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Abstract. This paper deals with the application of domain decomposition methods for the parallel

solution of boundary value problems for partial di�erential equations over a domain 
 � IR

d

, d = 2; 3.

The attention is focused on the conception of e�cient communication routines for the data exchange which

is necessary for example in the preconditioned cg-algorithm for solving the resulting system of algebraic

equations. The paper describes the data structure, di�erent algorithms, and computational tests.
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1 Introduction

The mathematical treatment of many physical phenomena and engineering problems leads to

direct problems as solving (nonlinear) partial di�erential equations (p.d.e.) or optimization

problems including p.d.e. On the other hand, the determination of parameters (or the

optimal parameters) in the p.d.e. (for example material properties) is often the scope of

interest. These so called inverse problems require numerous iterations of solving the direct

problems above. In any case a fast solver for the applied problems depends on the fast

solving of the linear p.d.e. and therefore after a discretization (here via the �nite element

method) on the availability of a fast solver for large linear systems of equations.

During the last decade various ideas for parallel solving �nite element equation systems

were developed. Our report is based on parallel iterative solvers using a non-overlapping

domain decomposition and parallel computers with distributed memory (distributed data)

[3, 4, 5]. After mapping the subdomains to the processors this class of algorithms requires

some small amount of a special type of communication for updating the values at the nodes

on the boundaries between two or more processors, in the following called accumulation.

The particuliarity is that some vectors are stored in such a way that the correct value

at coupling nodes must be obtained by adding the partial values which are contributed

by the corresponding processors. The scope of this report consists in the description of

e�ective algorithms for this necessary accumulation in the two- and the three-dimensional

cases assuming at least a logical hypercube topology, for an introduction to hypercubes see

[6, 7]. Notice that physically neighboured subdomains may be placed on processors which

are not adjacent physically or logically.

In Section 2 we give a short description of the domain decomposition and the data

structures supporting the accumulation. The following three sections contain algorithms for

the accumulation which will be partially uni�ed in Section 6 for the three-dimensional case.

Section 7 presents some tests for a comparison of two variants of the accumulation.

The algorithms given are written for the logical hypercube topology with respect to the

portability of the code, indeed using just the basic routines of our library libCubecom.a [2]

whose implementation is hardware independent. Nevertheless, some ideas for using direct

links between arbitrary processors as provided under PARIX and PVM will be given.

Of course the presented strategies have much less importance for a small number of

processors (less or equal 16) than for medium and large numbers (greater or equal 128)

because the global amount of data for accumulation will grow with the number of processors.

Moreover, let N be the typical problem size (for example the number of unknowns) then the

amount of data to be accumulated is O(N

1=2

) for two-dimensional problems but O(N

2=3

)

in three dimensions. Thus an e�ective accumulation algorithm becomes more important for

three dimensional problems.

2 Notation and data representation

In the �nite element method, we consider a family fT

k

g of partitions of the domain 
 � IR

d

,

d = 2; 3, into �nite elements. Such a family can be constructed by the following algorithm:

Algorithm 1

1. Find a computational description of the domain 
 and the data of the boundary value

problem.

2. Construct a coarse mesh T

0

which approximates 
, and distribute the elements to the

processors.

3. To create T

k+1

(k = 0; 1; : : :) divide all elements of T

k

into 2

d

smaller elements of the

same volume.
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index contents of the vector at position index

1 pointer, smallest number of a node in the Kette

2 length of the Kette

3 communication identi�er PathId, see sections 4 and 5

4 { 7 global identi�cation of the Kette (KettenId)

Table 1: De�nition of the vector describing a Kette .

index

4 5 6 7

interpretation

C

1

C

2

0 0 1D-Kette , the corresponding edge has the crosspoints C

1

and C

2

as vertices

K 0 0 0 1D-Kette , the corresponding edge has the global number K

C

1

C

2

C

3

0 2D-Kette , the corresponding face is a triangle with the vertices

C

1

, C

2

, and C

3

C

1

C

2

C

3

C

4

2D-Kette corresponding to a quadrilateral

0 0 K 0 2D-Kette corresponding to the face with the global number K

Table 2: Identi�cation of a Kette by four integers.

Clearly, Step 3 can only be executed until the memory of the computer is exhausted.

The programming of the steps is not under consideration in this paper, but we introduce the

following notation and conventions.

Consider �rst the two-dimensional case. All nodes of the coarse mesh T

0

are called

crosspoints and the edges of T

0

are called coupling edges. The numbers of crosspoints and

of coupling edges are constant for all meshes of the family. In each mesh T

k

the crosspoints

have the same enumeration. After distributing the data over the processors each processor

possesses a smaller number of local crosspoints. As a global information there is a vector

which maps the local crosspoint numbers to the global crosspoint numbers.

During Step 3 of Algorithm 1, additional nodes are introduced at the coupling edges and

in the interior of the elements of T

0

. The latter are called inner nodes, their number grows

with 2

2k

� h

�2

. Note that inner nodes belong to only one processor, that means they do

not contribute to the communication.

The nodes at the coupling edges may belong to another processor as well, however,

contrary to the crosspoints, at most to one other. Because their number is of the order

2

k

� h

�1

we shall avoid expensive searches during the communication process by demanding

from the mesh generator of Step 3 that the nodes of each edge are numbered consecutively.

Thus they are identi�ed by a pointer to the �rst node, the number of nodes at this edge,

and a characterization of this edge. We denote such a sequence by Kette, the German word

for chain. Note that the coupling edges can be characterized by a global edge number (if

available) or by their global crosspoint numbers. We remark also that this data structure is

convenient for a preconditioner related to the coupling edges as described in [1].

The three-dimensional case is handled in the canonical way. However, there is a new

quality, namely the existence of coupling edges and coupling faces. Their treatment as in the

two-dimensional case leads to di�erent sequences of nodes, denoted by 1D-Kette and 2D-

Kette, respectively. The number of nodes grows with 2

k

� h

�1

and 2

2k

� h

�2

, respectively.

In the program, each Kette is described by a vector of integer type and of dimension 7,

see Tables 1 and 2 for an explanation. These vectors are stored in an array Kette (in two

dimensions) or in two arrays Kette1D and Kette2D.
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3 Accumulation of data at crosspoints

The algorithm needs one auxiliary array H of length NCrossG and one global communication.

NcrossG denotes the global number of crosspoints.

Algorithm 2

1. Initialize H with 0.

2. Write the values of the local crosspoints to the appropriate places in H.

3. Perform a cube sum for H.

4. Get the accumulated values for the local crosspoints out of H.

4 Accumulation of data belonging to edges (2D) and faces

(3D)

It is easy to modify Algorithm 2 for the accumulation of the data at the coupling edges (2D)

and faces (3D), but there are strong disadvantages:

� A large auxiliary array is necessary.

� A large amount of useless information is exchanged, its part is increasing with the

number of processors.

On the other hand, we realize that each Kette under consideration belongs to at most two

processors. The improvement idea is to determine the number of the other processor having

the same Kette. Therefore the feature of creating virtual topologies (under PARIX) as well

as the direct point-to-point communication between arbitrary processors (under PVM) can

be used to exchange the data with the corresponding processor. This can be done by creating

a list of descriptors PoP (Pairs of Processors). For each Kette there is an entry

Proc1, Proc2, Level, KettenID

where (Proc1,Proc2) is the pair of the processors sharing this Kette, and KettenID is a

unique number or name to identify Kette, for example

KettenID := f(C

1

; C

2

) = C

1

� NCrossG+ C

2

for edges in two dimensions, for C1, C2 see Table 2. The index Level is just a classi�cation

for the PoP's. All the pairs of processors belonging to the same level are mutually exclusive.

Hence, all communications for one level can be performed simultaneously between those pairs

of processors. This classi�cation is important for avoiding dead-locks in communications.

Algorithm 3

1. Prepare the local contribution to the PoP list:

Proc1 := Ich (this processor's number)

Proc2 := -1

Level := 0

KettenID := f(C

1

; C

2

[; C

3

; C

4

])

A Kette of length 0 is not added to this list.

2. Broadcast the local lists to all processors (global exchange).
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3. Find the missing Proc2 entry for the local lists by searching for the same KettenID in

the \foreign" lists. If no Proc2 is found for a certain Kette (which can be determined

by a remaining Proc2=-1), this one is either internal for the processor or it belongs to

the boundary, and therefore it can be ignored for communications.

4. Select all PoPs with Ich = Proc1 < Proc2.

(Now each KettenID occurs just once among all local lists.)

5. Send all local lists to processor 0 (Tree Up communication).

Generate a subdivision into classes of disjunct PoPs (set the value for Level).

Broadcast the resulting list PoP to all processors.

6. Sort the local list Kette (or Kette2D) of coupling edges (or faces) corresponding to

Level and KettenId and keep the number of the destination processor in this list as

communication identi�er.

7. When running under PARIX, create the virtual topology with one link for each pair

of processors.

Algorithm 3 is used only once to prepare the communication for the accumulation during

the conjugate gradient algorithm. This accumulation is done by running-down the sorted

list of coupling edges (or faces):

Algorithm 4

FORALL Kette IN Kette2D DO

Exchange Kette with destination processor PathId

and accumulate it in both processors.

DONE

The advantage of this processing is that the amount of communicated data during the

conjugate gradient algorithm is minimized, moreover, the communication is done in a few

steps between certain groups (levels) of pairs of processors.

Unfortunately, this algorithm is hardly to extend to the case of 1D-Kettes in three di-

mensions because, generally, they belong to more than two processors.

5 Accumulation of data belonging to edges (3D)

Because the application of Algorithm 2 is too expensive and an e�cient extension of algorithm

3 to this case is hardly to manage, we try to use the model \hypercube" in a speci�c way.

To explain our idea we start with an example.

Example 1 Consider a 1D-Kette that belongs to the three processors with the numbers

p

1

= 11 = 000L0LL;

p

2

= 17 = 00L000L;

p

3

= 65 = L00000L:

If we break Link 0 of all processors then the hypercube of dimension ncube is split in two sub-

hypercubes of dimension ncube� 1. The last bit in the binary representation of the number

of the processor indicates the sub-hypercube the processor belongs to. In our example, all

three processors belong to the same sub-hypercube, that means the data exchange via Link

0 is useless. Obviously, the same is valid for Links 2 and 5.

However, Links 1, 3, 4, and 6 cannot be broken, otherwise the processors would belong

to di�erent subcubes. The minimal sub-hypercube for our example can be characterized by

an integer PathId

PathId = L0LL0L0;
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L means that the corresponding link is necessary, 0 indicates that a communication via this

link is without use.

Our aim is to to realize the accumulation in a way that the communication of the Kette

is performed by a speci�c subcube sum, here in a four-dimensional sub-hypercube. Note

that 13 of the 16 processors which are engaged in the communication, do not possess the

Kette theirselves.

In the following we shall describe the two algorithms related to the accumulation. Al-

gorithm 5 realizes the initialization and must be executed once before Algorithm 6 is called

the �rst time.

Algorithm 5

1. Distribute the set T of pairs (KettenId, Ich) to all processors using the global exchange

communication cube cat [2]. For KettenId see Table 2, the integer Ich is the number

of the processor.

Kettes of length 0 are not included.

2. DO k:=1 TO NKetteLoc

AndBit := 0

OrBit := 0

IF (Length of Kette(k)> 0) THEN

DO p:=1 TO nproc

IF (KettenId(k); p) 2 T THEN

AndBit := AndBit ^ p

OrBit := OrBit _ p

END IF

DONE

END IF

PathId := AndBit^ OrBit

DONE

NKetteLoc denotes the local number of Kettes, nproc is the number of processors, the

symbols ^ and _ denote the logical AND and OR, respectively, performed bitwise, and a is

the bitwise NOT of the integer a.

Lemma 1 Algorithm 5 computes the integer PathId as de�ned in Example 1.

Proof When the inner loop is �nished, the binary representation of the integer AndBit has

an L exactly at those positions where all relevant numbers p of processors have an L in their

binary representation. On the other hand, OrBit has an 0 exactly at those positions where

all relevant numbers p of processors have an 0 in their binary representation. Consequently,

AndBit^OrBit has an 0 exactly at those positions where all relevant numbers p of processors

have the same value. 2

In Example 1 it is AndBit = 000000L and OrBit = L0LL0LL.

Remark 1 If any Kette belongs to only one processor Ich, then

AndBit = Ich; OrBit = Ich ) PathId = 0:

If any Kette has length 0 then

AndBit = 0; OrBit = 0 ) PathId = 0:

That means there is no communication for such Kettes.
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Algorithm 6 needs three auxiliary bu�ers Wait, Send, and Recv to store Kettes. For a

simple description denote the set of Kettes that the processor possesses itself, by Own.

Algorithm 6

TestBit:=1

DO nrlink:=1 TO ncube

1. FORALL Kette IN Own DO

IF PathId^ TestBit THEN Copy Kette to Send.

DONE

2. FORALL Kette IN Wait DO

IF PathId^ TestBit THEN Copy Kette to Send.

DONE

3. Send bu�er Send to the neighbouring processor via link nrlink and

store the data received from the same processor in the bu�er Recv.

4. FORALL Kette IN Recv DO

IF (Kette IN Own)

THEN Accumulate Values in Own.

ELSE IF (Kette IN Wait AND PathId < 2

nrlink

)

THEN Accumulate Values in Wait.

ELSE Add Kette at the end of bu�er Wait.

END IF

END IF

DONE

5. Compress Wait by deleting each Kette with PathId < 2

nrlink

.

6. TestBit:=TestBit*2

DONE

Remark 2 The bu�er Recv is empty before and after performing the loop in Algorithm 6.

Remark 3 The dimensions of the sub-hypercubes depend on an intelligent distribution of

the subdomains to the processors. Consider a quadratic 4�4 grid with edges at the vertices,

directed in the third dimension. The following two examples of the processor distribution

are constructed using the Gray code [6].

(a)

� � �

� � �

�

�

�

�

�

�

� � �

� � �

� � �

0 1 5 4

2 3 7 6

10 11 15 14

8 9 13 12

(b)

� � �

� � �

�

�

�

�

�

�

� � �

� � �

� � �

0

14

5 11

13 3 8 6

10

4

15 1

7

9 2 12

� boundary edges with two

adjacent subdomains

� inner edges with four adja-

cent subdomains

In the case (a), the dimension of the subcube is 2 for inner edges and 1 for boundary

edges, because the numbers of the processors of adjacent subdomains di�er in exactly one

bit. In case (b) they di�er in (ncube � 1) bit. Consequently, the complete hypercube is

necessary for the accumulation of each inner Kette . Note that the example easily extends to

a higher hypercube dimension.
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That means, an intelligent distribution of the subdomains is achieved when the numbers

of adjacent subdomains di�er in few bits only. These considerations are su�cient for (hard-

wired) hypercubes. In the case of other topologies (for example under PARIX) one should

also keep in mind that the data exchange via links with low numbers nrlink may be faster

than via higher links depending on the mapping of hypercube links to the PARIX grid. For

the PVM workstation cluster the only restriction will be to avoid any useless communication

with respect to the large setup time.

6 Uni�cation of the accumulation of Kettes in two and three

dimensions

Algorithm 6 is not restricted to 1D-Kettes, the 2D-Kettes could easily be included. However,

Algorithm 4 has the advantage that only a minimal set of data is communicated. On the

other hand, if 2D-Kettes are to be transferred between two processors then some 1D-Kettes

have to be transferred as well, that means the times for the startup in Algorithm 4 can be

saved when they are transferred together.

Consequently, the aim is to construct an algorithm which combines the advantages of

Algorithms 4 and 6. The following one saves the time for additional startups and avoids

the distribution of the 2D-Kettes on the whole sub-hypercube. In before, a determination of

PathId as in Algorithm 5 has to be performed for the 2D-Kettes as well.

Algorithm 7

FORALL 2D-Kette IN Own DO

IF PathId > 0 THEN Copy 2D-Kette to Wait

DONE

TestBit := 1

DO nrlink:=1 TO ncube

1. FORALL 1D-Kette IN Own DO

IF PathId^ TestBit THEN Copy Kette to Send.

DONE

2. FORALL 1D-Kette IN Wait DO

IF PathId^ TestBit THEN Copy 1D-Kette to Send.

DONE

3. FORALL 2D-Kette IN Wait DO

IF PathId^ TestBit THEN Copy 2D-Kette to Send.

Set PathId for 2D-Kette in Wait to 0.

DONE

4. Send bu�er Send to the neighbouring processors via link nrlink and

store the data received from the same processor in the bu�er Recv.

5. FORALL 1D-Kette IN Recv DO

IF (1D-Kette IN Own)

THEN Accumulate Values in Own.

ELSE IF (1D-Kette IN Wait AND PathId < 2

nrlink

)

THEN Accumulate Values in Wait.

ELSE Add 1D-Kette at the end of bu�er Wait.

END IF

END IF

DONE
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6. FORALL 2D-Kette IN Recv DO

IF (2D-Kette IN Own)

THEN Accumulate Values in Own.

ELSE Add 2D-Kette at the end of bu�er Wait.

END IF

DONE

7. Compress Wait by deleting each Kette with PathId < 2

nrlink

.

8. TestBit:=TestBit*2

DONE

7 Numerical comparison of the algorithms

Our test example is to solve

��u = 0 in 
 = (0; 2)

3

;

u = xy on @
;

via the �nite element method with linear shape functions on tetrahedral meshes. We gen-

erated coarse meshes with 48, 96, 192, 384, and 768 elements and re�ned them uniformly

until the memory was exhausted. Note that the coarse meshes with 384 and 768 elements

are di�erent from those after one re�nement step of the meshes with 48 and 96 elements,

respectively.

These examples were solved on a parsytec GC/PP-128 machine using 8 to 128 proces-

sors and as variants 1 and 2 processors per node. The times for the communication were

comparable in the 5 examples, here we present the results for 192 coarse terahedra. In Fig-

ures 1 and 2 the times for communication and for accumulation (communication plus some

arithmetics) are shown.

We draw the following conclusions:

� For small and medium numbers of processors Algorithm 7 is better than the combina-

tion of Algorithms 4 and 6 regarding the pure communication time and the time for

accumulation. The time for arithmetics is much higher of course.

� The situation changes for a high processor number and a large number of unknowns

(2D-Kettes dominate the 1D-Kettes). It is very likely that in Algorithm 7 a large

number of the quite long 2D-Kettes has to be communicated in several steps. But

in Algorithm 4 they are communicated just once. Here, the possibility of direct links

under PARIX is very favourable.

At the moment, the distribution of the elements to the processors is done in the order

that the coarse mesh generator produced. An optimization in the direction to minimize

the communication and to minimize the subhypercube dimension (see Remark 3) is

expected to improve the behaviour of Algorithm 7.

� Comparing the same number of processors in the two variants of one or two proces-

sors per node, we see that arithmetic time and communication time show controverse

behaviour. This in
uences the comparison of the two algorithms in a very machine

dependent way.

Acknowledgement. The �rst author was supported by DFG (German Research Founda-

tion), No. La 767-3/1.
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