Cordial Volterra integral operators

Gennadi Vainikko University of Tartu, Estonia

Let $\varphi \in L^1(0,1)$. Consider the Volterra integral operator

$$(V_{\varphi}u)(t) = \int_0^t t^{-1}\varphi(t^{-1}s)u(s)ds = \int_0^1 \varphi(x)u(tx)dx, \ \ 0 \le t \le T.$$

We call V_{φ} a cordial operator and φ its core. The class of cordial operators corresponding to all $\varphi \in L^1(0,1)$ form a commutative Banach algebra with $V_{\varphi}V_{\psi} = V_{\varphi \star \psi}$,

$$(\varphi \star \psi)(s) = \int_{s}^{1} t^{-1} \varphi(t) \psi(t^{-1}s) dt, \ \ 0 < s < 1,$$

$$\varphi \star \psi = \psi \star \varphi, \ \parallel \varphi \star \psi \parallel_{L^1(0,1)} \leq \parallel \varphi \parallel_{L^1(0,1)} \parallel \psi \parallel_{L^1(0,1)}.$$

This enables to establish the formulae for the spectrum $\sigma_m(V_{\varphi})$ of V_{φ} as a bounded (but noncompact) operator in the space $C^m[0,T]$:

$$\sigma_0(V_{\varphi}) = \{0\} \cup \{\hat{\varphi}(\lambda) : \lambda \in \mathbb{C}, \operatorname{Re}\lambda \ge 0\}, \ \hat{\varphi}(\lambda) := \int_0^1 \varphi(s) s^{\lambda} ds,$$

$$\sigma_m(V_{\varphi}) = \{0\} \cup \{\hat{\varphi}(k) : k = 0, ..., m - 1\} \cup \{\hat{\varphi}(\lambda) : \operatorname{Re}\lambda \ge m\}, \ m \ge 1.$$

As examples, we localise the spectra of Diogo's, Lighthill's and of some other noncompact Volterra integral operators occurring in literature.

We also consider Volterra integral operators of a more general form

$$(V_{\varphi,a}u)(t) = \int_0^t t^{-1}\varphi(t^{-1}s)a(t,s)u(s)ds, \ 0 \le t \le T,$$

where $\varphi \in L^1(0,1)$, $a \in C^m(\Delta_T)$, $\Delta_T = \{(t,s) : 0 \le s \le t \le T\}$, $m \ge 0$. It occurs that $V_{\varphi,a} : C^m[0,T] \to C^m[0,T]$ is bounded and $V_{\varphi,a-a(0,0)} : C^m[0,T] \to C^m[0,T]$ is compact. This enables to establish the formula

$$\sigma_m(V_{\varphi,a}) = a(0,0)\sigma_m(V_{\varphi}), \quad m \ge 0.$$

We examine the convergence of the polynomial collocation method and its discrete versions for the Volterra integral equation $\mu u = V_{\varphi,a}u + f$ assuming that $\mu \notin \sigma_0(V_{\varphi,a})$, i.e., $\mu \neq 0$, $\mu \neq a(0,0)\hat{\varphi}(\lambda)$ for $\text{Re}\lambda \geq 0$. Then for $\varphi \in L^1(0,1)$, $a \in C^m(\Delta_T)$, $f \in C^m[0,T]$, also the solution of the equation belongs to $C^m[0,T]$. In the algorithms and convergence analysis, we make use of the fact that $V_{\varphi}u_k = \hat{\varphi}(k)u_k$ for $u_k(t) = t^k$, k = 0,1,... (the cordial operators have even the property that $V_{\varphi}u_{\lambda} = \hat{\varphi}(\lambda)u_{\lambda}$ for $u_{\lambda}(t) = t^{\lambda}$ and $\text{Re}\lambda \geq 0$).