0.5

1

ω1
ω2

u = {2}

−5 0
5−5

0
50

0.5

1

ω1
ω2

u = {1, 2}

Figure 2.2: 2-dimensional decomposition of the frequency domain into ANOVA terms for Gaussian distribution µN .
Plotted are the functions |E(0,ω, µN ,u)| for u ⊆ {1, 2}.

To study functions of low-order q, define
Tqf :=

∑
|u|≤q

fu.

In [34, Corollary 2.32] the author delivers error estimates for the truncation error ∥f − Tqf∥L2(Rd,µ) for functions f in
function spaces with product and order-dependent weights, which builds on a transformation of periodic functions and
an ANOVA decomposition based on Fourier coefficients on the torus. However, the estimates there are related to the
smoothness of the transformed function on the torus, see also [16] for details of the idea of transformations from Rd

to the torus and the transformation of the smoothness thereby. Since the transformation can destroy the smoothness, in
the following theorem we give a bound on the truncation error ∥f − Tqf∥L2(Rd,µ) relative to the norm ∥f∥Hs

mix(Rd).
The proof can be found in Appendix A.
Theorem 2.7. Let the measures µi be either symmetric and have positive Fourier transform or fulfill for fixed s > 1

2
the mild condition

|1− µ̂i(−ωi)|+ |µ̂i(−ωi)|
(1 + |ωi|2)s

≤ 1 (2.10)

for all i ∈ [d] and all ωi ∈ R. Define the constant

cµ,s = max
i∈[d]

max
ω∈R

1− µ̂i(−ω)
(1 + |ω|2)s

.

Then for f ∈ Hs
mix(Rd) the truncation error is bounded by

∥f − Tqf∥2L2(Rd,µ) ≤
cqµ,s

(2π)2d
∥µ̂∥L1(Rd) ∥f∥

2
Hs

mix(Rd) .

Furthermore, if the Fourier transforms µ̂i are differentiable, we have

cµ,s = max
i∈[d]

max
ω∈R

−µ̂′
i(ω)

2sω (1 + ω2)
s−1 . (2.11)

8
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We specifically point out that in the previous result the truncation error ∥f − Tqf∥2L2(Rd,µ) is bounded by a constant
O(2−q) and ∥f∥Hs

mix(Rd), which is determined by the smoothness of f . In general, this norm can increase with
increasing d, but on the other hand the factor (2π)−2d ∥µ̂∥L1(Rd) decays exponentially with increasing d.

Example 2.8. Let us have a look at Gaussian samples µi(xi) = µN (xi) =
1

γ
√
2π

e
−

x2
i

2γ2 with variance γ, which means

µ̂i(ωi) = e−γ2ω2
i /2. Then

cµ,s =
γωi

2sωi(1 + ω2
i )

s−1
e−γ2ω2

i /2 =
γ

2s(1 + ω2
i )

s−1
e−γ2ω2

i /2 ≤ γ

2s
,

∥µ̂i∥L1(R) =

√
2π

γ
,

such that
∥f − Tqf∥2L2(Rd,µN ) ≤ (2π)−

3
2d(2s)−(q+1) ∥f∥2Hs

mix(Rd) .

Let us have a look at Cauchy distributed samples µi(xi) = µC(xi) = 1
πγ(1+x2

i /γ
2)

with variance γ, which means

µ̂i(ωi) = e−γ|ωi|. Then

cµ,s = sup
ωi>0

γωi

2sωi(1 + ω2
i )

s−1
e−γωi =

γ

2s(1 + ω2
i )

s−1
e−γ2ω2

i /2 ≤ γ

2s
,

∥µ̂i∥L1(R) =

√
2

γ
,

such that
∥f − Tqf∥2L2(Rd,µC)

≤ 2−dπ−2d(2s)−(q+1) ∥f∥2Hs
mix(Rd) .

3 The generalized ANOVA decomposition for correlated input variables

The main assumption of the ANOVA decomposition is that the input parameters xi, i = 1, . . . , d, are independent. This
is unrealistic in many cases. Clearly, the correlation structure of random variables heavily influences the composition
of component functions as well as global sensitivity analysis.

However, when the dependence is present among variables, the variance contribution of an individual variable xi
consists of not only the contribution resulting from the variable itself, but also contains the dependent contribution
resulting from the dependence between variable xi and other variables. So far, the literature [14, 29] discusses the
variance contributions with dependent variables, and makes a distinction between the independent contribution and
dependent contribution of the variables.

We now consider possibly dependent input variables xi, i.e. an arbitrary non-product type probability density function
µ : Rd → R, that has marginal probability density functions

µu(xu) :=

∫
Rd−|u|

µ(x)dxuc ,

where ∅ ̸= u ⊆ [d].

In the case for independent variables, the ANOVA decomposition (2.3) is unique by demanding the condition (2.4).
For dependent variables, it is in general not possible to find an orthogonal decomposition. First, there is a mild
condition to the measure µ needed, to construct an ANOVA decomposition of the form (2.3): Assume that for every
u ⊆ [d] the support of µu is grid-closed [10]. The grid closure implies that for any point xu ∈ suppµu we can
move in each coordinate direction and find another point in the support of µu. This is a mild regularity requirement,
which is fulfilled by common probability distributions. The grid closure excludes only degenerated distributions like
µ{1,2} = 1{x1=x2}, where it anyway is not possible to distinguish between the input variables x1 and x2.

Second, we have to replace the condition (2.4) of the classical ANOVA decomposition in the setting for independent
variables to a milder condition, hierarchical orthogonality condition,∫

Rd

fu(xu)fv(xv)µ(x)dx = 0 for all v ⊂ u, (3.1)

9
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see [10, 29] for more details. The weak annihilating conditions, that is∫
R
fu(xu)µu(xu)dxi = 0 for all i ∈ u,u ⊆ [d] (3.2)

are equivalent to (3.1) and are appropriate for the generalized ANOVA decomposition. Every square-integrable mul-
tivariate function f with respect to the marginal probability measure µu supported on R|u| admits a unique, finite,
hierarchical expansion

f(x) =
∑

∅̸=u⊆[d]

fu(xu), (3.3)

referred to as the generalized ANOVA decomposition. The existence and uniqueness of the decomposition in (3.3)
under mild conditions has been proven in [4, 10, 37]. That is, for the existence the support of every µu has to be grid-
closed and the uniqueness follows by demanding (3.2). Note that the generalized ANOVA decomposition matches the
classical ANOVA decomposition (2.3), if the input variables are independent.

There exist many methods for calculating the global sensitivity indices (2.8) of a function of independent variables. In
contrast, only a few methods, such as those presented in [4, 10, 12, 14, 29] are available for models with dependent or
correlated input. In all literature the Sobol indices (2.8) are generalized to the following.
Definition 3.1. The Sobol indices for an ANOVA term fu measuring the contribution of xu into the model, denoted
by Su,var, Su,cor and Su are given by

Su,var =
σ2(fu)

σ2(f)

Su,cor =

∑
∅ ̸=v⊆[d]

v∩u̸=∅,v ̸⊆u
⟨fu, fv⟩µ

σ2(f)

Su = Su,var + Su,cor.

The first two indices Su,var and Su,cor represent the normalized versions of the variance contributions and covariance
contributions from fu to σ2(f). The third index, Su, referred to as the total global sensitivity index is the sum of
variance and covariance contributions.

When the random variables are independent, the covariance contributions to the total sensitivity index Su,cor vanish
for all u ⊆ [d], leaving only one sensitivity index for the classical ANOVA decomposition.

3.1 ANOVA decomposition of the frequency domain

In case of periodic functions and independent input variables there is a connection between the ANOVA terms fu
and the Fourier coefficients [26] or the wavelet coefficients [17]. This connection leads to efficient algorithms. In the
following we study a similar connection for functions on Rd and the Fourier transform.

Let f ∈ L2(Rd) ∩ L2(Rd, µ) have the generalized ANOVA decomposition f =
∑

u∈U fu(xu). The functions fu
depend only on the variables xu, i.e.,

T̂f (ω) =
∑
u∈U

δωuc T̂fu(ωu).

Then the Fourier inversion formula yields,

f(x) =
1

(2π)d

∫
Rd

T̂f (ω)ei⟨ω,x⟩dω =
∑
u∈U

1

(2π)d

∫
R|u|

T̂fu(ωu)e
i⟨ωu,xu⟩dωu

=
∑
u∈U

1

(2π)d

∫
Rd

T̂fu(ωu)e
i⟨ωu,xu⟩δωucdω.

This somehow decomposes the frequency domain Rd into parts which belong to the different ANOVA-terms, in the
sense that for the ANOVA term u the corresponding frequencies ω have to fulfill ωuc = 0. For that reason let us
define the frequency decomposition

Qu := {ω ∈ Rd | ωuc = 0, ωi ̸= 0 for i ∈ u}. (3.4)

An illustration for the three-dimensional case can be found in Figure 3.1. In general fu /∈ L2(R|u|), but fu ∈
L2(R|u|, µu).

10
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=

Q{1,2,3}

+

Q{1,2}, Q{1,3}, Q{2,3}

+

Q{1}, Q{2}, Q{3}

+

Q∅

Figure 3.1: Decomposition of the frequency domain R3 into the lower dimensional parts. The lower dimensional
subsets Qv are not part of the higher-dimensional Qu for v ⊂ u.

4 Random Fourier features

Kernel-based approaches have been extensively used in data-based applications, including image classification and
high-dimensional function approximations since they often perform well in practice. The random feature model is a
popular technique for approximating the kernel using a randomized basis that can avoid the cost of full kernel methods.
An alternative perspective is to view the random feature model as a non-linear randomized function approximation.
The theoretical foundation of random Fourier features builds on Bochner’s characterization of positive definite func-
tions, see also the pioneering work for random features [28].

Theorem 4.1 (Bochner’s theorem [1]). A continous and shift-invariant function κ : Rd × Rd → R is positive definite
if and only if κ is the Fourier transform of a non-negative measure.

If a shift-invariant kernel κ is properly scaled with k(0) = 1, Bochner’s theorem guarantees that its Fourier transform
ρ(ω) is a proper probability distribution, which means that

k(x− x′) =

∫
Rd

ei⟨ω,x−x′⟩ρ(ω)dω = Eω∼ρ

(
ei⟨ω,x⟩e−i⟨ω,x′⟩

)
. (4.1)

See also [25, Chapter 4.4] According to (4.1), the random Fourier feature model makes use of the standard Monte
Carlo sampling scheme to approximate κ(x,x′). In particular, one uses the approximation

k(x− x′) = Eω∼ρ

(
ei⟨ω,x⟩ · e−i⟨ω,x′⟩

)
≈ A(x) ·A(x′)∗,

with the explicit feature mapping

A(x) =
(
ei⟨ω1,x⟩, · · · , ei⟨ωN ,x⟩

)
∈ C|X |,N ,

where {ωk}Nk=1 are sampled from ρ(ω) independently of the training set X . Consequently, the original kernel matrix
K = (κ(x− x′))x∈X ,x′∈X can be approximated by K ≈ 1

NAA∗. In the case of N ≪ |X |, this is a low rank
approximation of the kernel which is for a big amount of samples |X | computational more feasible than the kernel
matrix K itself.

11



ANOVA-Boosting for random Fourier Features A PREPRINT

We will focus on two families of feature distributions, Gaussian features and the Sobolev-type features with i.i.d
coordinates (associated to the Gaussian kernel and Laplace-type kernel, respectively):

ρσN (ω) :=

(
1

σ
√
2π

)d

exp
(
−∥ω∥2 /(2σ2)

)
, Gaussian density, σ > 0

ρs,σΠ (ω) := cρs
Π

∏
i∈[d]

1

σ (1 + ω2
i /σ

2)
s , tensor-product density (d ≥ 2, s > 1

2 , σ > 0),

with the constant cρs
Π
:=

(
Γ(s)

√
π Γ(s− 1

2 )

)d

chosen to ensure the associated densities have unit mass. One special case

of the tensor-product density, is the tensor-product Cauchy distribution

ρσC(ω) :=

d∏
i=1

1

πσ(1 + w2
i /σ

2)
.

From the neural network point of view, this is a two-layer network with a randomized but fixed single hidden layer.
Given an unknown function f : Rd → C, the random Fourier feature model takes the form

f#(x) =

N∑
j=1

aje
i⟨ωj ,x⟩,

where x ∈ Rd is the input data, (ωj)
N
j=1 are the random weights and a = (aj)

N
j=1 ∈ CN is the final weight layer.

Existing algorithms differ in how they select features ωj and weights aj . In most cases, the features ωj are independent
and identically distributed random variables generated by the (user defined) probability density function ρ(ω). Then,
for the random Fourier feature model, the output layer a is trained (training data-dependent or independent), while the
hidden layer (the weights ωj) are fixed.

Suppose we are given a probability density ρ used to sample the entries of the random weights ω. Let us recall the
definition for bounded F(ρ)-norm functions, see also [7, 39, 32].

Definition 4.2. Let ρ : Rd → R be a density function. A function f : Rd → R has finite F(ρ)-norm with respect to
e⟨ω,·⟩ if it belongs to the class

F(ρ) :=

{
f(x) =

∫
Rd

f̂(ω)ei⟨ω,x⟩ dω | ∥f∥F(ρ) := sup
ω∈Rd

∣∣∣∣∣ f̂(ω)

ρ(ω)

∣∣∣∣∣ <∞
}
. (4.2)

Choosing a Gaussian distribution ρ like in [39, 7] is a very restrictive condition to the function space F(ρ), since the
Fourier transform f̂ has to decay faster than exponentially. For instance, in Sobolev spaces the decay of the Fourier
transform is polynomially. For functions in F(ρ) generalization error bounds for random feature ridge regression
from [39, 7] achieve the rate O(M−1), provided the number of data samples grows with M and satisfies certain
statistical assumptions.

When more information is known about the target function f , the rates and complexity bounds improve (especially
with respect to the dimension). This helps mitigate issues with the approximation of functions in high-dimensions.
Especially, if the function is of low order. This is what we want to study in this Section. If the function f is of low
order, say q, the Fourier transform f̂ is not defined as a function, but only in distributional sense, which makes the
norm in Definition 4.2 infinite. This also concerns the ρ-norm for function of lower dimension, defined in [7] if the
effective dimension of the function f does not equal q, the sparsity of the drawn random features. For that reason we
introduce in the following ANOVA truncated random Fourier features.

4.1 Random Fourier Features and ANOVA

In this section we relate the generalized ANOVA decomposition (3.3) to the random feature approximation. If nothing
is known about the function f , it might be appropriate to use random Fourier features from a d-dimensional density ρ.
But if the function is of low order or sparse in the ANOVA-terms, it is useful to decompose the density ρ having the
ANOVA decomposition of the function f in mind. Shortly, we draw nu random Fourier features supported on u for
every ANOVA term u in the set U ⊂ P([d]).

12
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Assume the function f has a sparse ANOVA decomposition, i.e. for small ϵ > 0,

∥f − TUf∥L2(Rd,µ) ≤ ϵ, where TUf(x) =
∑
u∈U

fu(xu).

For such functions it is reasonable to reduce the dimension of the random Fourier features, where the remaining main
task is to find the index-set U . In this paper we aim to develop Algorithms 1 and 2 for finding this index set U .
Definition 4.3. [ANOVA-truncated random Fourier features] Let U ⊂ P([d]) be a set of ANOVA indices and the
functions ρu : R|u| → R be probability distributions. A collection of N =

∑
u∈U nu weight vectors ω1, . . . ,ωN is

called a set of ANOVA-truncated random Fourier features, if it is generated as follows: For each index u ∈ U draw
nu realizations z1, . . . ,znu from ρu and construct |u|-sparse features ωk by setting supp(ωk) = u and (ωk)u = zk.
All random Fourier features are collected in the index-set I, and define the notation Iu = {ω ∈ I | ω ∈ Qu}, where
Qu is defined in (3.4).

Note that the algorithms [7, 32, 39] are restricted to index-sets U = {u ⊆ [d] | |u| = q}. Concerning the interpretabil-
ity of the results this is a disadvantage, since it can happen that non-important input variables gain significance, see
the following example. For that reason, we use random Fourier features of different dimension up to order q, and not
only random Fourier features of order q.
Example 4.4. Introduce a function of the form

f(x1, . . . , x20) = f1,2(x1, x2) + f3(x3) + f4(x4) + f5(x5),

this includes the Friedmann function considered in [32, Fig.4]. The Fourier transform Tf̂ is supported on

Q∅ ∪Q{1} ∪Q{2} ∪Q{1,2} ∪Q{3} ∪Q{4} ∪Q{5}.

Choosing q-sparse random Fourier features with U = {u ⊂ [d] | |u| = 1} and without demanding some
orthogonality to the ANOVA terms, means that for example the ANOVA term f1 can be described by a sum∑20

k=2

∑
ω∈I{1,k}

ei(ω1x1+ωkxk). This leads to the problem, that coefficients aω for ω ∈ I{1,k} for some k ∈
{2, . . . , 20} describe the ANOVA term f1 and are non-zero, despite the fact that the variable xk does not play a
role in the function. Then, analyzing the histogram based on the occurrence rate (as a percentage) of the input vari-
ables obtained from the HARFE model like in [32, Fig.4], leads to non-zero weights for non-necessary variables.

In applications the function f is unknown, even if a formula for f is available, the component functions fu can not
be calculated analytically using for example the coupled equations like in [29]. In typical applications, the function f
is only available by sampling points x ∈ X from modelling or experiments. Therefore, a practical numerical method
is needed to construct each unique component function. Similar to [14], we minimize the squared error under the
hierarchical orthogonality condition (3.1). For a set U ⊆ P([d]) and ANOVA-truncated random Fourier features
ω ∈ I drawn according to Definition 4.3, we construct the random feature matrix

A = (Au)u∈U with Au =
(
ei⟨ωu,xu⟩

)
x∈X ,ωu∈Iu

. (4.3)

Employing the generalized ANOVA decomposition, every term fu of the function f by a sum

fu(xu) ≈
∑

ωu∈Iu

aωe
i⟨ωu,xu⟩,

where the related random Fourier features ω are inQu. To find a suitable vector a = (aω)ω∈I , we use a regularization,
which is similar to defining the cost function like the D-MORPH algorithm [14] does: A solution vector a should
fulfill simultaneously ∥Aa− f∥2 = 0 and the hierarchical orthogonality (3.1). Since the regularization by forcing
the integrals (3.2) to be zero is not numerically feasible, we use a discretization of the integrals ⟨fu, fv⟩µ instead:

⟨fu, fv⟩X :=
1

M

∑
x∈X

fu(xu)fv(xv). (4.4)

In contrast to [14], we do not want to enforce the hierarchical orthogonality (3.1) by calculating an SVD, but rather by
penalizing by using a regularization. The solution vector a# can then be obtained by minimizing

a# = argmin
a
∥Aa− f∥2 + λ ∥a∥2Ŵ ,

= argmin
a

∥∥∥∥( A√
λŴ

)
a−

(
f
0

)∥∥∥∥2
2

(4.5)

where ∥a∥2Ŵ = a∗Ŵa =
∑
u∈U

auŴuau, (4.6)
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where we introduce the weight matrix Ŵ by

Ŵ := diag
(
Ŵu

)
u∈U

,

Ŵu =
1

M2
A∗

u (Av1
Av2
· · ·)

(
A∗

v1

A∗
v2

. . .

)
Au =

1

M2
A∗

u

(∑
v⊂u

AvA
∗
v

)
Au ∈ Cnu×nu , (4.7)

where vi runs through all subsets v ⊂ u and ∅ is also a subset v of u. The following lemma shows that this
regularization coincides with the hierarchical orthogonality (3.1).

Lemma 4.5. The regularization term a∗
uŴuau in (4.5) with the weight matrices Ŵu, defined in (4.7) penalizes the

non-orthogonality of the terms fu and fv where v ⊂ u with the discrete scalar product (4.4) in the sense that

a∗
uŴuau ≥

∑
v⊂u

1

∥av∥2
|⟨fu, fv⟩X |2.

Proof. The Cauchy-Schwarz inequality gives for all vectors b, c and matrix A with suitable size that

|⟨Ab, c⟩|2 ≤ ∥Ab∥2 ∥c∥2 .

Applying this to our setting yields for

|⟨fu, fv⟩X |2 =
1

M2
|⟨Auau,Avav⟩|2 =

1

M2
|⟨A∗

vAuau,av⟩|2

≤ 1

M2
∥A∗

vAuau∥2 ∥av∥2 =
∥av∥2

M2
|⟨A∗

vAuau,A
∗
vAuau⟩|

=
∥av∥2

M2
a∗
uA

∗
uAvA

∗
vAuau.

Hence, the regularization term auŴuau has the following connection to the discrete orthogonality of the terms fu
and fv , if av ̸= 0,

a∗
uŴuau = a∗

u

(
1

M2
A∗

u

(∑
v⊂u

AvA
∗
v

)
Au

)
au ≥

∑
v⊂u

1

∥av∥2
|⟨fu, fv⟩X |2.

This finishes the proof.

For the one-dimensional terms u = {i} we obtain equality in the previous lemma, the weight matrix Ŵu contains
only A∅ and is in this case equal to

Ŵ {i} = 1M×M

and

a∗
{i}Ŵ {i}a{i} =

1

M2
a∗
{i}A

∗
{i}

1 · · · 1
...

1 · · · 1

A{i}a{i} =

∣∣∣∣∣ 1M ∑
x∈X

fi(xi)

∣∣∣∣∣
2

=
1

f2∅
|⟨fi, f∅⟩X |2 =

∣∣∣∣∣∑
x∈X

fi(xi)

∣∣∣∣∣
2

.

For the two-dimensional case u = {i, j} we have

Ŵ {i,j} = 1M×M +A{i}A
∗
{i} +A{j}A

∗
{j}.

To solve the regularized least squares problem (4.5), we have to construct the matrix A and the matrix Ŵ , which is a
block diagonal matrix, with blocks belonging to every u ∈ U , so the square root has to be calculated for every block
separately only. The actual minimization problem is then solved by an iterative least squares algorithm.
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5 Sensitivity analysis

The aim of sensitivity analysis is to study how the output of a mathematical model or system can be divided and
allocated to different input variables. Or, speaking in the ANOVA setting, to compare the variances σ2(fu) of the
different ANOVA terms. This simplifies the model: Overly complex models may complicate analysing the inputs.
By performing sensitivity analysis, users can better understand what factors don’t actually matter and can be removed
from the model.

Suppose a set of ANOVA indices U ⊆ P([d]) and ANOVA-truncated random Fourier features ω ∈ I according to
Definition 4.3. Let some approximation to f be a sum f# of the form

f#(x) =
∑
u∈U

∑
ω∈Iu

a#ω e
i⟨ωu,xu⟩, (5.1)

with some coefficients a#ω (which can be the output of some optimization algorithm). In the following we will show
two methods for performing sensitivity analysis for a function of kind (5.1). The first approach in Section 5.1 can be
applied for independent input variables and exploits the tensor product structure of the corresponding sampling density
µ. We start with q-sparse random Fourier features and include successively needed ANOVA-terms of order smaller
than q. In contrast to that, in Section 5.2 we will first start by incorporating all ANOVA-terms up to order q and omit
these with low variance.

5.1 Sensitivity analysis for independent input variables

In the case of a sum f#(x) =
∑

j ajej(x) with basis functions ej being orthonormal in L2(Rd, µ), the variances
of the ANOVA terms can be calculated easily from the coefficients aj , see for example [34, 17] for the exponential
basis or the wavelet basis on the torus, respectively. In this paper we want to study the problem of unknown sampling
density µ, such that an orthogonal basis is not available.
However, analogously to Lemma 2.2 the recursive definition (2.2) splits the function f# into the terms

f#∅ =

∫
Rd

∑
ω∈I

a#ω e
i⟨ω,x⟩µ(x) dx =

1

(2π)d

∫
Rd

∑
ω∈I

a#ω e
i⟨ω,x⟩µ(x) dx =

1

(2π)d

∑
ω∈I

a#ω µ̂(−ω)

f#u (xu) =
1

(2π)d

∑
ω∈I

a#ω
∏
i∈u

(
eiωixi − µ̂i(−ωi)

) ∏
i∈uc

µ̂i(−ωi) =
1

(2π)d

∑
ω∈I

a#ωE(x,ω, µ,u),

with the terms E defined in (2.5).

Instead of calculating the integrals for the ANOVA decomposition (2.2), we derive advantage from the fact that the
points are sampled from the density µ. Then the Monte-Carlo approximation of the integrals can be calculated using
the RFF matrix A and a coefficient vector a#.

We consider the setting where the set of ANOVA indices U is completely arbitrary. We propose to start with U = {u ∈
[d] | |u| = q} and refining this set iteratively, we will give more details later in this section. Since the functions ei⟨ω,·⟩

are not orthogonal for random drawn frequencies ω, the decomposition (5.1) is not the unique ANOVA decomposition
of f#. But we notice, that for u ∈ U with {v ∈ U | u ⊂ v} = ∅, the ANOVA term f#u is completely contained
in the sum

∑
ω∈Iu

a#ω e
i⟨ωu,xu⟩. The main idea of our procedure is to calculate, if such an ANOVA term is really

necessary or if the indices can be reduced to even lower dimensional sparse random Fourier features.
Lemma 5.1. Let f# from (5.1) be the output of a trained random feature model. Fix a subset u ∈ U with {v ∈ U |
u ⊂ v} = ∅ and denote g(xu) :=

∑
ω∈Iu

a#ω e
i⟨ωu,xu⟩. Then the Monte-Carlo approximation of the ANOVA terms

of the function g at the sample points X with |X | =M are

gMC
∅ =

1

M

∑
ω∈Iu

aω

∑
x(j)∈X

ei⟨x
(j),w⟩,

gMC
v (xv) =

1

M

∑
ω∈I

aω

∑
x(j)∈X

e
i⟨x(j)

u\v,wu\v⟩
∏
i∈v

(
eixiωi − eix

(j)
i ωi

)
.

Proof. We use induction over |v|, and begin with v = ∅,

g∅ =

∫
Rd

f#(x)µ(x) dx ≈ 1

M

∑
x∈X

∑
ω∈I

aωe
i⟨ω,x⟩ =: gMC

∅ .
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For the induction step we use the recursive definition (2.2) of the ANOVA-terms. Additionally, the tensor product
structure of the density µ, (2.1), is the basis to approximate an |v|-dimensional integral with respect to µv by∫

R|v|
g(xv,xvc)µv(xv) dxv ≈

1

M

∑
x(j)∈X

g(x(j)
v ,xvc),

which is a function that depends on the variables xvc and not on the variables xv . Applying this to the recursive
definition (2.2) yields

gv(xv) =

∫
R|u|−|v|

g(xu)µ(xvc) dxvc −
∑
v′⊂v

gv′(xv′)

≈ 1

M

∑
x(j)∈X

g(xv,x
(j)
u\v)−

∑
v′⊂v

gMC
v′ (xv)

=
1

M

∑
ω∈Iu

awei⟨xv,ωv⟩
∑

x(j)∈X

(
e
i⟨ωu\v,x

(j)

u\v⟩
)

− 1

M

∑
v′⊂v

∑
ω∈Iu

aw
∑

x(j)∈X

e
i⟨x(j)

u\v′ ,ωu\v′ ⟩ ∏
i∈v′

(
eixiωi − eix

(j)
i ωi

)

=
1

M

∑
ω∈Iu

aw
∑

x(j)∈X

e
i⟨ωu\v,x

(j)

u\v⟩

(
ei⟨xv,ωv⟩ −

∑
v′⊂v

e
i⟨x(j)

v\v′ ,ωv\v′ ⟩ ∏
i∈v′

(
eixiωi − eix

(j)
i ωi

))

=
1

M

∑
ω∈Iu

aw
∑

x(j)∈X

e
i⟨ωu\v,x

(j)

u\v⟩

(∏
i∈v

(
eixiωi − eix

(j)
i ωi

))
This finishes the proof.

Of special interest for our algorithm is the case where v = u in the previous lemma. With the known ANOVA-terms
gMC
u for every index u we can estimate the variance of the ANOVA term u in f# by

σ2
MC(gu) =

1

M − 1

∑
x(j)∈X

gMC
u (x(j))−

∑
x(j)∈X

gMC
u (x(j))

2

.

Remark 5.2. The case where v = u in the previous Lemma 5.1 is of special interest. In this case we calculate,(
f#u (xu)

)
x∈X ≈

1

M

∑
ω∈Iu

a#w
∑

x(j)∈X

(∏
i∈u

(
eixiωi − eix

(j)
i ωi

))

σ2(f#u (xu))

σ2(f)
≈

∥∥f#u (xu)
∥∥2
ℓ2(X )

σ2(f)
. (5.2)

Introducing three-dimensional tensors eix
(j)
i ωi − eix

(j̃)
i ωi ∈ C|X |×|X|×nu this is calculated numerically by a tensor-

vector multiplication, followed by a summation, point-wise squaring and a summation. We approximate the variance
of f by the variance of the given data vector f . A splitting of the given data into test data and validation data gives the
possibility to use the prediction on the validation set to estimate the variances of the ANOVA terms on validation data.

The variance of f#u is a good approximation to the variance of fu if the error
∥∥fu − f#u ∥∥L2(R|u|,µu)

is small, see

|σ2(fu)− σ2(f#u )| =
∣∣∣∣∫

R|u|

(
|fu(xu)|2 − |f#u (xu)|2

)
µu(xu)dxu

∣∣∣∣
=

∣∣∣∣∫
R|u|

(
|fu(xu)| − |f#u (xu)|

) (
|fu(xu)|+ |f#u (xu)|

)
µu(xu)dxu

∣∣∣∣
≤
∥∥fu − f#u ∥∥L2(R|u|,µu)

∥∥fu + f#u
∥∥
L2(R|u|,µu)

≤
∥∥fu − f#u ∥∥L2(R|u|,µu)

∥fu∥L2(R|u|,µu)

(
2 +

∥∥fu − f#u ∥∥L2(R|u|,µu)

)
. (5.3)
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The algorithms in the exsiting literature [7, 39, 32] used q-sparse random Fourier features, but they numerically verified
that choosing q equal to the real effective dimension of the function f leads to best approximation results. Furthermore,
the norm F(ρ) from Definition 4.2 is not finite, the Fourier transform f̂ is defined only in distributional sense.

Definition 5.3. A set U is called anti downward closed if for every u ∈ U there is no index v ∈ U , which is a subset
of u.

We propose to choose an anti downward closed set U . Furthermore, we propose to start with q-sparse random Fourier
features and customize the random features to the ANOVA decomposition of the function f iteratively. This works as
follows. We start with q-sparse random Fourier features as proposed in the literature so far by choosing U = {u ∈
P([d]) | |u| = q}. Then we draw in total N random Fourier features and learn a first approximation, described by the
parameter vector a#. This is Stage I of Algorithm 1.

Then, using the variance estimations (5.2), Algorithm 1 decides in Stage II for every u ∈ U , if it keeps this ANOVA
index or if it omits this ANOVA index and uses instead all indices u of order q − 1 which are contained in u. This
procedure is done q times, to reduce the ANOVA index-set U to the really necessary variable interactions. If the
function has only a low amount of non-zero ANOVA-terms this leads to a huge decrease of non-necessary parameters
in the model, which is the starting point for the iterative pruning steps. We summarize this in Algorithm 1.

Algorithm 1 ANOVA boosting for independent input variables

Input: X = (x(i))Mi=1 ∈ Rd sampling nodes
f = (f(x(i)))Mi=1 function values at sampling nodes
q maximal superposition dimension
ε ANOVA threshold
N number of total random Fourier features
λ regularization parameter

Stage I: Initialization
1: U = {u ⊆ [d] | |u| = q}
2: n = floor

(
N
|U |

)
.

3: For every u ∈ U draw n q-sparse features ω ∈ Iu and construct the matrix

A = [Au]u∈U ∈ CM×N , Au = (ei⟨ωu,xu⟩)x∈Xtrain,ω∈Iu ∈ CM×N .

First approximation: a = A∗(AA∗ + λI)−1f .
Stage II: ANOVA boosting

4: for t = 1, . . . , q do
5: For every u ∈ U calculate the variances σ2

MC(gu) using (5.2).
6: U ← {u ∈ U | σ2

MC(gu) ≥ ϵ}
7: Ut = {v ∈ [d] | |v| = t− 1,∄u ∈ U with v ⊂ u}
8: U ← U ∪ Ut

9: Draw |u|-sparse features ω ∈ Iu for every u ∈ Ut

10: Construct the matrix A and update the approximation a = A∗(AA∗ + λI)−1f .
11: end for

Output: U

In Figure 5.1 we illustrate this procedure for an example function, which can be written in the form

f : R7 → R, f(x) = f{1,2,3}(x1, x2, x3) + f1(x1) + f{1,3}(x1, x3)f{5}(x5) + f{6,7}(x6, x7). (5.4)

We start with all three-dimensional terms, i.e. U = {u ⊂ [d] | |u| = 3}. A sensitivity analysis of the first ap-
proximation f# shows that only the three-dimensional term {1, 2, 3} has variance bigger than some threshold ϵ. The
other three-dimensional terms can be replaced by all two-dimensional terms, where the terms {1, 2} and {2, 3} are
not needed, because they are contained in the term {1, 2, 3}. A second approximation shows that only the variances of
f#{1,2,3} and f#{6,7} are bigger than a threshold. In the third approximation only the additional one-dimensional terms
{4}, {5} are needed, since the other ones are contained in the higher-dimensional terms. After the third approxima-
tion only the important terms in an anti downward closed set U remain for the next approximation step to reduce the
over-parametrized model to an under-parametrized model, for example using SHRIMP or HARFE.
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x1

x2

x3

x4

x5

x6

x7

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{4, 5, 6}

{4, 5, 7}

{5, 6, 7}

{1, 2, 3}

{1, 4}

{1, 5}

{1, 6}

{5, 6}

{5, 7}

{6, 7}

{1, 2, 3}

{4}

{5}

{6, 7}

{1, 2, 3}

{5}

{6, 7}

... ...

input
variables

first
approx.

second
approx.

third
approx. found terms

|U | : 35 19 4 3

Figure 5.1: Example procedure of finding the ANOVA-sparse random Fourier features: Consider a 7-dimensional
input function of the form (5.4), starting at q = 3. The terms with approximated variance σ2(fu) bigger than the
threshold ϵ are highlighted in magenta for each approximation step. The result is an anti downward closed set U . At
the bottom we give the number of indices in the index-set U , which is used in the respective step.

5.2 Sensitivity analysis for correlated input variables

If we do not have information about the sample density µ, we do not have the tensor product structure as for in-
dependent input variables. We want to come back to the regularized least squares (4.5). As shown in Lemma 4.5,
this regularization ensures the hierarchical orthogonality (3.1) of the ANOVA terms. In this setting we demand that
the sum

∑
ω∈Iu

a#ω e
i⟨ωu,xu⟩ should approximate the ANOVA term fu for every u ∈ U . Therefore, we start with

U = {u ⊆ [d] | |u| ≤ q}. Then the solution vector a# of (4.5) seperates the ANOVA terms in the sense that

fu(xu) ≈
∑
ω∈Iu

a#ω e
i⟨ωu,xu⟩.
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Let the RFF matrix A be split like in (4.3) and denote the vectors au = (aω)ω∈Iω
. Then we approximate the Sobol

indices, see Definition 3.1 by

SMC
u,var =

∥∥Aua
#
u

∥∥2
2

σ2(f)
(5.5)

SMC
u,cor =

∑
∅ ̸=v⊆[d]

v∩u̸=∅,v ̸⊆u
⟨Ava

#
v ,Aua

#
u ⟩

σ2(f)
(5.6)

SMC
u = SMC

u,var + SMC
u,cor. (5.7)

The procedure is summarized in Algorithm 2. Note, that this procedure can also be applied to samples from tensor
product sampling densities µ. In that case we expect the indices Su,cor to be zero.

Algorithm 2 ANOVA boosting for possibly dependent input variables

Input: X = (x(i))Mi=1 ∈ Rd sampling nodes
f = (f(x(i)))Mi=1 function values at sampling nodes
q maximal superposition dimension
ε ANOVA threshold
N total number of random Fourier features
λ regularization parameter

Stage I: Initialization
1: U = {u ⊆ [d] | |u| ≤ q}

Stage II: ANOVA boosting
2: for t = q, . . . , 1 do
3: n = floor

(
N
|U |

)
.

4: For every u ∈ U draw n q-sparse features ω ∈ Iu and construct the matrix

A = [Au]u∈U ∈ CM×N , Au = (ei⟨ωu,xu⟩)x∈Xtrain,ω∈Iu ∈ CM×N .

The solution vector a is solution of minimization problem (4.5) by an iterative least squares algorithm.
5: For every u ∈ U calculate the Sobol indices SMC

u,var, S
MC
u,cor and SMC

u using (5.5) to (5.7).
6: U ← {u ∈ U | SMC

u,var > ϵ or |u| < t}.
7: end for
8: make anti downward closed set U (see Definition 5.3):

U ← U\{u ∈ U | ∃v ∈ U with u ⊂ v}.

9: Draw |u|-sparse features ω ∈ Iu for every u ∈ U
Output: U

A good choice for the index-set U

We want to discuss two procedures done in Algorithm 2: The first one is the for-loop, which is a similar proceeding
as in Algorithm 1. Another possibility would be to do just one step of approximation and omit all indices u ∈ U with
SMC
u,var smaller than the threshold ϵ independent of the order |u|. But it turned out in numerical tests, to be beneficial

to use the loop, because otherwise the algorithm would not be able to detect the correct ANOVA terms. The variances
of terms fu of order less than q are not estimated well enough when using ANOVA-truncated random Fourier features
belonging to all |U | =

∑q
i=0

(
d
i

)
terms of order smaller or equal q.

The second procedure is, that in line 8 of Algorithm 2 we shrink the index-set U , such that there are no two sets
contained, which are subsets u ⊂ v, which is necessary to receive an anti downward closed set U , see Definition 5.3.
This is the better choice, since the ANOVA terms v ⊆ u are already contained in the sum

∑
ω∈Iu

aωe
i⟨xu,ωu⟩. This

is made clearer by the following example. Assume a two-dimensional function f = f∅ + f{1} + f{2} + f{1,2}, which
we approximate by the sum

f# =
∑

ω∈I{1,2}⊂Q{1,2}

a#ω e
i⟨xu,ωu⟩.
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The approximation f# has non-zero ANOVA terms f#∅ , f#{1} and f#{2}, since the weak annihilating condition (3.2)

would require in the case f# = f#{1,2} that

0 =

∫
R
f#{1,2}(x1, x2)µ{1,2}(x1, x2) dx1 =

∑
ω∈I{1,2}

a#ω

∫
R
ei(x1ω1+x2ω2)µ(x1, x2) dx1

=
∑

ω∈I{1,2}

a#ω e
ix2ω2

∫
R
eix1ω1µ(x1, x2) dx1,

which can not be true for arbitrary density µ, and x2 and is also not demanded in the minimization of the RFF
algorithms. This also applies to larger dimension d and other index-sets u, that the ANOVA-terms f#v are non-zero
for v ⊆ u, if we draw random Fourier features from the set Qu. Thus, it is beneficial to use an anti-downward closed
subset U . Numerical tests also indicate that the RFF algorithms yield better results in this case.

6 Theoretical analysis

In this section, we improve the analysis for the generalization error for the approximation by sparse random Fourier
features. Following [7, 39, 32], we go through the finite-sum approximation

f⋆(x) =
∑
u∈U

f⋆u(xu) =
∑
u∈U

∑
ω∈Iu

a⋆ω ei⟨ωu,xu⟩, a⋆ω =
T̂fu(ωu)

nu (2π)dρu(ωu)
. (6.1)

This is motivated by the Monte Carlo approximation of the integral

f(x) =
1

(2π)d

∫
Rd

T̂f (ω)ei⟨ω,x⟩dω =
∑
u∈U

1

(2π)d

∫
Rd

T̂fu(ωu)e
i⟨ωu,xu⟩δωuc dω.

Note that f⋆ is not known in practice, because T̂f is not known. Furthermore, Eω [f⋆u(xu)] = fu(xu) for fixed x,
which means that Eω⟨f⋆u, f⋆v⟩X = ⟨fu, fv⟩X .
The function f⋆ allows the following error splitting,∥∥f − f#∥∥

L2(Rd,µ)
≤ ∥f − TUf∥L2(Rd,µ) + ∥TUf − f

⋆∥L2(Rd,µ) +
∥∥f⋆ − f#∥∥

L2(Rd,µ)

The first error is bounded in Theorem 2.7. Furthermore, it is known that in many real world problems the underlying
function is of low effective, see [3, 5, 13].

Our procedure is as follows:

• In Lemma 6.1 we generalize the error ∥TUf − f⋆∥L2(Rd,µ) to the ANOVA setting by using ANOVA-sparse
random feature instead of only q-sparse random Fourier features.

• We want to perform sensitivity analysis to calculate an index-set U , which is adapted to the function f .
In (5.3) we show that we have a good approximation to the variances, if the approximation error is small, so
our procedure finds the important terms.

• Once we have fixed a good ANOVA index-set U , we use SHRIMP or HARFE, so the approximation bounds
from there are applicable for the error

∥∥f⋆ − f#∥∥
L2(Rd,µ)

. The used norm F(ρ) from (4.2) can be replaced
by our norm (6.2).

Let us define the F(ρ)-norm by

|||f |||2F(ρ) =
∑
u∈U

N

nu (2π)d

(
sup

ω∈Qu

|T̂fu(ωu)|
ρu(ωu)

)2

, (6.2)

where Qu is defined in (3.4). For the approximant f⋆ we have the following.
Lemma 6.1. Fix δ, ϵ > 0. Consider the random feature approximation f⋆ from (6.1). If the total number of features
N =

∑
u∈U nu satisfies the bound

N ≥ 1

ϵ2

(
1 +

√
2 log(1/δ)

)2
,

then with probability at least 1− δ with respect to the draw of weights ωj the following holds

∥TUf − f⋆∥L2(Rd,µ) ≤ ϵ|||f |||F(ρ).
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Proof. The proof follows similar arguments like [7, Lemma 1], but applied to our setting of ANOVA truncated random
Fourier features. The coefficients a⋆ω , defined in (6.1) are bounded by

|a⋆ω| ≤
1

nu (2π)d
sup

ω∈Qu

T̂fu(ωu)

ρu(ωu)
,

and for fixed x, Eω [f⋆u(xu)] = fu(xu). Define the random variable

v(ω1, . . . ,ωN ) = ∥f − f⋆∥L2(Rd,µ) =

(∫
Rd

|Eω(f
⋆(x))− f⋆(x)|2µ(x)dx

)1/2

.

To apply McDiarmid’s inequality from Theorem A.2, we show that v is stable to perturbation. In particular, let f⋆

be the random feature approximation using random weights (ω1, . . . ,ωk, . . . ,ωN ) and let f̃⋆ be the random feature
approximation using random weights (ω1, . . . , ω̃k, . . . ,ωN ) with suppωk = u, then

|v(ω1, . . . ,ωk, . . . ,ωN )− v(ω1, . . . , ω̃k, . . . ,ωN )| ≤
∥∥∥f⋆ − f̃⋆∥∥∥

L2(Rd,µ)

=
∥∥∥a⋆ωk

ei⟨(ωk)u,xv⟩ − ã⋆ωk
ei⟨(ω̃k)u,xu⟩

∥∥∥
L2(Rd,µ)

≤ 2

nu

(
sup

ω∈Qu

T̂fu(ωu)

ρu(ωu)

)
=: ∆k.

Summing over the ∆k yields,

N∑
k=1

∆2
k ≤

∑
u∈U

4

n2u

(
sup

ω∈Qu

T̂fu(ωu)

ρu(ωu)

)2

≤
4|||f |||2F(ρ)

N
.

To estimate the expectation of v, we bound the expectation of the second moment. By noting that the variance of an
average of i.i.d. random variables is the average of the variances of each variable and by using the relation between
the variance and the un-centered second moment, we have that

Eω(v
2) = Eω ∥Eω(f

⋆)− f⋆∥L2(Rd,µ)

= Eω

∥∥∥∥∥∑
u∈U

∑
ω∈Iu

a⋆ωe
i⟨ωv,xv⟩

∥∥∥∥∥
2

L2(Rd,µ)

−

∥∥∥∥∥Eω

(∑
u∈U

a⋆ωe
i⟨ωv,xv⟩

)∥∥∥∥∥
2

L2(Rd,µ)

≤
∑
u∈U

1

nu

(
sup

ω∈Qu

T̂fu(ωu)

ρu(ωu)

)2

≤
|||f |||2F(ρ)

N
.

By Jensen’s inequality, the expectation of v is bounded by

Eω(v) ≤
(
Eω(v

2)
)1/2 ≤ |||f |||F(ρ)√

N
.

Applying McDiarmids inequality from Theorem A.2, yields

P

(
v ≥
|||f |||F(ρ)√

N

)
≤ exp

(
− 2t2∑

k ∆
2
k

)
= exp

(
− 2t2N

4|||f |||2F(ρ)

)
.

Setting t and N to

t = |||f |||F(ρ)

√
2

N
log(1/δ)

N ≥ 1

ϵ2

(
1 +

√
2 log(1/δ)

)2
enforces that v ≤ ϵ|||f |||F(ρ) with probability at least 1− δ. This completes the proof.

21



ANOVA-Boosting for random Fourier Features A PREPRINT

7 Numerical results

We illustrate in this section our sensitivity analysis on test examples. First, we summarize in Section 7.1 two random
Fourier feature algorithms from the literature, which we then use for the numerical experiments. We suggest to use
one of our algorithms to find a good index-set U and then to adapt a random Fourier feature algorithm to ANOVA
sparse random Fourier features.

We present numerical results of Algorithm 1, where we use independent input variables. Further, we illustrate in
Section 7.3 the approximation procedure of Algorithm 2 through several numerical applications.

7.1 Algorithms for RFF

In the literature there are several algorithms for approximating high-dimensional sparse additive functions. Here we
will summarize two of them. Since we assume limited data availability, we wish to have a sparse representation of the
function f by learning the coefficient vector a with a sparsity constraint.

• In [39] the non-linear SHRIMP algorithm was proposed. There the authors propose to use q-sparse frequen-
cies, which means that | suppω| = q for all random feature weights, where the non-zero components are
sampled from the Gaussian distribution N (0, 1√

q ). The algorithm begins with a strong over-parametrization
N ≫M . The first solution vector a is calculated by

a = A∗(AA∗ + λI)−1f .

Then, using iterative magnitude pruning (IMP) and selecting the best model via a validation set, the algorithm
output is the solution vector a#.
Iterative Magnitude Pruning is used for compressing over-parametrized neural networks. The IMP procedure
prunes features on their magnitude and then retrains the pruned sub-network in each pruning iteration. In
every iteration the pruning rate is p < 1. After calculating the MSE error of a validation set in every iteration
one can choose the final model by choosing the smallest validation error.
We want to generalize this algorithm to ANOVA-sparse random Fourier features as defined in Definition 4.3.
In fact this is a generalization of choosing a tensor product density or a q-sparse density to a density ρ, which
can have an arbitrary ANOVA decomposition.

• In [32] the authors solve the sparse random feature regression problem by a greedy algorithm named hard-
ridge random feature expansion (HARFE), which uses a hard thresholding pursuit (HTP) like algorithm to
solve the random feature ridge regression problem. Specifically, they learn the vector a from the following
minimization problem

min
a
∥Aa− f∥22 + λ ∥a∥22 sucht that a is s-sparse.

The idea is to solve for the coefficients using a much smaller number of model terms. The subset S given by
the indices of the s largest entries of one gradient descent step applied on the vector a is a good candidate
for the support set of a. The HTP algorithm iterates between these two steps and leads to a stable and robust
reconstruction of sparse vectors depending on the restricted isometry property (RIP) constant of the matrix
A, which characterizes matrices which are nearly orthonormal, at least when operating on sparse vectors.

As the numerical test for the RFF suggest, choosing the sparsity q of the ANOVA terms equal to effective dimension
of the function f , gives the lowest approximation errors. We suggest to first calculate a good ANOVA index-set U for
the function f with Algorithm 1 or 2, use this to draw ANOVA-sparse random Fourier features adapted to the function
f and apply afterwards an algorithm for sparse random features, for example SHRIMP or HARFE.
The best chances of improving the previous algorithms have functions with ANOVA terms of different orders: In this
case drawing ANOVA random features adapted to the function f will decrease the approximation error significantly.

7.2 Numerical results for independent input variables

To test the performance of the ANOVA boosting for independent input variables, we test Algorithm 1 on synthetic
functions:

fT1(x) = x24 + x2x3 + x1x2 + x4 (7.1)

fT2(x) = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1) Ishigami function (7.2)

fT3(x) =
(
10 sin(π x1x2) + 20 (x3 − 1

2 )
2 + 10x4 + 5x5

)
Friedmann function (7.3)
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We randomly draw M points from N (0, Id) (functions fT1, fT2) or uniformly on [0, 1]d (function fT3) and use
N = 5M random Fourier features in the initialization step. We additionally draw M test samples from the same
distribution to validate the approximation error using the MSE,

MSE =
1

|Xtest|
∑

x∈Xtest

|f(x)− f#(x)|2.

We compare the performance of the SHRIMP/HARFE algorithm and the ANOVA boosted SHRIMP/ HARFE and
denote the resulting algorithms as ANOVA-S and ANOVA-H, respectively. The random Fourier features were dis-
tributed i.i.d. according to Gaussian distributionN (0, 1qId) or according to Cauchy distribution ∼

∏
i∈[d](1 +w2

i )
−1

with variance σ = 1
q . In every case we did the approximation 10 times and show the mean. In every case we have

chosen the regularization parameter λ = 10−6 and the cut-off parameter ϵ = 0.01. In Table 7.1 we summarize the
results. Note that for the HARFE algorithm we used the exponential function e−i⟨ω,x⟩ in contrast to the authors of the
numerical tests in [32], who used the cosine function. Possibly further research could study why the numerical results
are better with the cosine functions, despite the theoretical results are mostly stated for exponential functions.

For summarizing the results, our procedure detects the important ANOVA terms, if enough samples are available.
The random feature algorithms benefit from the first ANOVA boosting in Algorithm 1, where we could improve the
accuracy by factor up to 102. But in any case the approximation error is smaller for the ANOVA boosted algorithms
or at least comparable. Furthermore, our procedure improves previous algorithms by being interpretable by showing
clearly which ANOVA terms are zero and which input variables are necessary for the learned final model.

function d q M ρ SHRIMP ANOVA-S HARFE ANOVA-H

fT1 5 2 300 ρN 1.8324 · 10−6 1.4060 · 10−6 0.3615 0.3005
ρC 2.0259 · 10−5 1.4160 · 10−6 0.5826 0.9081

10 3 500 ρN 0.0005 1.4581 · 10−6 2.3772 0.2151
ρC 0.0152 1.7514 · 10−6 3.4952 0.8934

fT2 5 2 500 ρN 0.0082 2.6587 · 10−5 0.1378 0.6071
ρC 0.0025 0.0028 0.5712 0.3841

10 2 1000 ρN 0.0055 2.6213 · 10−5 0.6650 0.6910
ρC 0.1213 0.0063 1.1395 0.8896

fT3 5 3 500 ρN 0.0032 0.0027 5.3181 0.4766
ρC 0.0001 0.0002 3.6378 0.9084

10 3 200 ρN 0.3808 0.0098 5.8178 2.0540
ρC 0.5433 0.0133 3.9776 2.6890

Table 7.1: Approximation results: MSE on test data for different functions. We compare the performance of the
SHRIMP and HARFE algorithm with the ANOVA boosted algorithms using Algorithm 1. The random Fourier features
were distributed i.i.d. according to ρN = N (0, 1qId) or according to ρC ∼

∏
i∈[d](1 + w2

i )
−1 with variance σ = 1

q .
In every case we did the approximation 10 times and show the mean.

7.3 Numerical results for dependent input variables

We illustrate that even for dependent input variables, it is possible to find non-zero ANOVA terms of the unknown
function f . In this example, the ANOVA boosting method from Algorithm 2 is tested on a slightly modified Friedmann
function, which is used as benchmark example for certain approximation techniques,

f(x1, . . . , x9) = 10 sin(0.1π x1x2) + 20 (x3 − 1
2 )

2 + 10x4 + 5x5. (7.4)

In contrast to the literature we do not use uniform samples on [0, 1]d, but we use (partly) dependent Gaussian samples.
Due to this sampling we changed the original function slightly to have comparable variances of the non-zero ANOVA
terms. Based on the example in [29], the samples x ∈ X are Gaussian random vectors with mean Ex = 0 and with
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the covariance matrix being one of the following,

Σ1 = I9, uncorrelated

Σ2 = 4
5I9 +

1
519×9, equally correlated

Σ3 = I3 ⊗

 1 − 1
5

2
5

− 1
5 1 − 4

5
2
5 − 4

5 1

 , mixed correlated

where M = 500. Independent of the drawn samples x ∈ X , the function (7.4) has non-zero ANOVA terms only for
the index-set

U = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}}. (7.5)
Furthermore, for independent input variables, Σ = Σ1 the Sobolev indices can be easily calculated analytically, which
gives

S{3},var ≈ 0.2788 S{4},var ≈ 0.3718

S{5},var ≈ 0.0929 S{1,2},var ≈ 0.2564.

We use Algorithm 2 to calculate the indices SMC
u,var, where we draw in total N = 5000 ANOVA-sparse random Fourier

features with q = 2 and variance 1
2 , and choose the regularization parameter λ = 1. The results are plotted in

Figure 7.1. Note that the Sobolev indices SMC
u,var can be bigger than one, since for dependent input variables the

variances of the ANOVA terms σ2(fu) do not sum up to the variance of the function σ2(f). In Figure 7.1 we
normalized the indices SMC

u,var by the sum ∑
u∈{u||u|≤2}

SMC
u,var,

which has in total
(
9
1

)
+
(
9
2

)
= 45 summands. It can be clearly seen, that in every case only the terms with non-zero

variance in the index-set U from (7.5) are significant. In contrast to the case Σ = Σ1, for dependent variables (Σ2

and Σ3) the terms f1 and f2 are non-zero, which Algorithm 2 finds. Using only 2-sparse random Fourier features and
the HARFE algorithm as proposed in [32], leads to results shown in their Fig.4, which clearly blur the importance of
the variables x1 to x5 in comparison to the other non-necessary variables, see also Example 4.4. Furthermore, they
only study the simpler case of independent input variables.

0.272

0.385

0.084

0.231

Σ = Σ1

0.271

0.343

0.099

0.243

Σ = Σ2

0.369

0.495

0.127

0.270

Σ = Σ3

u = {1}
u = {2}
u = {3}
u = {4}
u = {5}
u = {1, 2}

Figure 7.1: The indices SMC
u,var for Gaussian input samples with different covariance Σ. The pie charts are normalized

to the sum of all indices SMC
u,var for |u| ≤ 2, but the numbers represent the actual indices.

To conclude our numerical section, we want to compare approximation results of random feature algorithms with
and without ANOVA boosting from Algorithm 2. We study the same test functions (7.1) to (7.3) as for the case of
independent random variables. To define the dependence among random variables, it is usual to use copula functions,
[11, 23]. Denote the cumulative distribution function of the samples by

RX (x) =

∫ x

−∞
µ(t) dt,

and R1, . . . , Rd are the marginal cumulative distribution functions of x1, . . . , xd, i.e.,

Ri(xi) =

∫ xi

−∞
µi(t) dt.
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Sklar’s theorem [35] is the building block of the theory of copulas. It states, that for continuous functions R1, . . . , Rd

there exists a d-dimensional Copula C, such that for all x ∈ Rd,

RX (x) = C(R1(x1), · · · , Rd(xd)).

The copula C contains all information on the dependence structure between components of (x1, . . . , xd), whereas
the cumulative distribution functions Ri contain all information on the marginal distribution of xi. Especially
Archimedean copulas are an important class of multivariate dependence models, since it is very easy to generate
random numbers from them. Every Archimedean copula has the simple algebraic form

C(y1, . . . , yd) = ψ
(
ψ−1(y1) + . . . , ψ−1(yd)

)
,

where ψ is the generator function of the copula. We test our algorithm for the following well-known copulas with
parameter θ:

ψ(t) =
1

θ

(
t−θ − 1

)
θ > 0 Clayton copula,

ψ(t) = (− ln t)
θ

θ ≥ 1 Gumbel copula,

ψ(t) = − ln

(
exp−θt− 1

exp−θ − 1

)
θ > 0 Frank copula.

We use these copulas on the marginal distributionsN (0, 1) (fT1), uniform on [−π, π] (fT2) or uniform on [0, 1] (fT3).

We apply Algorithm 2 for different settings of d,M, q with fixed parameter N = 5M and Gaussian random Fourier
features drawn from N (0, 1qId). The used input parameters for our algorithm are summarized in Table 7.2 for the
different settings. For a better comparison we use the same regularization parameter λ = 10−6 for the SHRIMP steps
in both cases. The resulting MSE on test data are summarized in Table 7.2, we did the procedure 10 times and show
the mean. In any case, the ANOVA boost leads to a clear improvement of the approximation results.

function d q M C θ λ ϵ SHRIMP ANOVA-S

fT2 10 3 500 1 3 100 0.01 4.478 55 · 10−5 1.046 77 · 10−6

2 2 100 0.01 8.550 61 · 10−5 1.156 39 · 10−6

3 4 100 0.01 0.000 28 7.444 58 · 10−7

20 2 500 1 2 100 0.01 0.005 04 1.804 38 · 10−6

2 1 100 0.01 0.006 34 1.152 39 · 10−6

3 4 100 0.01 0.004 00 8.276 97 · 10−7

fT2 5 2 500 1 2 200 0.05 0.022 87 0.000 34
2 2 100 0.05 0.002 82 0.000 50
3 5 200 0.05 0.017 32 0.003 41

10 2 500 1 2 200 0.05 0.312 71 0.000 75
2 2 100 0.05 0.404 42 0.000 75
3 5 200 0.05 0.479 98 0.005 91

fT3 10 3 200 1 5 100 0.01 0.134 49 0.009 52
2 2 100 0.01 0.415 47 0.015 73
3 4 100 0.01 0.213 62 0.034 27

20 2 500 1 3 100 0.01 0.028 44 0.016 03
2 3 100 0.01 0.026 51 0.004 94
3 3 100 0.01 0.028 70 0.000 71

Table 7.2: Approximation results: MSE on test data for different settings. The column C belongs to the copula: 1, 2, 3
corresponds to Clayton, Gumbel and Frank copula, respectively. We compare the performance of the SHRIMP and
the ANOVA boosted SHRIMP using Algorithm 2 for dependent input variables. The random Fourier features were
distributed according to ρN = N (0, 1qId). In every case we did the approximation 10 times and show the mean.

During the numerical experiments we found that the more the input variables are related, the bigger should be the
regularization parameter λ in the minimization problem of Algorithm 2. Notice that, depending on the type of depen-
dence, we do not obtain the same variances for the ANOVA terms, but the non-zero terms are in any case a subset
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of

UT1 = {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}}, (7.6)
UT2 = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}, (7.7)
UT3 = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}}, (7.8)

for the three functions respectively. The variances of the terms f{3} and f{5} are relatively small for function fT3. For
that reason, we set ϵ = 0.01 in this case.

The numerical results show that even for a small amount of samples in high dimensions our procedure is able to
find the correct non-zero terms, which results in much smaller approximation error, compared to the plain SHRIMP
algorithm [39] with fixed effective dimension q.

Conclusion and outlook

We propose a new method, ANOVA boosting, which exploits sparse structure in the ANOVA terms of a function
in a learning problem, which often occurs in many domains of interest. This method is a possible extension of
random Fourier feature algorithms which finds the ANOVA terms with variance above some threshold before the
actual approximation. Our algorithms are able to handle independent as well as dependent input variables.

Maybe it would be also possible to incorporate the ANOVA boosting in every step of the iterative algorithm for sparse
random Fourier features. Another possible future direction is the analysis of the impact of noise and the analysis of a
good choice of the regularization parameter λ in the boosting step as well as in the random feature algorithm.
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A Appendix

Proofs of Section 2

First, we need an auxiliary result.

Lemma A.1. Let g ∈ L2(Rd) and K be a symmetric kernel function. Then∫
Rd

∫
Rd

g(ω)g(v)K(ω,v) dω dv ≤
∫
Rd

|g(ω)|2k(ω) dω,

where k(ω) =
∫
Rd |K(ω,v)|dv.

Proof. According to [36, Chapter 1], the generalization of the Cauchy-Schwarz inequality for double integrals yields∫
Rd

∫
Rd

g(ω)g(v)K(ω,v) dω dv ≤
∫
Rd

∫
Rd

∣∣∣g(ω)g(v)K(ω,v)
∣∣∣ dω dv

≤
(∫

Rd

∫
Rd

|g(ω)|2 |K(ω,v)| dω dv

)1/2(∫
Rd

∫
Rd

|g(v)|2 |K(ω,v)| dω dv

)1/2

=

(∫
Rd

|g(ω)|2
∫
Rd

|K(ω,v)| dv dω

)1/2(∫
Rd

|g(v)|2
∫
Rd

|K(ω,v)| dω dv

)1/2

=

∫
Rd

|g(ω)|2k(ω) dω.

This finishes the proof.

Proof of Lemma 2.5

Proof. Lemma 2.2 describes the ANOVA terms of the function f . In order to calculate the variance of the ANOVA
terms we have

σ2(fu) =

∫
R|u|

∣∣∣∣ 1

(2π)d

∫
Rd

f̂(ω)E(x,ω, µ,u) dω

∣∣∣∣2 µu(xu) dx

=
1

(2π)2d

∫
R|u|

∫
Rd

∫
Rd

f̂(ω)f̂(v)E(x,ω, µ,u)E(x,v, µ,u) dω dvµu(xu) dx

=
1

(2π)2d

∫
Rd

∫
Rd

∫
R|u|

f̂(ω)f̂(−v)E(x,ω, µ,u)E(x,−v, µ,u)µu(xu) dxu dω dv

=
1

(2π)2d

∫
Rd

∫
Rd

f̂(ω)f̂(−v)
∏
i∈u

(µ̂i(−ωi + vi)− µ̂i(−ωi)µ̂i(vi))
∏
i∈uc

µ̂i(−ωi)µ̂i(vi) dω dv

To apply Lemma A.1 we choose K(ω,v) =
∏

i∈u (µ̂i(−ωi + vi)− µ̂i(−ωi)µ̂i(vi))
∏

i∈uc µ̂i(−ωi)µ̂i(vi) with

k(ω) =

∫
Rd

∣∣∣∣∣∏
i∈u

(µ̂i(−ωi + vi)− µ̂i(−ωi)µ̂i(vi))
∏
i∈uc

µ̂i(−ωi)µ̂i(vi)

∣∣∣∣∣ dv
=
∏
i∈[d]

∥µ̂i∥L1(R)

∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)|

= ∥µ̂∥L1(Rd) |E(0,ω, µ,u)|.
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Proof of Theorem 2.7

Proof. For this proof we introduce the notation

A(ω, d, q) :=

∏
i∈[d]

(1 + |ωi|2)−s
∑
|u|>q

|E(0,ω, µ,u)|

 . (A.1)

First, note that since every measure µi is symmetric, ∥µ̂i∥L∞(R) ≤ ∥µi∥L1(R) = 1 and −1 ≤ µ̂i(−ωi) ≤ 1. We start
with applying Lemma 2.5.

∥f − Tqf∥2L2(Rd,µ) =
∑
|u|>q

σ2(fu) ≤
∥µ̂∥L1(Rd)

(2π)2d

∑
|u|≥q

∫
Rd

|f̂(ω)|2
∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)| dω

=
∥µ̂∥L1(Rd)

(2π)2d

∫
Rd

|f̂(ω)|2
∏
i∈[d]

(1 + |ωi|2)s

(1 + |ωi|2)s
∑
|u|>q

∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)|dω

=
∥µ̂∥L1(Rd)

(2π)2d
max
ω∈Rd

∏
i∈[d]

(1 + |ωi|2)−s
∑
|u|>q

∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)|

∫
Rd

|f̂(ω)|2
∏
i∈[d]

(1 + |ωi|2)s dω

=
∥µ̂∥L1(Rd)

(2π)2d
∥f∥2Hs

mix(Rd) max
ω∈Rd

∏
i∈[d]

(1 + |ωi|2)−s
∑
|u|>q

∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)|


=
∥µ̂∥L1(Rd)

(2π)2d
∥f∥2Hs

mix(Rd) max
ω∈Rd

A(ω, d, q). (A.2)

Let us have a closer look at the involved term A(ω, d, q). Let v be the support of the ω, which attains the maximum.
Since µ̂i(−ωi) = 0 for every i ∈ vc, which means that |vc| > q and |v| < d− q, we have

max
ω∈Rd

A(ω, d, q) =
∏
i∈[d]

(1 + |ωi|2)−s
∑

|u|>q,vc⊆u

∏
i∈u

|1− µ̂i(−ωi)|
∏
i∈uc

|µ̂i(−ωi)|

≤
∑

u′⊇vc

c|v
c|

µ,s

 ∏
i∈u′\vc

|1− µ̂i(−ωi)|
(1 + |ωi|2)s

∏
i∈u′c

|µ̂i(−ωi)|
(1 + |ωi|2)s


= c|v

c|
µ,s

∑
u′⊆v

(∏
i∈u′

|1− µ̂i(−ωi)|
(1 + |ωi|2)s

∏
i∈u′c

|µ̂i(−ωi)|
(1 + |ωi|2)s

)

= c|v
c|

µ,s

∏
i∈v

|1− µ̂i(−ωi)|+ |µ̂i(−ωi)|
(1 + |ωi|2)s

≤ cq+1
µ,s .

The last inequality follows by either demanding a symmetric measure µ with positive Fourier transform or the con-
dition (2.10). The equality (2.11) follows by the fact that the maximum of g(ωi) := (1 + |ωi|2)−s (1− µ̂i(−ωi)) is
attained where g′(ωi) = 0, i.e.

0
!
=

−2ωis

(1 + |ωi|2)s+1
(1− µ̂i(ωi))−

µ′
i(ωi)

(1 + |ωi|2)s
,

µ̂i(ωi) = 1 + µ̂′
i(ωi)

1 + ω2
i

2ωis
.

Inserting this into g(ωi) yields

cµ,s = sup
ωi∈R

(1 + |ωi|2)−s

(
−µ̂′

i(ωi)
1 + ω2

i

2ωis

)
= sup

ωi∈R

1

2ωis (1 + |ωi|2)s−1
.
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A.1 McDiarmids inequality

Theorem A.2 (Mc Diarmids inequality). Let a function v : X1×X2× · · ·×XN → R satisfy the bounded differences
property, i.e. for all k ∈ [N ], and all x1 ∈ X, . . . , xN ∈ XN ,

sup
x′
k∈Xk

|v(x1, . . . , xk−1, xk, xk+1, . . . , xN )− v(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )| ≤ ∆k.

Consider independent random variables X1, X2, . . . , XN where Xk ∈ Xk for all k. Then, for any ε > 0

P (v(X1, X2, . . . , XN )− E[v(X1, X2, . . . , XN )] > ε) ≤ exp

(
− 2ε2∑N

k=1 ∆
2
k

)
.
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