Lineare Algebra/Analytische Geometrie für Physiker

5. Übung

- 1. Es seien
 - (a) $\mathbb{R}_+ := \{x \in \mathbb{R} : x > 0\}$ die Menge aller positiven reellen Zahlen,
 - (b) $\mathbb{R}_n[t] := \{p(t) = \sum_{j=0}^n a_j t^j : a_j \in \mathbb{R}\}$ die Menge aller Polynome vom Grade $\leq n$, deren Koeffizienten reelle Zahlen sind.

Sind diese Mengen mit den folgenden Operationen Vektorräume über \mathbb{R} :

- (a) x + y := xy und $\lambda x := x^{\lambda}$,
- (b) $(p+q)(t) := -p(t) q(t) \text{ und } (\lambda p)(t) := p(\lambda t)$.
- 2. Im Raum C[0,1] der auf [0,1] definierten, reellwertigen und stetigen Funktionen werden die Operationen $(f_1+f_2)(x)=f_1(x)+f_2(x)$ und $(\lambda f)(x)=\lambda f(x)$ erklärt. Man überprüfe folgende Funktionensysteme auf lineare Unabhängigkeit:
 - (a) $\{1, e^x, e^{2x}\}$, (b) $\{1, \cos x, \cos 2x, \cos^2 x\}$
 - (c) **(HA)** $\{1, \sin x, \cos x\}$, (d) **(HA)** $\{\sin x, \cos x, \tan x\}$.

Zusatz: Zeigen Sie die lineare Unabh. von $\{\sin kx, k = 0, \dots, N\}$ im Raum $C[0, 2\pi]$.

- 3. Es seien $g_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ und $g_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ sowie $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - (a) Man zeige, dass jedes Element von \mathbb{R}^2 eine Linearkombination von g_1 und g_2 ist.
 - (b) **(HA)** Stellen Sie die Vektoren $e_1 + 2e_2$ und $e_1 2e_2$ in der Basis $\{g_1, g_2\}$ dar.
- 4. Seien $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ und $g_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $g_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $g_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
 - (a) Man zeige, dass sowohl $\{e_1, e_2, e_3\}$ als auch $\{g_1, g_2, g_3\}$ eine Basis im \mathbb{R}^3 bilden und stelle $x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ in beiden Basen dar.
 - (b) **(HA)** Ist das System $\{g_1, g_1 + g_2, g_2 + g_3\}$ eine Basis im \mathbb{R}^3 ?
- 5. Es seien $a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$ und $b = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}^T$.
 - (a) Man ergänze die Vektoren a und b zu einer Basis im \mathbb{R}^3 .
 - (b) Geben Sie alle Vektoren $c \in \mathbb{R}^3$ an, die zusammen mit a und b eine Basis im \mathbb{R}^3 bilden.
- 6. **(HA)** Es seien R ein Ring und M, N nichtleere Mengen mit $N \subset M$. Man zeige, dass die Menge $\{f \in R^M : f(x) = 0 \mid \forall x \in N\}$ ein Untermodul von R^M ist.
- 7. Es sei $\mathbb{R}_n[t]$ wie oben definiert, und es seien $\mathbb{G}_n[t] = \{p(t) \in \mathbb{R}_n[t] : p(-t) = p(t)\}$ und $\mathbb{U}_n[t] = \{p(t) \in \mathbb{R}_n[t] : p(-t) = -p(t)\}$. Man zeige, dass $\mathbb{R}_n[t] = \mathbb{G}_n[t] \bigoplus \mathbb{U}_n[t]$ gilt.
 - **(HA)** Sei $M = \{p(t) \in \mathbb{R}_n[t] : p(0) = p(1) = 0\}$. Berechnen Sie die Dimension von M.
- 8. **(HA)** Für welche reellen Zahlen a, b, c, d, e, f bilden folgende Vektoren eine Basis des \mathbb{R}^4 :

$$\begin{bmatrix} 1 & a & b & c \end{bmatrix}^T$$
, $\begin{bmatrix} 0 & 1 & d & e \end{bmatrix}^T$, $\begin{bmatrix} 0 & 0 & 1 & f \end{bmatrix}^T$, $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$

9. (HA) Für welche reellen Zahlen λ sind die folgenden Vektoren linear unabhängig:

$$\left[\begin{array}{cccc} 1 & \lambda + 1 & -2\end{array}\right]^T, \ \left[\begin{array}{cccc} 1 & 0 & \lambda^2 + \lambda - 2\end{array}\right]^T, \ \left[\begin{array}{cccc} \lambda & -4 & \lambda^3 + 2\,\lambda + 1\end{array}\right]^T$$

- 10. Man untersuche die folgenden Abbildungen auf Linearität:
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $x \mapsto a \ (a \in \mathbb{R}^3 \text{ konstant})$
 - (b) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $x \mapsto x + a$ $(a \in \mathbb{R}^3 \text{ konstant})$
 - (c) **(HA)** $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $x \mapsto \alpha x$ ($\alpha \in \mathbb{R}$ konstant)
 - (d) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^1$, $[x_1, x_2, x_3]^T \mapsto x_1 + 2x_2 + 3x_3$
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^1$, $[x_1, x_2, x_3]^T \mapsto x_1^2 + 2x_2 + 3x_3$
 - (f) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $[x_1, x_2]^T \mapsto [x_1 + x_2, x_1 x_2]^T$
 - (g) **(HA)** $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, [x_1, x_2]^T \mapsto [x_1^2 x_2^2, 0]^T$
 - (h) **(HA)** $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $[x_1, x_2]^T \mapsto [(x_1 + 1)^2 (x_1 1)^2, 0]^T$

Zusatz: Im Falle der Linearität gebe man die Matrixdarstellung der Abbildung f (siehe Abschnitt 6.1) bezüglich der kanonischen Basis an.

- 11. Man bestimme $\ker f$ und **(HA)** die Matrixdarstellung (siehe Abschnitt 6.1) bezüglich der kanonischen Basis für folgende lineare Abbildungen:
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $[x_1, x_2]^T \mapsto [x_1, 0]^T$
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $[x_1, x_2]^T \mapsto [-x_2, x_1]^T$
 - (c) $f: \mathbb{R}_n[t] \longrightarrow \mathbb{R}_n[t]$, $p(t) \mapsto p'(t)$ (p'(t) bezeichnet die Ableitung von p(t) nach t)
 - (d) $f: \mathbb{R}_n[t] \longrightarrow \mathbb{R}, p(t) \mapsto p(0)$
- 12. Die Menge $T_n = \left\{ \sum_{k=-n}^n a_k t^k : a_k \in \mathbb{C}, \ t = \cos \varphi + \mathbf{i} \sin \varphi \right\}$ der trigonometrischen Poly-

nome vom Grad $\leq n \in \mathbb{N}$ betrachten wir als Teilmenge des \mathbb{C} -Vektorraumes $\mathbb{C}^{\mathbb{T}}$ der Abbildungen $f: \mathbb{T} \to \mathbb{C}$, wobei $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ den Einheitskreis bezeichnet. Man zeige, dass T_n ein \mathbb{C} -Vektorraum ist und bestimme dessen Dimension.

- 13. Man bestimme die Dimension des \mathbb{R} bzw. \mathbb{C} -Vektorraumes der komplexen Zahlen, versehen mit der dort üblichen Addition und
 - (a) der üblichen Multiplikation mit reellem λ ,
 - (b) der üblichen Multiplikation mit komplexem λ .

Man gebe jeweils eine Basis an und stelle die Zahl $z = \frac{3+\mathbf{i}}{5-2\mathbf{i}}$ in dieser Basis dar.

- 14. Man gebe die Matrixdarstellung (bzgl. der Standardbasis des \mathbb{R}^2) folgender linearer Operatoren an:
 - (a) Drehung der Ebene um den Winkel φ um den Ursprung,
 - (b) Spiegelung an der Achse die durch den Ursprung geht und mit der positiven x-Achse den Winkel ψ einschliet.

Zeigen Sie: Jede Drehung der Ebene kann als Hintereinanderausführung zweier Spiegelungen erzeugt werden.

15. **(HA)** Man zeige, dass $B = \{(t-1)^2, t^2, (t+1)^2\}$ eine Basis des $\mathbb{R}_2[t]$ ist und (**Zusatz**) bestimme die Matrixdarstellung des Differentialoperators bezüglich dieser Basis.