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Chapter 1

Overview

1.1 Introduction

SPC-PM Po 3D is a computer program to solve the Poisson equation or the Lamé system
of linear elasticity over a three-dimensional domain on a MIMD parallel computer. It is
being developed in the research group SPC (Scientific Parallel Computing) at the Fakultdit
fur Mathematik of the Technische Universitit Chemnitz-Zwickau under the supervision of
Prof. A. Meyer, and Dr. Th. Apel. Other main contributors are Dr. M. Meyer, F. Milde,
Dr. M. Pester, and M. The$.

The historical roots of the program are at one hand in several parallel programs for
solving problems over twodimensional domains using domain decomposition techniques.
These codes have been developed since about 1988 by A. Meyer, M. Pester, and other
collaborators. On the other hand, Th. Apel developed 1987-89 a sequential program for
the solution of the Poisson equation over three-dimensional domains which was extended
1993-94 together with F. Milde.

For an introduction of the capabilities of the program, its installation and utilization
we refer to the User’s Manual [3]. The aim of this Programmer’s Manual is to provide a
description of the algorithms and their realization. It is written for those who are interested
in a deeper insight into the code, for example for improving and extending.

The documentation is organized as follows: In the next section we describe the boundary
value problems that can be solved and the finite elements that are used. Chapter 2 is
concerned with the data structure. The main part of this documentation consists of the
description of the specific libraries for SPC-PM Po 3D: ibNA.a, libNT.a, and libNQ.a for
hierarchical mesh refinement of tetrahedral and cuboidal (hexahedral) meshes (Chapter 3),
libA.a for assembly of the equation system and for error assessing (Chapter 4), and libS.a
for solving this system with a preconditioned CG algorithm (Chapter 5).

Chapter 6 provides a short description of some general libraries that are used also in
other program systems developed by the research group SPC and which are described in
more detail elsewhere [4, 9, 13]: libKLZ.a, libvbasmod.a, libMbasmod.a and libDDCMcom.a
for basic matrix and vector operations, libCubecom.a for basic communication routines,
libGraf.a for graphical representation, as well as libTools.a with some auxiliary routines.

In this documentation we use slanted style for real existing paths and filenames, emphasis
style for program parameters, sans serif style to characterize buttons and menu items of
programs with a graphical user interface, and typewriter style for the names of variables.
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2 CHAPTER 1. OVERVIEW

1.2 The boundary value problems
Consider the Poisson problem in the notation

—Au = f in QcCIR

u = ug on 08y,
du _ o0
an - g on 29
Ju

— = 0 on 9N\ 9N\ 9N,
on

or the Lamé problem for u = (u™, u(®), u!

—pAu+ A+ p)graddive = f in QCR
u = uéi) on 8(2@, 1 =1,2,3,
1D = ¢ on 8Q(2i), 1 =1,2,3,
1D = 0 on 900\ a0\ a0l i=1,23,

where ¢ = (11,13 1G)T = S[u] - n is the normal stress, the stress tensor Su] = (s4)7,_; is

defined with z = (:]1;(1)7 ;](;(2)7 ;1;(3))T by

ould gyl

Sij = [m + m] + 6;AV - u,
n is the outward normal, and &;; is the Kronecker delta. The domain @ C IR® must be
bounded. In the present version curved boundaries can not be treated by the refinement
procedure, thus € is restricted to be a polyhedron.

The boundary value problem is solved by a standard finite element method, using either
tetrahedral or brick elements with linear or quadratic shape functions of the serendipity
class, see Figure 1.1.

4 4 8 7 8 I
\ \ 20 -
j j 18
10 5} ‘ f 5% 16§17 f 15
3 b 3 3 | 14
e | - el3 o Y
6 4 3 4 1173
\ 919 10
1 2 1 5 2 1 9 1 9 9

Figure 1.1: Finite elements implemented in SPC-PM Po 3D.
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Chapter 2

Data structure

2.1 General remarks

The program is working in the SPMD mode, that means single program multiple data.
Consequently, all data described are local data, possibly with different length on every pro-
cessor. The connection between these local data is coded in the arrays IGLOB, KETTE1D, and
KETTE2D, see Subsections 2.2.5 and 2.2.7; this information is sufficient for the communication
(finite element accumulation).

In FORTRANTT it is impossible to allocate memory during the run of the program
but there are several large arrays in our FEM program which are used only for a certain
time. So it is necessary to have a dynamic memory management. To solve this problem in
FORTRANTT we have a very large workspace vector (as large as possible) in our program
to use parts of it as arrays in the subroutines. There are several pointer variables which
determine the array index on which data start. We have our own memory management and
must take care of calculating these pointers to avoid overlaps.

In our FEM program we have two data structures. First, the mesh is refined with the
full data structure (FDS, see 2.2) because of its greater variability. After the change to
the more typical reduced data structure (RDS, see 2.3) the assembly and solution of the
equation system are performed.

There are a few general variables:

NDF number of degrees of freedom per node,
NEN2D number of nodes per face,
NEN3D number of nodes per volume.

In 2.2 and 2.3 we describe the arrays in the following general form:
1. general description of the array,

2. name and dimension of the array,

3. structure of a data block of the array,

4. additional information.

For some arrays there are pointers within the data blocks which determine the positions
of data. Most of the dimensions of the arrays are also variables/parameters which are located
in COMMON blocks in the source file net3ddat.inc. It is better to use these variables instead
of hard numbers because of possible evolution of the data structure.

20.3.1996 10:39 Release 1 of Programmer’s Manual, page 3



4 CHAPTER 2. DATA STRUCTURE

2.2 Full data structure (FDS)

In the FDS volumes are represented by a number of faces, faces by a number of edges and
edges by a number of nodes.

All arrays (except the coordinate array and the kette data) have the same coarse structure
representing the hierarchical character of the refinement. The data of all levels of refinement
including the coarse mesh are stored in the following way:

‘ coarse mesh data ‘ level 1 ‘ level 2 ‘ ‘ level N ‘

For each array there is a variable which points to the first entry of level N. Its name is
in general of the form F+name of the array (for instance: FVOL is the first entry of level N
in VOL).

2.2.1 Volumes
1. Each volume is described by its [4]6] faces (4 for a tetrahedron / 6 for a brick).

2. VOL(DIMVOL,x*) : DIMVOL=[4|6]

3. [4|6] faces

‘ face_1 ‘ face 2 ‘ ‘

Face_ is a face number.

2.2.2 Faces
1. Each face is described by its [3]4] edges (3 for a triangle / 4 for a quadrilateral).

2. FACE(DIMFACE,*) : DIMFACE = [3[4] + 2

3. [3]4] edges

‘ edge_1 ‘ edge 2 ‘ ‘ type ‘ number_of _first_son ‘

Edge_: is a edge number
4. Until now there is only one type (1) which means plane face. All sons are numbered
consecutively. Up to now the number of sons is always 4.

The faces of each level are sorted in the following way:

S ‘ coupling faces ‘ other faces ‘ <

level ¢ — 1 level ¢ level 1 + 1

By our definition, all faces of the coarse mesh and their sons are coupling faces, even
if they are not contained in inter-processor boundaries.

It is recommended to use the following pointer variables for this dataset:

FZEIG position of the type in FACE currently [3|4] 4+ 1
FCHIELD position of the number_of first_son currently [3]4] 4 2
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FULL DATA STRUCTURE (FDS) 3

3 Edges
FEach edge is described by its 2 vertices and the middle node (only quadratic case).

KANTE (DIMKANTE, %) : DIMKANTE = 5

| vertex_1 | vertex 2 | middle node | type | number_of first_son |
Vertex_ is a vertex number.

. Until now there are two possible values of type (1 and —1). The type —1 is used for
dummy edges which are necessary to generate the hierarchical list but no face points
to it.

The coupling edges are located at the beginning of each level followed by the other
edges of coupling faces.

e ‘ coupling edges ‘ edges on coupling faces ‘ other edges ‘ e
level ¢ — 1 level ¢ level 7 + 1

By our definition, all edges of the coarse mesh and their sons are coupling edges , even
if they are not contained in inter-processor boundaries.

It is recommended to use the following pointer variables for this dataset:

KZEIG position of the type currently 4
KCHIELD position of the number_ of first_son currently 5

.4 Coordinates of the nodes

. Each node is represented by its three Euclidean coordinates.

COOR(3,*)

I Xi | Y| 7|

. The nodes are placed in COOR in the following way:

‘ cross points ‘ CE;q ‘ CE, ‘ CEs ‘ ‘ CIy ‘ CF, ‘ C F; ‘ ‘ inner nodes ‘
1D - kettes 2D - kettes

Each 1D kette (C'F;) is a block of nodes which belong to (sons of) a (coupling) edge of
the coarse mesh. By analogy, each 2D kette is a block of interior nodes of a (coupling)
face of the coarse mesh.

The structure of these kettes is more complicated. It is shown in all details with an
example in 3.3.2.

.5 Global Crosspoint Names IGLOB

To identify the local crosspoints their global name is stored.
IGLOB(*)

IGLOB(I) = global name of the node I (which is an crosspoint), where I is the local
number.
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CHAPTER 2. DATA STRUCTURE

2.2.6 Dirichlet/Neumann data

1.

The Dirichlet/Neumann data are associated with faces. They have both the same
data structure.

. DIR(DVDIR,*) :DVDIR =1+ NDF* (1l + NDIRREAL)

NEUM(DVNEUM, *) : DVNEUM = 1 + NDF # (1 + NNEUMREAL)

NDF data blocks

‘ number_of_face ‘ type, data (DF_1) ‘ type, data (DF_2) ‘ ‘
DF_k means the k-th degree of freedom.

The data are NDIRREAL/ NNEUMREAL = 4/5 real parameters (RP) describing the bound-
ary condition.

Possible values of the type of the boundary condition data are :

0 none

1 constant f=RP(1)

2 linear function f = RP(1)* X + RP(2)+xY + RP(3)*Z + RP(4)
100 function call f=u(X,Y,7) (from ./Assem/bsp.f)

RP(5) has been planned for the coefficient in boundary conditions of 3¢ kind, but
this is not implemented yet.

2.2.7 Kette data

1.

The purpose of the kette data is the optimization of the communication. Every cou-
pling face/edge of the coarse mesh is referred in the kette data by its global names of
vertices. All interior nodes of these faces/edges have consecutive numbers and form a
so called kette, see 2.2.4. Thus they can be described by a pointer to the first node
and the number of nodes (length) in this block.

There are two different kette data (KETTE1D for edges and KETTE2D for faces) which
have the same data structure. For more information see [4].

. KETTE1D(K1DDIM,*) /KETTE2D (K2DDIM,*) : K1DDIM = K2DDIM = 7

2 or [3|4] vertices

‘ pointer ‘ length ‘ pathID ‘ vertex_1 ‘ vertex_2 ‘ ‘

Vertex_ is a vertex number.

. Note that the vertex numbers here are global (crosspoint) names. For an explanation

of pathID see [4].

It is recommended to use the following pointer variables for this dataset:

PKZEIG position of the pointer currently 1
PKLENG position of the length currently 2
PWEGID position of the pathID currently 3

PKDAT  position of the data (first node) currently 4
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2.3. REDUCED DATA STRUCTURE (RDS) 7

2.2.8 CHAIN

1.

The array CHAIN is very similar to the KETTE2D data. The difference is that it does
not contain pointers to node numbers but to the numbers of subfaces. Note that all
subfaces which form a coupling face have consecutive face numbers.

CHAIN(K2DDIM,*) : K2DDIM =7

[3|4] vertices

‘ pointer ‘ length ‘ pathID ‘ vertex_1 ‘ vertex_2 ‘ ‘

Vertex_ is a vertex number.

Note that the vertex numbers here are global (crosspoint) names.

There are the same pointers PKZEIG, PKLENG, PWEGID, and PKDAT as for the kette data.

2.2.9 REGION

1.

2.

3.

The vector REGION contains an integer for each volume. This integer is read from the
input file and passed on to the son elements during the refinement process. Currently
it is used as a material index.

REGION (k)

[number|

2.3 Reduced data structure (RDS)

The RDS is more typically for finite element applications. The basic entities are the nodes

and all other objects (volumes, boundary faces ...) are represented by numbers of nodes.
The arrays of faces and edges disappear.

2.3.1 Volumes

1.

2.

3.

Fach volume consists of NEN3D nodes.
VOL (NEN3D, %) :

NEN3D nodes

‘ node_1 ‘ node_2 ‘ ‘

2.3.2 Dirichlet data

1.

Dirichlet data are given on faces. A face consists of NEN2D nodes and thus the Dirichlet
data consists of the node numbers and the Dirichlet values of every degree of freedom
at these nodes. The face number (FDS) is an additional information for the error
estimator.

. DIR(DRDIR,*) : DRDIR = 2 + NEN2D * (NDF + 1)
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8 CHAPTER 2. DATA STRUCTURE

3. NEN2D nodes NDF data blocks of length NEN2D

‘number_of_face‘node_l‘node_Z‘ ‘IFG‘Dir.Values (DF_l)‘Dir.Values (DF_Z)‘ ‘

4. In the case of more than one degree of freedom it may happen that not all degrees of
freedom have a Dirichlet condition. The Information about this is coded bitwise in
the entry IFG.

It is recommended to use the following pointer variables for this dataset:

DRNODES position of the nodes
DRIFG position of IFG
DRDAT position of the data

2.3.3 Neumann data

1. The Neumann data are used in a different way then the Dirichlet data, so the only
change from the full to the reduced structure is to add the node numbers which
represent the face. The face number (FDS) is again used for error estimation.

2. NEUM(DRNEUM, %) : DRNEUM = | + NEN2D + NDF * (NNEUMREAL + 1)

3. NEN2D nodes NDF data blocks

‘ number_of face ‘ node_1 ‘ node_2 ‘ ‘type, data (DF_l)‘type, data (DF_Z)‘ ‘
DF_k means the k-th degree of freedom.

4. There are two pointer variables for this dataset:

NRNODES position of the nodes
NRDAT position of the data

2.3.4 Hierarchical List

1. The hierarchical list connects all nodes with its father nodes.
2. LC(4,%)
3. | node | father_1 | father_2 | factor |

4. The factor (0 < factor < 1) describes the relative position of the node at the edge:
COOR(node) = factor * COOR(father_1) 4+ (1 — factor) * COOR(father_2)

The entries in LC are ordered such that the fathers are included before their sons.
Note that the entries in COOR are ordered in another way (index equals number of the
node, for the numbering of the nodes see Section 3.3). Note that father_1 = father_2
= 0 if the node is a crosspoint.

2.3.5 TETF

TETF is the old array of volumes VOL from the FDS (see 2.2.1). It is used only in the error
estimator (Chapter 4).
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2.4, INCLUDE-FILES/COMMON-BLOCKS 9

2.3.6 Node Coordinates/IGL0B/Kette Data/CHAIN/REGION

The data structure is the same as in the FDS, see 2.2.

2.4 INCLUDE-Files/COMMON-Blocks

There is a number of COMMON-Blocks in our program. Most of them are located in
INCLUDE-Files. Moreover, some parameters are determined in these files.

2.4.1 net3ddat.inc

This INCLUDE-File contains a number of variables/parameters which determines dimen-
sions of data, especially these which depend on the type of the mesh. All variables are in
these COMMON-Blocks:

e /NENXD/

NEN2D number of nodes per face (see 2.1)
NEN3D number of nodes per volume (see 2.1)

e /NETDIM/
DIMVOL
DIMFACE
FCHIELD
FZEIG
SUB

e /RB/
NDF
DVDIR
DRDIR
DRNODES
DRIFG
DRDAT
DVNEUM
DRNEUM
NRNODES
NRDAT

dimension of the array of volumes (FDS) (see 2.2.1)
dimension of the array of face (FDS) (see 2.2.2)
pointer to the number of the first subface (see 2.2.2)
pointer to the type of the face (see 2.2.2)

name of the subdirectory with the meshes

number of degrees of freedom (see 2.1)

dimension of the array of Dirichlet data (FDS) (see 2.2.6)

dimension of the array of Dirichlet data (RDS) (see 2.3.2)

position of the nodes (RDS) (see 2.3.2)

position of IFG (RDS) (see 2.3.2)

position of the data (RDS) (see 2.3.2)

dimension of the array of Neumann data (FDS) (see 2.2.6)
dimension of the array of Neumann data (RDS) (see 2.3.3)
position of the nodes (RDS) (see 2.3.3)

position of the data (RDS) (see 2.3.3)

The subroutine SET_RBCOM sets all these Variables. (NDF, NEN2D and NEN3D must be
correct when calling this routine.)

Moreover, there are the following parameters (via FORTRANTT parameter statement):
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2.4.2

DIMKANTE
KZEIG
KCHIELD
K1DDIM
K2DDIM
PKZEIG
PKLENG
PWEGID
PKDAT
NDIRREAL

NNEUMREAL number of Neumann real parameters

CHAPTER 2. DATA STRUCTURE

dimension of the array of edges currently 5
position of the type of the edge

position of the child of the edge

dimension of the array of 1D kettes

dimension of the array of 2D kettes

position of the pointer in the kette data
position of the block length in the kette data
position of the path identifier in the kette data
position of the data in the kette data

number of Dirichlet real parameters

currently 4
currently 5
currently 7
currently 7
currently 1
currently 2
currently 3
currently 4
currently 4
currently 5

com_prob.inc

There is a number of variables with information concerning the mesh.

e /PROBLEM/

Nk
NCrossG
NCrossL
NKettSum
NC

NI
NanzK1D
NanzK2D
NanzK
LinkLevel

number of nodes (local on the processor)
number of crosspoints (global)

number of crosspoints (local)
number of all coupling nodes (local)
NKettSum + NCrossL

number of interior nodes (local)

number of 1D kettes

number of 2D kettes
NanzK1D + NanzK2D

auxiliary variable for communication

The subroutine COM_PROB sets most of these variables.

2.4.3 filename.inc

e /FILENAME/

File
Length
Nlevl
itri
Lunit
Fullname

name of the standard file (without .std)
length of File

not used

not used

not used

name of the standard file including subdirectory with the meshes
and .std

To get the filename and to set these variables the subroutine SETFILE is used.

2.4.4

standard.inc

This INCLUDE-File contains some program control variables which can be changed with

the files control.quad or control.tet without compiling the program anew, see [3, Section

2.3).
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2.4, INCLUDE-FILES/COMMON-BLOCKS 11

e /standard/
vertvar
femakkvar
loesvar
Nint2ass

Nint3ass
Nint2error

Nint3error
Epsilon
Iter

NDiag

Verft

lin_quad

kind of coarse grid partitioning

variant of accumulation of distributed data, see [4]

choice of the preconditioner

number of the quadrature formula used for assembling Neumann
boundary data

number of quadrature formula for 3D elements used in the assembling
as nint2ass, but used in the error estimator for the integration of the
jump of the normal derivatives

as nint3ass, but used for the integration of 3D integrals in the error
calculation

stop criterion for the CG (relative decrease of the norm of the residual)
maximal number of iterations in the CG algorithm

upper estimate for the number of nonzero entries in any row of the
stiffness matrix

mesh refinement parameter for a certain class of examples, see [3,
Subsection 4.1.7]

kind of shape functions

2.4.5 trnet.inc

There are some variables with information concerning the parallel computer, compare [9,

Section 3.1].

o /TrNet/

NCUBE  dimension of the hypercube
ICH number of the processor in the hypercube topology
NODENR number of the node the processor is located on

e /TrRing/
NPROC number of processors
ICHRING number of the processor in ring topology
Lforw number of the link that leads to the successor within the ring

Lback number of the link that leads to the predecessor within the ring
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Chapter 3

Hierarchical Mesh Refinement

3.1 Parameters of NETMAKE

The procedure NETMAKE generates the mesh. It reads the coarse mesh from a file, distributes
it to the processors, performs the refinement with the full data structure and reduces the

data to the reduced data structure.

SUBROUTINE NETMAKE(A,JCOOR,NUMNP,JDIR,NDIR,JNEUM,NNEUM, JVOL,

A

JCOOR
NUMNP
JDIR
NDIR
JNEUM
NNEUM
JVOL
JREGION
NUMEL
JIGLOB
JKETTE1D
JKETTE2D
JCHAIN
JFREI I
LAENGE

IER

VFS

JTETF

JLC

STEUER

=
o

ORORORS) C>~*ES OloRORORCHORCHOROEOROCEGRS)

JREGION,NUMEL,JIGLOB,JKETTE1D, JKETTE2D,
JCHAIN, JFREI,LAENGE, IER,VFS, JTETF, JLC,STEUER)

workspace vector

pointer to array of node coordinates COOR
NUMber of Nodal Points

pointer to the Dirichlet data DIR

number of Dirichlet faces

pointer to the Neumann data NEUM

number of Neumann faces

pointer to array of volumes VOL

pointer to the region data REGION

NUMber of of ELements (volumes)

pointer to array of global crosspoint names IGLOB
pointer to array of 1D kette data KETTE1D
pointer to array of 2D kette data KETTE2D
pointer to array CHAIN

first unused position of A

length of A

error parameter

number of refinement steps

pointer to the array of volumes of the full data structure
pointer to the hierarchical list

array of 10 logical status parameters (used in the output tool, see

3.5)

To optimize the communication the nodes which belong to coupling faces/edges stand

together in the array of node coordinates and the order of these points is the same on every
processor. They form a so called kette. To realize this it is useful to order the edges and

faces too.
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3.2 Coarse mesh input and distribution

The coarse mesh will be read from a standardized file, compare [3, Section 3.2]. These files
are located in the subdirectories ./mesh3 (tetrahedral meshes) or ./mesh4 (brick meshes).
Only processor zero reads the mesh and later it is given to all other processors. There are
two methods to determine the owner of the volumes.

The first method is very simple. Each processor should own the same number of volumes
and they are distributed simply as they are numbered (“linear distribution”). The next step
is to delete all volumes which are not owned by the processor and all other unused data.

The second method is much more complicated and should optimize the later computa-
tion. This method is known as Recursive Spectral Bisection (RSB) and is based on results
of graph theory. It operates on the dual graph to the coarse mesh.

Spectral bisection calculates the eigenvector corresponding to the second-smallest eigen-
value of the dual graph’s Laplacian matrix. To each node in the dual graph naturally
corresponds a component of the eigenvector. To partition the dual graph into two nearly
equal-sized subgraphs 0 and 1, the algorithm computes the median value of the eigenvector
components. Those nodes with eigenvector components smaller than the median value are
assigned to subgraph 0, the remaining nodes to subgraph 1.

The routine runs parallel on all processors where the elements corresponding to subgraph
0 remain at the first half of processors and the others at the second half. The not assigned
data is deleted on each half. This is recursively applied to the mesh according to the
dimension of the hypercube of the processors used, where each half is divided into two new
parts until each part contains only one processor. For a detailed description see [17].

Here, we use a program written by Clemens Brand (Montan-Universitat Leoben, Austria)
with slight modifications by Uwe Reichel.

At last a number of variables and arrays are initialized with its start values. An impor-
tant fact to notice is that all faces/edges of the coarse mesh are assumed to be coupling
faces/edges no matter if they really connect the submeshes of two processors or if they are
only within one submesh.

3.3 Refinement

3.3.1 The procedure

In the refinement step every volume is divided in 8 subvolumes, every face in 4 subfaces and
every edge in two subedges.
There are in general 5 steps in the refinement procedure FEIN.

1. Preparation of the data array COOR for the new nodes. The nodes which belong to
coupling faces/edges of the coarse mesh stand together in COOR in a well defined way.
Namely all nodes on coupling edges (including the edges on coupling faces ) stand
together in that order they are located on the edge. For instance the nodes on a
coupling edge with vertices A and B which was refined three times are located on
these edge (and in COOR) in that way:

AiPn 7Pn—|—1 7Pn—|—2 7Pn—|—3 7Pn—|—4 7Pn—|—5 7Pn—|—6 — B
The middle node P,y is from the first refinement step. The nodes P,y; and P, 45

were generated in the second refinement step, all other P, in the third one. (In the
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quadratic case it looks identically but after the second refinement step.) So it is clear
that nodes must be moved in the array COOR before the refinement.

The kette data were also updated in this step.

2. Refinement of the edges. All subedges which belong to coupling faces/edges stand
together at the beginning of the data of the level. There are X = 2™ subedges of a NR
times refined edge. These X subedges stand together ordered as they are located on
the old father edge. The X (linear case) / 2X (quadratic case) new nodes get their
correct position in COOR as described above. The new subedges are appended to the
list of edges in that order they were generated. Because of the special order of the
father edges the described order principle is conserved.

3. Refinement of the faces. The subfaces of coupling faces stand together. New faces
are appended. In the quadratic case, the middle nodes of the new inner edges are
generated and in the case of brick meshes the middle node of the face too.

4. Refinement of the volumes. For tetrahedral meshes the rule after Bey (see [6]) is used
to avoid the degeneration of the mesh. By analogy to the refinement of the edges,
the middle nodes of the new edges (only quadratic case) and the middle nodes of the
brick are generated. Note that also new faces have to be introduced.

5. Update of the boundary condition data. (The new subfaces with boundary conditions
were added.)

There are some differences in details between the different mesh types (tetrahedral/brick,
linear /quadratic):

For tetrahedral meshes it is easy. The difference between the quadratic and the linear
case is whether the middle nodes of the edges are generated or not. That causes differences
in the preparation and the edge refinement step.

For the brick meshes it is more complicated because of the new middle nodes of the
faces/bricks. In the coarse mesh preparation step the middle nodes of the edges where
generated. So it is an quadratic mesh of serendipity type. The normal refinement is also
quadratic. In the linear case N — 1 quadratic refinement steps were performed followed by
an step to change the quadratic bricks to linear ones. It is the same procedure FEIN (there
is an switch parameter) with the difference that now no new nodes on edges were generated.
There is an third case with 27 node bricks (the middle nodes of the faces and the of brick
are included and the order of the nodes of an volume is slightly different). After the normal
quadratic refinement these additional nodes were generated in the subroutine STROEM.

3.3.2 An example

In general all nodes on coupling faces/edges stand together and form so called kettes. The
nodes of 1D-kettes are ordered as they are located on the edges they belong to. The same
is true for inner edges of 2D-kettes. But the vertices of these edges are not included in
these edge node blocks because they are crosspoints (vertices of coupling edges), nodes on
coupling edges or middle points of subfaces (vertices of edges on coupling faces), compare
Figure 3.4.

To describe the structure of the array of node coordinates with all details the refinement
of a single brick is considered. It is shown what happens with face number 2.
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o The coarse mesh, see Figure 3.1:

There are only the 8 crosspoints in COOR:

‘ 1...8 ‘ Crosspoints

o After the first refinement step, see Figure 3.2:

Now there are in COOR beside the 8 crosspoints also the middle points of the coupling
edges and faces and the first interior point in the center of the brick:

1...8 Crosspoints

9...20 | middle points of the coupling edges

21...26 | the middle points of coupling faces
27 the middle point of the brick

o After the second refinement step, see Figure 3.3:

Now the coupling edges are two times refined and there are 3 nodes on it. The
middle points (54...57) of the 4 new subfaces and of the 4 edges on the coupling face
appear(h9...62).

... 8 Crosspoints
11 CFE,

e Cls3.4
21... 23 CFEs
24... 26 C'FEs nodes on coupling edges

ce CE778
33... 35 C'FEy
36... 44 CFEro11,12
45... 53 CF
54... 57 middle nodes of the 4 subfaces
58 the middle node of the face CFy nodes on coupling faces
59... 62 4 one time refined edges
63... 98 Cls 6
99...125 interior nodes

o After the third refinement step, see Figure 3.4:

Now the coupling edges are three times refined and there are 7 nodes on it. Moreover,
there were created the middle points of 4% subfaces from level 2 and the middle points
of the 4% edges which where created in the previous step; compare the table below.
Note that the middle node and nodes of the four edges of every refined face stand
together (for instance nodes 158...162)
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8 7
5~ CFEs 6

CE5 CF2 CEQ 3
O, 2

Figure 3.1: The coarse mesh

17
5 14 6
13 22 17
1 9 2

Figure 3.2: One refinement step

‘5 24 22 26 ,6
23 56 61 55 35
422 62 o8 60 o3
21 57 59 54 33
‘1 9 o0 11 ‘2

Figure 3.3: Second refinement step

@5 6 67T o 6 0 71 o
43 s fieo Jis3 liss liar li6s 146 50
&2 hro ies Dizo l1s6 D66 J163 164 Q49
A1 Q51 pirr is2 hisr lias T 49 s
oL l188 (189 ligo 178 lis4 [183 ligy &7
30 li57 vz lise lis1 144 fie1 J143  l4e
38 hra L1t Dize [1s0 lie2 158 fiso 445
37 lisa livs Q155 fivo lias liso Jia2 Jaa
.1 9§00 [ gl2 fi3 J14 s .2

Figure 3.4: Third refinement step
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18 CHAPTER 3. HIERARCHICAL MESH REFINEMENT

... 8 Crosspoints
15 CFE,
e CF234
37... 43 CFEs
44... 30 C'FEs nodes on coupling edges
. Clrg

65... 71 C'FEy

72... 92 CEip1112

93...141 CF
142...157 middle nodes of the 4 subfaces
158 middle node generated in step 2
159...162 4 one time refined edges
163 middle node generated in step 2
164...167 4 one time refined edges
168 middle node generated in step 2 | C'F, nodes on coupling faces
169...172 4 one time refined edges
173 middle node generated in step 2
174...177 4 one time refined edges
178 the middle node of the face
179...190 4 two times refined edges
191...386 CFs ¢
387...729 interior nodes

Note:
o There are no middle nodes of faces in tetrahedral meshes.

o In the quadratic case there is the same structure of COOR but all edges have their
middle points. So the edges appear one step earlier and they look like one time more
refined linear edges.

3.4 Reducing data

The change of the data structure is easy. It is only necessary to determine the nodes a
volume/face consists of and to calculate the Dirichlet values on some nodes.

3.5 Parameters of the output tool AUSGABE

The subroutine AUSGABE is an output tool for several (mesh) data. It works with the FDS
as well as with the RDS. There is an array of logical variables STEUER which determines the
status of the data (FDS/RDS/solved - STEUER(1/2/3)).

Features of AUSGABE:

e graphical output of mesh data (GRAPE)
e tabular output of mesh data

e tabular output of kette data
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e tabular output of the solution/error
e tabular output of error norms
e output of the mesh as standardized file *.std (works only as one processor version)

SUBROUTINE AUSGABE(STEUER,COOR,ZKP,ZFP,ZIP NUMNP,KANTE,FKANTE,
NKANTE,FACE,FFACE,NFACE,VOL,REGION,FVOL,
NUMEL ,NKKO ,NKFO,DIR,FDIR,NDIR,NEUM,FNEUM,
NNEUM,KETTE1D ,KETTE2D ,CHAIN,VFS,X,LC,IER,
IGLOB,FREI,LAEFRETI)

STEUER mesh status

COOR array of node coordinates

ZKP FDS pointer in COOR, first node on 1D kette
ZFP FDS pointer in COOR, first node on 2D kette
ZIP FDS pointer in COOR, first inner node
NUMNP number of nodal points

KANTE FDS  array of edges

FKANTE FDS pointer to the last level in KANTE
NKANTE  FDS number of edges (only last level)
FACE FDS array of faces

FFACE FDS pointer to the last level in FACE

NFACE FDS  number of faces (only last level)

VOL array of volumes

REGION array of region data

FVOL FDS pointer to the last level in VOL
NUMEL number of volumes (only last level)
NKKO number of 1D kettes

NKFO number of 2D kettes

DIR array of Dirichlet data

FDIR FDS  pointer to the last level in DIR
NDIR number of Dirichlet faces (only last level)
NEUM array of Neumann data

FNEUM FDS pointer to the last level in NEUM
NNEUM number of Neumann faces (only last level)
KETTE1D array of 1D kette data

KETTE2D array of 2D kette data

CHAIN array of chain data

VFS number of refinement steps

X RDS  solution

LC RDS  hierarchical list

IER error parameter

IGLOB array of global crosspoint names
FREI workspace array

LAEFREI length of the workspace array

All variables except the error parameter IER are input.
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3.6 Tree structure of the routines

Tree substructures of subroutines marked with the symbol * are described before in the list.

3.6.1 NETMAKE for tetrahedral meshes

NETMAKE
— GROBNETZ
— READDATTR
— SIMP_MARK
— VERTEILEN
— VERTEILEN1
— FEINCALL
— FEIN
— COM_PROB
— MOVE
— STAUCHEN

VERTEILEN
SET_RBCOM
DAT _DOWN
TKUERZ
KUERZEN
ZUERST

— PCORRECT

— PFACE

— GEMPKT

— COM_PROB

rrrri

VERTEILEN1
SET_RBCOM
DAT _DOWN
RSB
TKUERZ
KUERZEN
ZUERST *
COM_PROB

rrrrrrf

RSB
SPEBIS
— MEDIAN
— QUTINT1
BUILDHV
MATRIX
EIGVAL
«— INILANC
— SEED
— RANDOM
— MATVEC

[

rri

— LCZSTEP
— MATVEC
— TRIDEV
— DELTA
— BOUNDS
— FIEDLER
— INVITER
— TRIDSOL

FEIN
— COORPLATZ
— KPLATZ
— TEILEKANTEN
— TKANTEN
— PCORECT
— KWRITE
— TEILEFLAECHEN
— TFLAECHEN
— PCORECT
— KWRITE
— SCHREIBEDREIECK
ECKPUNKTE
— GEMPKT
GEMPKT
MITTE
KWRITE
SCHREIBEDREIECK
TETSCHREIBEN
RBNEU

[

rerrrrf

STAUCHEN
— DIRSTAUCHEN
— PFACE *
— DIRINTPO
— NEUMSTAUCHEN
— PFACE *
— VOLPUNKTE
— ECKPUNKTE
— GEMPKT
— PBRICK
— GEMKANTE *
— GEMPKT
— MAKE_LC
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3.6.2 NETMAKE for brick meshes

NETMAKE < PCORECT
< GROBNETZ < KWRITE
< READDATQ < FAWRITE
< SIMPMARK < KWRITE
< VERTEILEN < OFDAT
< FEINCALL < GDKANTE
< FEIN < GTKANTE
< COM_PROB < KWRITE
< STROEM < FAWRITE
< MOVE < VWRITE
< STAUCHEN < RBNEU
VERTEILEN STROEM
< SET_RBCOM < FMPLATZ
< DAT_DOWN < FMITTEN
< TKUERZ < FMID
< KUERZEN < KWRITE
< FORIENT < VMITTEN
< VORIENT < KWRITE
< ZUERST
STAUCHEN
< PCORRECT
< DIRSTAUCHEN
< FEBRICK
< PFACE *
< GEMPKT
. COM_PROB < DIRINTPO
< NEUMSTAUCHEN
FEIN < PFACE *
< COORPLATZ < VOLPUNKTE
< KPLATZ < ECKPUNKTE
< KFTEILEN < GEMPKT
< KTEILEN < PBRICK
< PCORECT < PFACE *
< KWRITE < FEBRICK *
< FFTEILEN < MAKE_LC
< FTEILEN
3.6.3 AUSGABE < LCPRINT
< NETZDRUCK
AUSGABE < FSTRADDI
< TAUS < FSTRADDR
< GEBGRAPE < VRBPRINT
< NETZREDOUT < KETPOUT
< FSTRADDI < WTABX
< FSTRADDR < PWTABX
< RDIRPRINT < FNTAB
< VRBPRINT < STDF_OUT
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3.7 Short description of the routines in IibNA.a

The following FORTRAN sources are located in Netz/Allgemein.

AUSGABE

BOUNDS

BUILDHV

COM_PROB
DAT_DOWN

DATRED

DELTA
DIRINTPO
DIRSTAUCHEN
DREGIO

ECKPUNKTE
EIGVAL

FEBRICK
FIEDLER

FSTRADDI
FSTRADDR
GEMKANTE
GEMPUNKT
GETDOFS

TAUS
INTILANC
INVITER

KETPOUT
KPLATZ

KUERZEN

KWRITE
LCPRINT

netzdruck.f
rsh.f

rsh.f

com_prob.f
dat_down.f

kuerzen.f

rsh.f
stauchen.f
stauchen.f
stdwrite.f

AUpfein.f
rsh.f

AUpfein.f
rsh.f

netzdruck.f
netzdruck.f
AUpfein.f
AUpfein.f
getdofs.f

netzdruck.f
rsh.f
rsh.f

netzdruck.f
AUpfein.f

kuerzen.f

AUpfein.f
netzdruck.f

frame for the output of several data (mesh, solution,
error estimates)

a bound on the Raleigh-Ritz approximation 6; to the
maximum eigenvalue A is computed

accumulation of an auxiliary array for the spectral
bisection

sets the variables of the common block in com_prob.inc
distributes mesh data from processor 0 to all other pro-
Cessors

deletes faces/edges/nodes which are not referred in the
volumes/faces/edges; generates IGLOB and deletes un-
used boundary condition data

function to calculate a special determinant during RSB
computes the Dirichlet value at a node

changes the Dirichlet data to the reduced data structure
determines the names of regions and the number of vol-
umes per region

determines the vertices of a tetrahedron

computes the second smallest eigenvalue of the Lapla-
clan matrix

determines the vertices of a quadrilateral

computes the fiedler vector, i.e. the eigenvector corre-
sponding to the second largest eigenvalue of the Lapla-
clan matrix

generates a format string

generates a format string

determines the common edge of two faces

determines the common node of two edges

description of the degrees of freedom for the visualiza-
tion tool GRAPE

displays a menu for the different output routines
initialization of the Lanczos-method

inverse iteration for calculation of the eigenvector to a
given eigenvalue

output of kette data (for kette see [4])

copies the nodes of an edge to the new places in COOR
(before the refinement step)

deletes unused mesh data and performs the necessary
renumbering, generates the array of global crosspoint
names IGLOB (Note that DAT_DOWN distributes the whole
coarse mesh, then some elements are marked, and
KUERZEN deletes all elements not marked.)

writes an edge into the array of edges

output of one row of the hierarchical list
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LCZSTEP
LIES

MAKE_LC
MAKREGIO
MATRIX
MATVEC
MEDIAN
MOVE

NEUMSTAUCHEN

NETZDRUCK
NETZREDOUT
ouT
OUTINT1
OUTKETTE

OUTSTANDARD

PBRICK
PCORECT
PFACE
PWTABX
RANDOM
RBNEU

RDIRPRINT
RNDPRINT
RSB

SEED
SETFILE
SET_RBCOM

SETSTANDARD

SIMP_MARK

SPEBIS

STAUCHEN

STDF_OUT

STDWRITE
TKUERZ

TRIDEV

rsh.f
standard.f

stauchen.f
stdwrite.f
rsh.f

rsh.f

rsh.f

cnetz.f
stauchen.f

netzdruck.f
netzdruck.f
netzdruck.f
rsh.f

netzdruck.f

standard.f
AUpfein.f

pcorect.f
AUpfein.f
netzdruck.f
rsh.f
AUpfein.f

netzdruck.f
stdwrite.f
rsh.f

rsh.f
setfile.f

set_rbcom.f
standard.f
simp_mark.f
rsb.f
stauchen.f
stdwrite.f

stdwrite.f
kuerzen.f

rsh.f

iteration step of the Lanczos-method

reads and analyzes a row of the file of program control
variables (control.quad or control.tet, respectively)
generates the hierarchical list

prepares the REGION data for STDWRITE

generates the Laplacian matrix of element connectivity
matrix vector multiplication

calculates the median of a set (array) of numbers
realization of a coordinate transformation for special
applications

changes the Neumann data to the reduced data struc-
ture

output of the full data structure

output of the reduced data structure

displays the part of the solution vector of one processor
auxiliary routine for integer output

displays the part of the kette data (for kette see [4]) of
one processor

displays program control variables

determines the 8/20 nodes of an linear/quadratic brick
determines the middle point of an edge

determines the nodes of a face

displays one row of the table of the solution/error
calculates a random value

copies the boundary condition data from father faces to
the new subfaces after a mesh refinement step

output of Dirichlet data (reduced data structure)
output of boundary condition data

computes the spectral bisection for a given mesh

a very basic random number generator; uses RANDOM
input of the filename

sets the values of the variables in the common block RB
in the file net3ddat.inc

sets the program control variables using file control.tet/
control.quad

marks the volumes with the number of the processor
which should own them (very simple method)

the median value of the fiedler vector is computed; all
elements of the fiedler lower then the median are marked
reduction of the full data structure to the reduced data
structure

frame for the output of the full data structure as a stan-
dard file *.std

output of the full data structure as a standard file
deletes all volumes which are not marked with the own
processor number (array MARK)

computes largest eigenvalue of the tridiagonal matrix
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TRIDSOL rsh.f
VERSION version.f
VOLPUNKTE stauchen.f
VRBPRINT netzdruck.f
VREGIO stdwrite.f
WTABX netzdruck.f
YSFAKTOR cnetz.f
ZWEIIWERTE standard.f

CHAPTER 3. HIERARCHICAL MESH REFINEMENT

solver for a tridiagonal, symmetric, positive definite
matrix

displays the title of the program

determines the vertices of a volume

output of Dirichlet data (full data structure)
determines the names of the volumes in the regions
table of the solution

determines the relative length of the subedges

reads two integer values from an string variable

3.8 Short description of the routines in IibNT.a

The FORTRAN sources are located in Netz/Tetraeder.

COORPLATZ upfein.f
GROBNETZ grobnetz.f
FEIN upfein.f
FEINCALL upfein.f
NETMAKE netmake.f
MITTE upfein.f
SCHREIBEDREIECK upfein.f
SET_NETDIM control.f
STWERTE control.f

TEILEFLAECHEN upfein.f

TEILEKANTEN upfein.f
TETSCHREIBEN upfein.f
TFLAECHEN upfein.f
TKANTEN upfein.f
VERTEILEN grobnetz.f
VERTEILEN1 grobnetz.f
ZUERST grobnetz.f

prepares COOR for the following mesh refinement step
(The nodes in COOR are ordered. A renumbering is nec-
essary because some of the new points will be placed
between old points.)

provides the coarse mesh

hierarchical mesh refinement of tetrahedral meshes
frame for the hierarchical mesh refinement

frame for the mesh generation

determines the middle point of an edge of an face
writes one triangle into the array of faces

sets constants (especially array dimensions) for tetrahe-
dral meshes

presets the program control variables with standard val-
ues and opens the file control.tet

divides the faces

divides the edges

writes one tetrahedron into the array of volumes
divides one face

divides one edge

sends the coarse mesh data to all processors, deletes
all unused data and prepares the mesh for refinement
(simple spreading of the volumes)

sends the coarse mesh data to all processors, deletes
all unused data and prepares the mesh for refine-
ment (spreading of the volumes with recursive spectral
bisection)

prepares the coarse mesh for the refinement (sets initial
values of variables etc.)

3.9 Short description of the routines in IibNQ).a

The FORTRAN sources are located in Netz/Quader.
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COORPLATZ

Fé6
FAWRIT
FEIN
FEINCALL
FFTEILEN
FORIENT

FTEILEN
FMID

FMITTEN
FMPLATZ

GDKANTE

GROBNETZ
GTKANTE

KTEILEN
KFTEILEN
NETMAKE
OFDAT

SET_NETDIM

STROEM

STWERTE

TAUSCHE

VERTEILEN

VMITTEN
VORIENT

VWRITE
ZUERST

upfein.f

upfein.f
upfein.f
upfein.f
upfein.f
upfein.f
upfein.f

upfein.f

stroem.f
stroem.f
stroem.f

upfein.f

grobnetz.f
upfein.f

upfein.f
upfein.f
netmake.f
upfein.f

control.f
stroem.f

control.f
upfein.f

grobnetz.f

stroem.f
upfein.f

upfein.f
grobnetz.f

prepares COOR for the following mesh refinement step (The
nodes in COOR are ordered. A renumbering is necessary be-
cause some of the new points will be placed between old
points.)

determines face number 6 (used in VORIENT)

writes one quadrilateral into the array of faces

hierarchical mesh refinement of brick meshes

frame for the hierarchical mesh refinement

divides the faces

orders the four edges of an quadrilateral (the first is connected
with the second which is connected with the third which is
connected with the fourth which is connected with the first)
divides one face

determines the middle nodes of one face

determines the middle nodes of the faces

prepares the data array COOR for the new middle nodes of the
faces and volumes (for 27 node bricks)

determines the relative position of subfaces of two father brick
faces

provides the coarse mesh

determines the common edge of two subfaces (used in subrou-
thKEGDKANTE)

divides one edge

divides the edges

frame for the mesh generation

determines the subfaces and inner subedges of an father brick
face

sets constants for brick meshes

determines the middle nodes of the faces and volumes (for 27
node bricks)

presets the program control variables with standard values
and opens the file control.quad

exchange of the values of two integer variables

sends the coarse mesh data to all processors, deletes all unused
data and prepares the mesh for refinement (simple spreading
of the volumes)

determines the middle nodes of the volumes

orders the six faces of a brick (the first is not connected with
the 6th and the other four faces are connected as described
for the edges of a quadrilateral above)

writes a brick into the array of volumes

prepares the coarse mesh for the refinement (sets initial values
of variables etc.)
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CHAPTER 3. HIERARCHICAL MESH REFINEMENT
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Chapter 4

Assembly of the equation system and
error estimation

4.1 General remarks

The assembly of the equation system and the error calculation have the common feature
of the computation of integrals over volumes (elements) and faces. Moreover, values of
shape functions are needed only in these two parts of the program. That is why we put the
sources of the related subroutines together in the directory Assem and the object files form
the library libA$archi.a. The aim of this chapter is to describe the realization of these
routines. The hope is that many of them can be used in further extensions of the program
system SPC-PM Po 3D or in other related programs.

Many routines have been taken from the sequential code FEMPS3D. A briet description
of this code is contained in [5]. But there are also some significant differences:

1. In FEMPS3D, only the Poisson equation can be solved, while in SPC-PM Po 3D also

the Lamé system is included.

2. In FEMPS3D, the error computation is restricted to linear tetrahedral elements, here
this has been extended to the full scale of elements treatable, see below. Moreover,
some communication is necessary.

3. The storage of the system matrix is slightly different, the storage and the treatment of
boundary conditions is fully different due to the influence of the code SPC-PM Po 2D.

Because of these changes the parameter lists of many of the subroutines have been changed,
thus it is not suggested to mix the subroutines from the serial and the parallel program.

Essentially, there are two subroutines, which are called from programs outside the library
libA.a: ASSLOES and FNTAB. In both parts, numerical integration is used; we describe the
corresponding routines in Section 4.2.

ASSLOES realizes the frame for the assembly and solution of the equation system: Given
the finite element mesh, some control parameters and auxiliary memory, the routine returns
the finite element solution. The matrix and the right hand side are local in ASSLOES. The
main ingredients are: initialization, the call of ASSEM and COARSMAT3, the call of several
routines for the solution of the equation system (see Chapter 5) and time measurement.
The stiffness matrix and the right hand side are assembled in ASSEM; the main steps are
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28 CHAPTER 4. ASSEMBLY OF THE EQUATION SYSTEM AND ...

described in Sections 4.2-4.3. Moreover, a coarse grid matrix is assembled in COARSMAT3,
see 4.3.5.

The calculation of the error norms and their output (for each subdomain (processor)
and global) is done by FNTAB. The different error measures are the discrete maximum norm
(maximal difference of u and wy, in nodal points), and the H'-and L,-seminorms of u — uy,
(calculated via numerical integration).

Of course, these norms can only be calculated if the exact solution is programmed. Note
that the module bsp.f supplies function routines for u, its derivatives, and the right hand
sides f and g. They have to be programmed by the user. The realization of the error norms
is described in Section 4.4.

For the tree structure of ASSLOES/ASSEM and FNTAB see Section 4.5, all routines are
described shortly in Section 4.6.

4.2 Numerical integration and shape functions

4.2.1 Mathematical Background

The assembly of the stiffness matrix and the right hand side as well as the calculation/es-
timation of error norms require the numerical integration of integrals over volume elements
or faces. This integration is realized by a transformation to reference elements, that means
a coordinate transformation: Let ) be a volume element (tetrahedron or hexahedron) with
nodes z; € R® ( = 1,...,NEN3D). Moreover, let ) be the reference element with nodes &; €
IR? (: = 1,...,NEN3D) and shape functions ;(2), with ¢;(2;) = é;;, then the corresponding

coordinate transformation is
NEN3D

T = Z xlg‘al(‘%)v
=1

and the volume integral is transformed and approximated by

NQP3

[ ftaras = [ ) 1denc@nia m Y fa) 1ot

where y; are the integration points, w; are the weights, and J is the Jacobian functional
matrix.

The two-dimensional case is treated by analogy: Let (i be a face (triangle or quadrilat-
eral) in IR* with nodes z; € R® (+ = 1,...,NEN2D), and let (i be the reference element with
nodes #; € R* (i = 1,...,NEN2D) and shape functions ¢;(#), then the relations are

NENW2D

r = Z 1}2952(@),
=1

[ farde = [FOVEC=F i~ Y i)\ [EG)CU) - Pl e
Z 2 j=1
. Hr\? . S IO . L 920 gD
were 80 =3 (555) + c@=3(5m) + F6= % G gz

=1 =1
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4.2. NUMERICAL INTEGRATION AND SHAPE FUNCTIONS 29

and z = (20, 2@ @), & = (2, @),

Thus it is useful to supply arrays QGST(3,NQP2) and QGST3(4,NQP3) with the quadra-
ture points and the corresponding weights, as well as arrays SHP2(3,NEN2D,NQP2) and
SHP3(4,NEN3D,NQP3) with the values of the shape functions and their derivatives in the

quadrature points.

4.2.2 The arrays QGST2, QGST3, SHP2, and SHP3

Actually, these arrays depend on the element type (triangle / quadrilateral, tetrahedron /
pentahedron / hexahedron). In the sequential code FEMPS3D, see [2, 5], there has been no
restriction to use one type of elements exclusively. Thus all arrays could have been necessary
in one run of the program. So it was decided to supply the arrays mentioned above for all
element types. This means:

e NQP2 and NQP3 are vectors of length 2 and 3, respectively:

NQP2(1)...number of quadrature points for quadrilaterals,
NQP2(2)...number of quadrature points for triangles,
NQP3(1)...number of quadrature points for hexahedra,
NQP3(2)...number of quadrature points for pentahedra,
NQP3(3)...number of quadrature points for tetrahedra.

These arrays are assigned in E3LEHF, because the user supplies only the number of the
formula, see below, and not the corresponding number of quadrature points.

o The actual length of the arrays are:

array length
QGST2 | 3 * (NQP2(1) + NQP2(2))
QGST3 | 4  (NQP3(1) + NQP3(2) + NQP3(3))
SHPY 3 * (3% NQP2(1) + 4 *« NQP2(2)) for linear elements
3 * (6 * NQP2(1) + 8 « NQP2(2)) for quadratic elements
SHP3 4% (8 + NQP3(1) 4 6 * NQP3(2) + 4 * NQP3(3)) for linear elements
4% (20 * NQP3(1) 4+ 15 % NQP3(2) + 10 * NQP3(3)) for quadratic elements

Of course, one can call subroutines with a part of the array, and use the array as
introduced in 4.2.1. These arrays are allocated in E3LEHF.

The quadrature formulae programmed are given in Tables 4.1 to 4.5. They are realized
in the subroutines E2INTG and E3INTG on information from the books [1, 15, 20], for a
description of the routines see Section 4.6.

The arrays SHP2 and SHP3 are assigned in E2SHAP and E3SHAP using the arrays QGST2
and QGST3 as well as subroutines where the shape functions and their derivatives for the
different cases are programmed (P2L, P2Q for triangles, PHI2L, PHI2Q for quadrilateral, PTL,
PTQ for tetrahedra, P3L, P3Q for pentahedra, and PHI3L, PHI3Q for hexahedra). The 15
subroutines mentioned in this paragraph are contained in the file upe2e3.f.

4.2.3 A modification of the arrays for the use in the error esti-
mator

An additional case must be considered for the error estimator, compare Section 4.4, Here,
the values of the 3D shape functions and their derivatives are used in the quadrature points
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Formula | Number of L exact for
) Description e
number points x'y? with
1 1 midpoint (center of gravity) 1,7 <1
2 4 2x2 Gaussian points 1,7 <3
3 9 3x3 Gaussian points 2,7 <5
Table 4.1: Quadrature formulas for quadrilaterals.
Formula | Number of L exact for
) Description S
number points x'y? with
1 1 center of gravity 1,7 <1
2 3 midpoints of the edges 1,7 <2
3 4 Gaussian points 1,7 <3
4 7 Gaussian points 1,7 <5
Table 4.2: Quadrature formulas for triangles.
Formula | Number of L exact for
) Description P e
number points xty’ 2% with
1 1 center of gravity 1+ + k<1
2 4 Gaussian points 1+ + k<2
3 5 Gaussian points 1+ + k<3
4 11 Gaussian points 1+ g+ k<4
5 14 Gaussian points 1+ 4+ k<5
Table 4.3: Quadrature formulas for tetrahedra.
Formula | Number of | the formula is a cross product of the formulas exact for
number points for triangle for interval (z-direction) xiy’ 28 with
1 1=1-1 center of gravity midpoint 1+ <1,k<1
2 3=3-1 | midpoints of edges midpoint 1+ <2, k<1
3 4=4-1 4 Gaussian points midpoint 147 <3, k<1
4 6 =3-2 | midpoints of edges 2 Gaussian points 147 <2,k<3
5 8 =4-2 | 4 Gaussian points 2 Gaussian points 1437 <3, k<3
6 12 =4-3 | 4 Gaussian points 3 Gaussian points 1437 <3, k<5
7 14 =7-2 | 7 Gaussian points 2 Gaussian points 147 <5 k<3
8 21 =7-3 | 7 Gaussian points 3 Gaussian points 147 <5, k<5
Table 4.4: Quardature formulas for pentahedra.
Formula | Number of L exact for
) Description P
number points xty’ 2% with
1 1 midpoint (center of gravity) ,7, k<1
2 8 2x2x2 Gaussian points 1,7,k <3
3 27 3x3x3 Gaussian points 1,7,k <5
4 6 midpoints of the faces 1+ + k<3
5 14 Irons formula 1+ 4+ k<5

Table 4.5: Quadrature formulas for hexahedra.
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4.3. ASSEMBLY OF THE STIFFNESS MATRIX AND THE RIGHT HAND SIDE 31

of the faces of the elements. This is still under development.

4.3 Assembly of the stiffness matrix and the right

hand side

4.3.1 Main steps

The stiffness matrix A and the right hand side F' are assembled in the subroutine ASSEM.
Only the non-zero elements of A are stored, see [13]. The main steps are the following:

1.

Allocation of memory for the matrix A, its index vector LA(N), the right hand side
F(N), and the solution X(N), where N = NUMNP*NDF is the number of unknowns, NUMNP
is the number of nodal points, and NDF is the number of degrees of freedom per node.
Our approach is not to determine the structure of A a priori, but to use a rectangular
matrix A(NDIAG,N) preliminary. The maximal number NDIAG of non-zero entries in a
row of the matrix must be estimated before, see Section 2.3 of the User’s manual [3].
If it proves to be too small in step 4, then it is increased iteratively.

. Initialisation of A, LA, F, and X. The subroutine MAKEKZU initializes the index vector

LA as if the matrix has exactly NDIAG non-zero elements per row.
Allocation and calculation of the arrays QGST2, QGST3, SHP2, and SHP3, see Section 4.2.

Loop over all elements: The element stiffness matrix S and the element right hand
side P are computed in subroutine ELEMENT, then they are accumulated using AKKU/
AKKUEL and FAKKU/FAKKUEL. Note that the first parameter in ELEMENT is the equation
number: If it is equal to 1, then the Poisson equation is taken as the basis, and
internally the subroutine ELS is called, see 4.3.2. In the case of linear elasticity, the
parameter is 2 and the routine ELAST is used, see 4.3.3. In ELEMENT, there are also the
element types (tetrahedron,...) distinguished via the auxiliary routine IHPT.

Treatment of Dirichlet data: Dirichlet data are stored in an array DIRF, see Section 2.3.
Depending on the indicator in DIRF (NEN2D+1, %), the values are copied to the appro-
priate position in the vector X and the corresponding diagonal element of A is set to
1.D+40. The realization of the CG-algorithm ensures the correct handling of these
equations.

Treatment of inhomogeneous Neumann data: They are stored in the array NEUMF,
see Section 2.3. In a loop over all Neumann faces the integrals for the element right
hand side are calculated via subroutines NEUMANN/E3RS0B and then accumulated via
FAKKU/FAKKUEL. Note that some faces may have Dirichlet and Neumann data for
different degrees of freedom. Then they are included both in DIRF and NEUMF.

In a last step the matrix A is compressed by deleting all zero entries (subroutine
PACKKLZ). Moreover, the elements in each row are now sorted by its index of the
column (subroutine SORTKZU).
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32 CHAPTER 4. ASSEMBLY OF THE EQUATION SYSTEM AND ...

4.3.2 The element routine ELS in the case of the Poisson equation

We are going now to describe the element routine ELS which calculates the element stiffness
matrix S = (sw)jyo; and the right hand side P = (pi)i27” in the case of the Poisson

equation. With the notation from 4.2.1 there holds:

Spe = /(Wk)T-vwdx:/(J—T@¢k)T-(J—T$¢g)-|detJ|d§;
Q

NQP3 T X
~ D (6)TV) (T V) ) [det ()] -
e = /f(il?)@k(:li)dx:/f(:f;)c,ok(:f;) det J(3)| di
NQP3

Q
=
NagY
.
>
ol
Nad
By
o

D

—
=~
2
By
£

Thus, after initialization of S and P with zeros, a loop over all quadrature points y; is
performed, where the following steps are carried out:

1. Calculation of J = J(§;) = (Jmn)? J~1, and |det J|, with

m,n=1"

ax(m) a NEN3D NEN3D 649
_ _ (m) sray (m) Y

85;((%) are contained in the array SHP3, see 4.2.1.

The values of

Note that in the case of a linear tetrahedron the matrix J is independent of & and this
step can be executed outside the loop. More than one integration point can be useful
for linear tetrahedra in the case of non-constant right hand side f.

NENW3D

[N]

m=1,1=1

. Preparation of an array D = (d;)20 0, = J- 7T <@cfok>

k=1 '

w

. S:=84DDT - w;-|det J|, w;=0QGST3(4,7)
4. Transformation of the quadrature point:
WEN3D

yi= > wibili)

=1

ot

- pe = pe+ S (y)@n(9;)| det J| - w;
Note that f(y;) = f(g)]), but only f(.) is given as a function.

4.3.3 The element routine ELAST for the Lamé system

The element routine ELAST for linear elasticity is programmed with similar steps as in 4.3.2.
Denote by S = (Sk)[FE2} the element stiffness matrix with Sy, € R*? and by P = (P[P,
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P, € IR?, the element right hand side. Then one finds that

Skg = )\TM —|— /LTkj; —|— ,u . tI’(Tu) . ], TM = /V«pk(vw)T dl‘,
Q

P = / f@)g()dz (f(x) € R?),

which can be calculated similary to 4.3.2. Thus the steps in the loop are:

1.
2.
3.

Calculation of J, J~1, and | det J|.
Calculation of D = J~T (V) )IEUSD ¢ [R3xIESD,
For k=1,NEN3D, (=1,NEN3D do:

The 1= DkDg, where Dy = Vr(y;) € IR® is the k-th column of D,
Su = Skg + <)\TM + /LTkj; + M- tI’(Tu)]> Wi - |det J|

NEN3D
Calculation of y; = > x:4:(y;).

=1

. For k=1,NEN3D do:

Py := Py + f(y;)Pr(y;)w; - [ det J|,

where f(y;) € R” is calculated in the function routine.

33

4.3.4 The surface integrals for inhomogeneous Neumann bound-

ary conditions

The subroutine E3RSOB calculates the element right hand side P = (P)I=2 P, € R™", for
inhomogeneous Neumann boundary conditions, that means:

o= [oleraleds = [9@)600VEDOGE) - P di

G G
NQP2
~ )@k BE)C) — F2(0)) w;
=1
where
3 2 3 HEN2D 2
. (™) ) 0pi(2)
P = Z(a@(l)) :Z<le 9 |
m=1 m=1 =1
3 2 3 HEN2D 2
. Pu™) (m) 0%i(2)
“@ = Z(a@(?)) B (Z% 90 |
m=1 m=1 1=
°L 9

1
Ji<m>aai<m>:i “E‘”wa@@j(fc) “%Dx(m)agaj(@) |
93 93 AR T PO

=1

Thus a loop over all quadrature points ¢; is performed with the following steps:
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m=1,n=1"

1. Calculation of J = J(;) = (Jn)2? with Jy, = Z T

3 3 3
2. Determining £ = > J2,,C =Y J2,,and F = > Ju1Jpme.
m=1 m=1 m=1

NEH2D
3. Calculation of y; = > x;4:(9;).

=1

4. Py = Pe+9(y)@(9;)\/E(y;)Cy;) — F*(y;) w;, where g(y;) € R™F. NDF is the number

of the degrees of freedom.

4.3.5 The coarse grid matrix

For the coarse grid solver there is a coarse grid matrix necessary. Theoretically [7], this
matrix shall be obtained by accumulating

Twoe — Inor
M =
( —Imwr  Twor
over all edges of the coarse grid. Iypr € R™ ™ is the identity matrix. Moreover, this
matrix is used only by processor 0.
Thus we send all 1D-Kettes (for Kette see [4]) to processor 0, which assembles then the
coarse grid matrix by going through this list of Kettes. This procedure shall be improved

in the future because all Kettes which belong to several processors are treated more than
once. Note that the coarse grid matrix is stored in its profile structure.

4.4 Calculation and estimation of error norms

4.4.1 The computed values

Error norms are calculated and /or estimated element by element, using quadrature rules
as in the assembly of the stiffness matrix /right hand side. That’s why these routines are
included in the same library libA.a.

We will understand under error calculation the elementwise computation of the integrals

llw — up; HHQ)|*

i=1

ngP3 UEN3 2
/ IV (u — up)|* de ~ Z (Vu(:z;j) — Z uZ'Vgoi(:z;j)) wj,
Q =1
ngP3 UEN3 2
u— s L@ = [—w?des Y (u<xj> -y umxj)) o,
=1

Q 7=l

where we assume that u and Vu are programmed functions.
For error estimation a residual type error estimator is under development.
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TREE STRUCTURES

4.4.2 Exact error norms

The exact error norms are computed similarly to 4.3.1 using the subroutine FEHLER. The
main steps are the allocation and calculation of the arrays QGST3 and SHP3, see Section 4.2,
and a loop over the elements. In this loop, the local error contributions are computed,
using the subroutines ELNORM and ELN, and added to a global norm. In ELNORM the different

element types are distinguished and ELN does the actual computations.

By analogy to 4.3.2 /4.3.3, the local terms are calculated by a loop over the quadrature

points, doing:

1.

2.

4.5

Calculation of J, J~1, and | det J|.

Calculation of D = J_T(@cﬁk)gi“fm = (dp)EBP dp = Ver(z;).
NEN3D
Calculation of y; = > 2;4:(9;).

=1

NENW3D

2
. H1LOC? := H1LOC? + <Y7u(xj)—- > uh(xiﬁh> | det J| - wy,

=1
NEN3D

2
L2L0C? := L2L0C? + (u(xj)—- > uhtu)¢k(xji> | det J| - w;

=1

Tree structures

ASSLOES

< KLZ_INIT!
< ASSEM
VDCOPY?
MAKEKZU!
E3LEHF
E2INTG
E2SHAP
< PHI2L, PHI2Q, P2L, P2Q
E3INTG
E3SHAP
< PHI3L, PHI3Q, P3L, P3Q, PTL, PTQ
< ELEMENT
< IHPT
< ELS, ELAST
< VDCOPY?
< JACOBIAN
s F3
— AKKUS, AKKUEL
< AKKUIJ
< FAKKU, FAKKUEL
< AKKUIJ

rrrrf

[

lin [ibKLZ.a, see Section 6.1
Zin libvbasmod.a, see Section 6.3
3t0 be supplied in bsp.f
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< NEUMANN
< GET_FACE, GET_NEUM
— E3RSOB
o g3
< PACKKLZ'!, SORTKZU!
< KETT1DAKK_VOR?, KETT2DAKK_VOR*, KETT3DAKK_VOR *
< COARSMAT3
< TREE_UP
< ASSCOARS3
< HDIAGKZU
— AKKUS, AKKUEL
< PACKKLZ, SORTKZU
< CVBKLZ
< VDCOPY
< STARTWR3D °, STAVE®
< HB2BPX°, HSTH®
— PPCGM®
< GET_TIMES®, TIME_GRAF®

FNTAB
< FEHLER
< E3LEHF
< E3INTG
< E3SHAP
< PHI3L, PHI3Q, P3L, P3Q, PTL, PTQ
< ELNORM
< IHPT
< ELN
< JACOBIAN
— U3, UX3, uy3, uz3
< CUBE_DOD®

4.6 Short description of the subroutines

AKKUEL akku.f accumulates the element stiffness matrix to the global matrix
(elasticity)

AKKUS akku.f accumulates the element stiffness matrix to the global matrix
(Poisson)

ASSCOARS3 coarse.f assembles the coarse grid matrix

ASSEM assem.f assembles the equation system

ASSLOES assloes.f frame for the assembly and solving the equation system

COARSMAT3 coarse.f frame for ASSCOARS3

E2INTG upeZe3.f determines integration points and weights, 2D

*in ibDDCMcom.a, see Section 6.5
%in 1ibS.a, see Section 5
Sin libCubecom.a, see Section 6.2
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E2SHAP

E3INTG
E3LEHF

E3RSOB
E3SHAP

ELAST
ELEMENT
ELN

ELNORM
ELS

FAKKU
FAKKUEL
FEHLER
FNTAB

G

GET_FACE

GET_NEUM
THPT

IVD

JACOBIAN

NEUMANN
P2L

P2Q

P3L

P3Q

PHIZL

PHIZ2Q

upeZe3.f

upeZe3.f
upeZe3.f

neumann.f
upeZe3.f

elast.f
element.f
fehler.f
fehler.f

element.f
fehler.f
akku.f
akku.f
fehler.f
fehler.f
neumann.f

neumann.f

neumann.f

ihpt.f
ihpt.f
element.f

neumann.f
upeZe3.f

upeZe3.f
upeZe3.f
upeZe3.f
upeZe3.f

upeZe3.f

37

determines the shape functions/derivatives in the integration
points, 2D

determines integration points and weights, 3D

allocates memory for the arrays QGST2, QGST3, SHP2, SHP3, S,
and P

calculates surface integrals (Neumann boundary conditions)
determines the shape functions/derivatives in the integration
points, 3D

computes the element stiffness matrix and the right hand side
(elasticity)

frame for ELAST / ELS

computes element errors

frame for ELN

computes element stiffness matrix and the right hand side
(Poisson)

computes the right hand side (equation) in a given point (user
supplied)

accumulates element right hand side to the global vector
(Poisson)

accumulates element right hand side to the global vector
(elasticity)

frame for calculating the error norms

calls FEHLER and prints the errors

computes right hand side (boundary condition) in a given
point (user supplied)

extracts the node numbers and coordinates out of NEUMF and
COOR

extracts Neumann data out of NEUMF

integer function, determines whether an element is a hexahe-
dron (1), a pentahedron (2), or a tetrahedron (3)

integer function, determines whether an face is a quadrilateral
(1), or a triangle (2)

determines the Jacobian functional matrix .J, its inverse J 1,
and its determinant for one integration point in an element
frame for E3RSOB

computes the values of all shape functions/derivatives in a
point (linear triangle)

computes the values of all shape functions/derivatives in a
point (quadratic triangle)

computes the values of all shape functions/derivatives in a
point (linear pentahedron)

computes the values of all shape functions/derivatives in a
point (quadratic pentahedron)

computes the values of all shape functions/derivatives in a
point (linear quadrilateral)

computes the values of all shape functions/derivatives in a
point (quadratic quadrilateral)
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PHI3L

PHI3Q

PTL

PTQ

UX

Uy
Uz

CHAPTER 4. ASSEMBLY OF THE EQUATION SYSTEM AND ...

upeZe3.f
upeZe3.f
upeZe3.f
upeZe3.f
bsp.f
bsp.f

bsp.f
bsp.f

computes the values of all shape functions/derivatives in
point (linear hexahedron)

computes the values of all shape functions/derivatives in
point (quadratic hexahedron)

computes the values of all shape functions/derivatives in
point (linear tetrahedron)

computes the values of all shape functions/derivatives in
point (quadratic tetrahedron)

computes the solution u in a point (user supplied)
computes the derivative 5% in a point (user supplied)
computes the derivative 5y in a point (user supplied)

computes the derivative 3% in a point (user supplied)
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Chapter 5

Parallel Preconditioned Conjugate

Gradient Method (PPCQG)

5.1 The Parallel CG-Method

The PPCG method is realized in the subroutine PPCGM. The parallelization of the PCG-
method is based on the non-overlapping domain decomposition in connection with the fol-
lowing two types of data storage:

type I.  the solution vector u is represented locally on each processor ¢ by the vector
u; = Ay,
type II:  the right hand side vector f is represented locally on each processor i by L

with .
=Y AL,
=1

where p is the number of processors.

A; is the super element connectivity matrix of the subdomain €; (located on the i-th proces-
sor) with the dimension N; XN (N ... number of unknowns of the global problem, N; ... number
of unknowns on the subdomain ;) which maps a global vector ¢ € R" on a local vector
gi € R". These data types arise from the assembly of the equation system. The local
assembly of the right hand side and the stiffness matrix leads to the additivity of the right
hand side (type II) while the solution (type I) is assumed to contain the true values on each
subdomain. Starting from this domain decomposition we easily get the parallelization of
the CG method which is described in the literature, for example in [11].

Currently, there are three types of preconditioners used in the PCG algorithm: the
Jacobi-, the Yserentant-, and the BPX-preconditioner, which will be described in Sec-
tions 5.2 — 5.4.

Let us consider some technical details: The solution vector is initialized by the subroutine
STAVE. At first, the subroutine assigns the value zero to all initial vector entries. Then the
points of the Dirichlet boundary conditions of this vector get their correct boundary values.
In order to guarantee a vector of type I, this requires some data exchange.

The subroutine STARTWR3D serves as an interactive input routine for the control param-

eters of the CG algorithm. The user can choose the options given in Table 5.1, compare
also [3, Section 2.4].
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Option Description

v=1 Jacobi

v=2 Yserentant without coarse grid solver
v=3 Yserentant with coarse grid solver
v=4
v=>5

v variant of preconditioning:

BPX without coarse grid solver
BPX with coarse grid solver

i iter, maximal number of iterations

e epsilon, termination criterion for the relative error norm in the CG
algorithm

d delta, scaling factor for the coarse grid matrix

zZ control of the amount of screen output, see ion in [3, Table 2.1]

Table 5.1: Control parameters for the solver.

Some specific initializations for the CG method and the preconditioners are realized in
the subroutine PREVOR. First the subroutine D_OUT KLZ (see [13]) extracts the main diagonal
D of the stiffness matrix locally on each subdomain. If the coarse grid solver is used in
the preconditioner (Section 5.3 and 5.4) the crosspoint values of the main diagonals of
each processors stiffness matrix are sent to processor 0 which modifies the global coarse
grid stiffness matrix with respect to the Dirichlet boundary conditions and computes the
Cholesky factorization of this matrix.

At the end the subroutine PREVOR makes some special initializations depending on the
kind of the chosen preconditioner. In particular, the inverse entries of D are stored, because
only D71 is used subsequently. Here, the information on Dirichlet boundary conditions is
introduced, by setting the inverse of 1.D440 to zero (see 4.3.1, Step 5).

After finishing the subroutine PREVOR the PCG iteration starts.

5.2 The Jacobi preconditioner

The Jacobi preconditioner is the simplest preconditioner of all. It only consists of a multi-
plication of the residual vector r with the inverse D~! of the main diagonal of the stiffness

matrix. This preconditioning is realized by the subroutine JACOBI.

After this vector multiplication the subroutine transfers the resulting vector w = D™1r

from data type II to data type I using the subroutine FEMAKK, see [4]. This necessity follows
from the data type structure of the PCG method. Therefore the communication cost of
the Jacobi preconditioned CG is the same as that of a unpreconditioned CG, and only N;
essential arithmetical operations per step are needed on processor .

The condition number of C~'K = D' K equals O(h™?) where K is the stiffness matrix
of our global problem and & is the discretization parameter, but the performance is better
than without preconditioning because the sums of the elements in the rows of the matrix
are now nearly equilibrated.
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5.3. THE YSERENTANT PRECONDITIONER 41

5.3 The Yserentant preconditioner

The Yserentant preconditioner [19] is based on a hierarchy of the finite element meshes. It
can be written in the following form:

Ot =957,

Here, S is the basis transformation matrix which transfers the usual nodal basis to the
h-hierarchical basis. For the ¢-th level we can write S =S, = S7_, ... S} with

ifi=y, 1,7=1,2,...N;

if j =4, and j = ¢y, where PO is the middle point

<Sl]§—1>ij = between P(1) and P{2) which are the end points of an (5.1)
edge of a tetrahedron from the mesh 7;_4

= =

0 else
It we use the coarse grid solver we get the following form:
C~' = SAF'ST)  with

A = SLLT on the coarse grid,
0~ 1 else.

LLT is the Cholesky decomposition of the matrix Cy, and Cj is the finite element assembly
1

of 1 _1 over all pairs of crosspoints having a common edge in the coarse grid (6 has
been found empirically, a good value is 0.1).
If we have strong oscillating coefficients in the differential equation, a Jacobi modification

of the form

C'=8D 5A;'D 557 (5.2)

is helpful. D is the diagonal matrix extracted from the stiffness matrix whose elements are
scaled with the mesh size h; of the level ¢ of the point it belongs to.

While the communication cost of the Yserentant preconditioner is nearly as low as with-
out it, the condition number C 'K is equal to O(h™!) in the three-dimensional case. This
is an improvement in comparison to the Jacobi preconditioner, but it still cannot satisty.

The Yserentant preconditioning is realized by the subroutine YSERENT. The transfor-
mation with the matrices S and ST is carried out in the subroutines HiSmulYser and
HSTmulYser, respectively:

Routine Description
HiSmulYser(Nfg,Nk,X,Hielis) | X = 5X
HSTmulYser (Nfg,Nk,X,Hielis) | X = STX

Here, Nfg denotes the number of degrees of freedom on each node, Nk is the number of
nodes on the subdomain k, X is the vector of the length N = Nk * Nfg, and Hielis is the
hierarchical list on the subdomain, which is generated by the mesh refinement procedures,
see Chapter 3. Hielis is a two-dimensional array of the following form:

array Description
Hielis[4,Nk] | Hielis[1,*] - node number
Hielis[2,%] - left father
Hielis[3,*] - right father
Hielis[4,] - coefficient

Y
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42 CHAPTER 5. PARALLEL PRECONDITIONED CG METHOD

The last coefficient defines the basis transformation matrix S. In our definition (5.1) (and
in the most cases) it is L.

The routine YSERENT copies first the residual vector to a working vector w setting the
Dirichlet values to zero. Then the multiplication w = STw is carried out. Now the resulting
vector w is multiplied with D% (therefore in the subroutine PREVOR the square root of D
is computed).

In the next step we have to transform w from data type I to type 1. Here communication
is necessary which becomes somewhat complicated if we include a coarse grid solver. Because
our coarse grid solver is based on a Cholesky factorization computed by processor 0 in a
first communication step all processors have to send their crosspoint values to processor
0. While this processor computes the coarse grid solution the other processors start the
communication with respect to their edges and faces. In the last communication step all
processors receive their parts of the coarse grid solution. Nevertheless, at the end the amount
of communication is only slightly higher than that without any coarse grid solution.

In coincidence with equation (5.2) we compute w = D~%w once again and after this
w = Sw. We set the values at the Dirichlet points in the resulting vector to zero and finish
the Yserentant preconditioning step.

5.4 The BPX preconditioner

The BPX preconditioner [8] is also a hierarchical preconditioner. It can be written in the
following form:
7' =957,

Here S is a transformation matrix which transforms the normal nodal basis of the space V,
into the generating system of the Cartesian product space VqE = Vi x Vax... xV, (with the
nodal basis spaces V;, V; C Vi41).

A& A -1 i+1

For the ¢-th level we can write S = S, = [Z{ |Z |-+ | T, | 1,]. T} = T} _\ I}~ -...-T!

with

ifi=j, 4,j=1,2,...M0

= =

if j =i and j = 45, where P is the middle point
(I,]j_1>ij = between P1) and P(2) which are the end points of an (5.3)
edge of a tetrahedron from the mesh 7;_4
0 else

It we include a coarse grid solver we get the following for
C~'=SAS'ST, with

A= SLLT  on the grid of Vi,
0= 1 else.

For § LLT see Section 5.3.
In the case of strong oscillating coefficients in the differential equation a Jacobi modifi-
cation is helpful. This modification has the form:

C'=8D A D557 (5.4)

where D is the extracted main diagonal of the stiffness matrix corresponding to VqE Its
elements are scaled with the mesh size h; of the zone 7 of the point it belongs to.
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I 1 I---1 1 |
Lev  Level Level Level
0 1 n-1 n

hierarchical list

I—1 I---1 1 I—1 I.--1 I--.I—I—-1—1
Lev Level Level Level Lev Level Level Lev Level Lev
0 1 n-1 n 0 1 n-1 0 1 0

——
zone n zone n — 1 zone 1 zone 0
BPX list

Figure 5.1: List extension for the BPX preconditioner

Due to the fact that we must communicate in the space corresponding to VqE the amount
of communication data of the BPX preconditioner is higher than that of the preconditioners
mentioned before. But at the other hand the condition number of C™'K is O(1) for the
BPX preconditioner.

Before we can use the subroutine BPXLOES for the BPX preconditioning some additional
initialization steps are necessary. At first we have to extend the hierarchical list in the way
shown by Figure 5.1. In the new BPX list zone 0 corresponds with V;, zone 1 with V5, ...,
zone n with V, (¢ = n + 1). The length of the BPX list is denoted by nbpx. Caused by the
communication over all zones we also have to extend the arrays KETTE1D and KETTE2D with
respect to V:£, i = 0,...,q. These arrays contain some parameters for the communication
related to the edges and faces respectively. All this is done by the subroutine HB2BPX:

HB2BPX(N,Lev,nkett,Kett,nlLev,zone,help)

input output
N Nk nbpx
Lev | hierarchical list bpx list
nkett | length of the Kett list | new length of the extended Kett list
Kett | Kett list extended Kett list
nlev | — number of levels
zone | — array of pointers to zones

Keep in mind that before using HB2BPX there must be provided enough memory for
the extended BPX and Kett list. The same applies to the auxiliary vector w in the BPX
preconditioner and the vector of the main diagonal of the stiffness matrix (better: its square
root D%) which also have to be extended according to VqE

The application of the transformation matrices S and ST is done by the subroutines
HiSmulBPX and HSTmulBPX:

Routine Describtion
HiSmulBPX(Nfg,Nk,X,BPXliS) X =5X
HSTmulBPX(Nfg,Nk,X,BPXliS) X =5TX
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Like the subroutine YSERENT the subroutine BPXLOES copies first the residual vector to
the working vector w setting the Dirichlet values to zero. Then the multiplication w = ST
takes place. As the result we get the extended vector w which is multiplied with D% (D is
the extended main diagonal of the stiffness matrix).

Now we have to transfer w from data type II to type I. This communication concerns all
zones. We start with the crosspoint communication where we communicate from the highest
down to the lowest zone. If a coarse grid solver is included then after arriving at zone 0
all processors send their crosspoint values of zone 0 to processor 0. While this processor
is computing the coarse grid solution the other processors start communication over their
edges and faces from zone 1 up to the highest zone. In the last communication step all
processors receive their part of the coarse grid solution from processor 0.

Finally we compute w = D=%w once more and w = Sw reduces our vector w to the
length Nk. After inserting the Dirichlet boundary conditions the BPX preconditioning step
ends.

5.5 Tree structure of the routines

In the case of a BPX preconditioning the initialization subroutine HB2BPX is called in the
subroutine ASSLOES, see Section 4.5. The PCG method is realized by the subroutine PPCGM:

PPCGM < VDMULT®
< PREVOR < HISMULYSER
< D_OUTKLZ ! < VDOMUL®

< TREEUP_DOD? < BPX

< 0XCOPYVBZ < VDOMUL>

< CHOVBZ?® < HSTMULBPX

< FEM_AKK * < YDMULT®

< TREE_DOWN? < TREE_DOD?

< HISCALE3D < TREEUP_D0OD?

< HSTCOP < RUEVBZ®
< AXMKLZ! < VORVBZ?
< VDMINUS® < KETTAKK*
< JACOBI < TREE_DOWN?

< VDMULT® < VDMULT®

< FEMAKK* < HISMULBPX
< YSERENT < YDOMUL®

< VDOMUL® < DSCAPR®

< HSTMULYSER < TREE_DOD?

< VDMULT® < VDAXPY®

< TREEUP_DOD? < AXMKLZ!

< RUEVBZ® < DSCAPR®

< VORVBZ? < TREE_DOD?

< FEMAKK* < VDAXPY®

< TREE_DOWN? < ZWISCH

lin [ibKLZ.a, see Section 6.1

Zin libCubecom.a, see Section 6.2
3in libMbasmod.a, see Section 6.4
*in ibDDCMcom.a, see Section 6.5
%in libvbasmod.a, see Section 6.3
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5.6 Description of the routines

The following FORTRAN sources are located in the subdirectory ./solve.

BPX
HB2BPX

HISCALE3D

HISMULBPX
HISMULYSER
HSTCOP

HSTMULBPX
HSTMULYSER
JACOBI
PPCGM
PREVOR
YSERENT
ZWISCH

bpx.f
hb2bpx.f

hiemul . f

hiemul . f
hiemul . f
hiemul . f

hiemul f
hiemul f
jacobi.f
ppcgm.f
prevor.f
yserent.f
zwisch.f

BPX preconditioning

extends the hierarchical and the KETT lists with respect to the
BPX data structure

scaling of the main diagonal elements with the mesh size of the
corresponding zone

multiplication with the transformation matrix S

multiplication with the transformation matrix S

extends the main diagonal with respect to the BPX data
structure

multiplication with the transformation matrix ST
multiplication with the transformation matrix ST

Jacobi preconditioning

parallel preconditioned conjugate gradient method
initializations depending on the kind of the chosen preconditioner
Yserentant preconditioning

displays the values of the CG parameters
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Chapter 6

(General libraries

6.1 IibKLZ.a for matrix operations with compactly
stored matrices

Discretization methods as the finite element method lead to systems of equations with sparse
matrices. For an economic use of the memory of the computer and for a decrease of the
number of arithmetic operations, it is necessary to use special storage techniques to exploit
the sparsity of the matrix. We use the most economic way, namely to store only the non-zero
elements of the matrix.

This method has been implemented and used in different applications for many years at
the Technische Universitit Chemnitz-Zwickau, and the most important routines are available
in the library libKLZ.a. A description of the storage and of the routines in ibKLZ.a is given
in [13].

6.2 libCubecom.a with basic communication routines

MIMD parallel computers consists of a number of processors with local memory which
exchange data via inter-processor communication. Unfortunately, the system routines for
the communication are dependent on the hardware and the operating system. Thus it is very
comfortable from the point of view of the programmer to use standardized communication
routines which are independent of the system.

The library libCubecom.a consists of a number of routines for the typical communications
within a MIMD parallel computer. The consequent use of these routines leads to portability
of parallel programs. Only some basic routines have to be adapted. This portability has been
tested for transputer, nCube, KSR-1 (TCGMSG), Paramid i860, Linux, and workstation
cluster of different producers. A detailed description of the library is given by the developers
in [9].

6.3 libvbasmod.a with basic vector operations

The library libvbasmod.a contains routines for vector operations. The use of these routines
instead of DO-loops has three advantages:

e The program becomes clearer and better readable.
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e The realization of the operation is optimized (unrolled loops, usage of BLASI-routi-
nes).

e Optimizations can be done once, but eventually also system dependent.

A description of the routines and examples for useful applications are given in [9].

6.4 libMbasmod.a for matrix routines

This library provides a couple of matrix-oriented subroutines for local operations on each
processor or on single processor machines.

There are matrix-vector operations for a special kind of matrix storing schemes (called
“VBZ”, storing a profile with row-wire variable bandwidth), a set of subroutines for Fast
Fourier Transform and some routines for Schur complement preconditioners, see [10]. A
more detailed description should be published later.

6.5 1libDDCMcom.a for DD and coarse matrix routines

The Domain Decomposition Coarse Mesh COMmunication library does what its name says.
The kernel of this library is a set of subroutines for FEM accumulation via an effective
communication across the coupling edges (and coupling faces in the 3D case).

6.6 The libraries libGraf.a and libNoGraf.a

The library libGraf.a contains routines for simple graphical output which are described
in [9]. Based on them, some specific routines are included for graphical output of two- [16]
and three-dimensional [14] finite element applications (including meshes and isolines).

The only subroutine which is directly related to SPC-PM Po 3D is GEBGRAPE, which is
the interface to the package GRAPE [18]. The call of this routine, the idea of the interface
and an example are described in [14]. Note, that the user has to supply a subroutine
GETDOFS for a correct labeling of the buttons which are related to the degrees of freedom.
For SPC-PM Po 3D this is realized in Netz/Allgemein/getdofs.f.

Occasionally, the user might wish to gain memory by linking without graphics. For this
case the library libNoGraf.a may replace the library libGraf.a in the link step. It supplies
a set of dummy routines, which are called instead of the graphic routines. Set the variable
$GRAF in Makedir/makefile.$archi to Graf or NoGraf to link the desired library, see [3,
Section 2.2].

6.7 libTools.a for auxiliary routines
The library libTools.a contains some auxiliary routines of general interest, most of them for

the program-user-dialog and for file and string manipulations, see [9, Section 5]. Examples
to get a impression of the routines:
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BEEP(n)

ENTER

FLUSH (log_unit)
LEN_TRIM(string)

UPCASE (string)
YES (string)

Output of an acoustic signal, the integer parameter n determines
its length.

Processor 0 is waiting for an and the program continues
(after a tree_down).

Forces the output of the buffer of log_unit. This is essential alter an
input request, when the program is started via rsh (remote shell).
Returns the length of string.

Change of all lower case letters in string to upper case.

Output of string and input request “(J/N)”. The return value is
.TRUE., when “J”, “37, “Y” or “y” is entered, and .FALSE. in all
other cases.
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