Main Page | Modules | Data Structures | Directories | File List | Data Fields | Globals | Related Pages

NFCT

direct and fast computation of the discrete cosine transform at nonequispaced knots in time/spatial domain More...

Data Structures

struct  nfct_plan_
 Structure for a transform plan. More...

Typedefs

typedef nfct_plan_ nfct_plan
 Structure for a transform plan.

Functions

void nfct_init_1d (nfct_plan *ths_plan, int N0, int M_total)
 Creates a 1-dimensional transform plan.
void nfct_init_2d (nfct_plan *ths_plan, int N0, int N1, int M_total)
 Creates a 3-dimensional transform plan.
void nfct_init_3d (nfct_plan *ths_plan, int N0, int N1, int N2, int M_total)
 Creates a 3-dimensional transform plan.
void nfct_init (nfct_plan *ths_plan, int d, int *N, int M_total)
 Creates a d-dimensional transform plan.
void nfct_init_guru (nfct_plan *ths_plan, int d, int *N, int M_total, int *n, int m, unsigned nfct_flags, unsigned fftw_flags)
 Creates a d-dimensional transform plan.
void nfct_precompute_psi (nfct_plan *ths_plan)
 precomputes the values psi if the PRE_PSI is set the application program has to call this routine after setting the nodes this_plan->x
void nfct_trafo (nfct_plan *ths_plan)
 executes a NFCT (approximate,fast), computes for $j=0,...,M\_total-1$ $f_j^C(x_j) = sum_{k \in I_0^{N,d}} \hat{f}_k^C * cos(2 \pi k x_j)$
void ndct_trafo (nfct_plan *ths_plan)
 executes a NDCT (exact,slow), computes for $j=0,...,M\_total-1$ $f_j^C(x_j) = sum_{k \in I_0^{N,d}} \hat{f}_k^C * cos(2 \pi k x_j)$
void nfct_adjoint (nfct_plan *ths_plan)
 executes a transposed NFCT (approximate,fast), computes for $k \in I_0^{N,d}$ $h^C(k) = sum_{j \in I_0^{(M\_total,1)}} f_j^C * cos(2 \pi k x_j)$
void ndct_adjoint (nfct_plan *ths_plan)
 executes a direct transposed NDCT (exact,slow), computes for $k \in I_0^{N,d}$ $h^C(k) = sum_{j \in I_0^{(M\_total,1)}} f_j^C * cos(2 \pi k x_j)$
void nfct_finalize (nfct_plan *ths_plan)
 Destroys a plan.
double nfct_phi_hut (nfct_plan *ths_plan, int k, int d)
 do some adjustments (N,n) then compute PHI_HUT
double nfct_phi (nfct_plan *ths_plan, double x, int d)
 do some adjustments (N,n) then compute PHI
int nfct_fftw_2N (int n)
 returns 2(n-1), fftw related issue
int nfct_fftw_2N_rev (int n)
 returns 0.5n+1, fftw related issue

Detailed Description

direct and fast computation of the discrete cosine transform at nonequispaced knots in time/spatial domain


Function Documentation

void ndct_adjoint nfct_plan ths_plan  ) 
 

executes a direct transposed NDCT (exact,slow), computes for $k \in I_0^{N,d}$ $h^C(k) = sum_{j \in I_0^{(M\_total,1)}} f_j^C * cos(2 \pi k x_j)$

  • ths_plan The plan for the transform
Author:
Steffen Klatt

void ndct_trafo nfct_plan ths_plan  ) 
 

executes a NDCT (exact,slow), computes for $j=0,...,M\_total-1$ $f_j^C(x_j) = sum_{k \in I_0^{N,d}} \hat{f}_k^C * cos(2 \pi k x_j)$

  • ths_plan The plan for the transform
Author:
Steffen Klatt

void nfct_adjoint nfct_plan ths  ) 
 

executes a transposed NFCT (approximate,fast), computes for $k \in I_0^{N,d}$ $h^C(k) = sum_{j \in I_0^{(M\_total,1)}} f_j^C * cos(2 \pi k x_j)$

use ths->my_fftw_plan

set $ g_l = \sum_{j=0}^{M-1} f_j \psi\left(x_j-\frac{l}{n}\right) \text{ for } l \in I_n,m(x_j) $

compute by d-variate discrete cosine transform $ \hat g_k = \sum_{l \in I_n} g_l {\rm e}^{-2\pi {\rm i} \frac{kl}{n}} \text{ for } k \in I_N$

form $ \hat f_k = \frac{\hat g_k}{c_k\left(\phi\right)} \text{ for } k \in I_N $

int nfct_fftw_2N int  n  ) 
 

returns 2(n-1), fftw related issue

  • n i.e. length of dct-1
Author:
Steffen Klatt

int nfct_fftw_2N_rev int  n  ) 
 

returns 0.5n+1, fftw related issue

  • n i.e. length of dct-1
Author:
Steffen Klatt

void nfct_finalize nfct_plan ths  ) 
 

Destroys a plan.

index over dimensions

void nfct_init nfct_plan ths_plan,
int  d,
int *  N,
int  M_total
 

Creates a d-dimensional transform plan.

  • ths_plan The plan for the transform
  • d the dimension
  • N The bandwidths
  • M_total The number of nodes $x$
Author:
Steffen Klatt

void nfct_init_1d nfct_plan ths_plan,
int  N0,
int  M_total
 

Creates a 1-dimensional transform plan.

  • ths_plan The plan for the transform
  • N0 The bandwidth $N$
  • M_total The number of nodes $x$
Author:
Steffen Klatt

void nfct_init_2d nfct_plan ths_plan,
int  N0,
int  N1,
int  M_total
 

Creates a 3-dimensional transform plan.

  • ths_plan The plan for the transform
  • N0 The bandwidth of dimension 1
  • N1 The bandwidth of dimension 2
  • M_total The number of nodes $x$
Author:
Steffen Klatt

void nfct_init_3d nfct_plan ths_plan,
int  N0,
int  N1,
int  N2,
int  M_total
 

Creates a 3-dimensional transform plan.

  • ths_plan The plan for the transform
  • N0 The bandwidth of dimension 1
  • N1 The bandwidth of dimension 2
  • N2 The bandwidth of dimension 3
  • M_total The number of nodes $x$
Author:
Steffen Klatt

void nfct_init_guru nfct_plan ths,
int  d,
int *  N,
int  M_total,
int *  n,
int  m,
unsigned  nfct_flags,
unsigned  fftw_flags
 

Creates a d-dimensional transform plan.

< index over all dimensions

double nfct_phi nfct_plan ths_plan,
double  x,
int  d
 

do some adjustments (N,n) then compute PHI

  • ths_plan the plan for the transform
  • x node $x$
  • d dimension
Author:
Steffen Klatt

double nfct_phi_hut nfct_plan ths_plan,
int  k,
int  d
 

do some adjustments (N,n) then compute PHI_HUT

  • ths_plan the plan for the transform
  • k index of c_phi
  • d dimension
Author:
Steffen Klatt

void nfct_precompute_psi nfct_plan ths  ) 
 

precomputes the values psi if the PRE_PSI is set the application program has to call this routine after setting the nodes this_plan->x

< index over all dimensions

< index over all nodes

< index 0<=lj<u+o+1

< depends on x_j

void nfct_trafo nfct_plan ths_plan  ) 
 

executes a NFCT (approximate,fast), computes for $j=0,...,M\_total-1$ $f_j^C(x_j) = sum_{k \in I_0^{N,d}} \hat{f}_k^C * cos(2 \pi k x_j)$

  • ths_plan The plan for the transform
Author:
Steffen Klatt


Generated on Wed May 10 20:39:39 2006 for NFFT by  doxygen 1.4.4