Lineare Algebra/Analytische Geometrie für Physiker

1. Übung

1. Geben Sie folgende Mengen mit Hilfe ihrer Grundmenge und der Eigenschaft ihrer Elemente an:

$$M_1 = \{2, 4, 6, 8, 10, \dots\}, M_2 = \{1, 4, 9, 16, 25, \dots\} (\mathbf{HA}),$$

$$M_3 = \{2, 4, 8, 16, 32, \dots\} (\mathbf{HA}),$$

$$M_4 = \left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots\right\}, M_5 = \{-1, 1\}, M_6 = [-1, 1],$$

$$M_7 = \{2, 3, 5, 7, 11, 13, 17, \dots\}, M_8 = \{-4, -2, 2, 4\} (\mathbf{HA}).$$

2. Geben Sie folgende Mengen (wenn möglich) durch Aufzählung ihrer Elemente an:

$$M_{1} = \{x \in \mathbb{Z} : x = 2g, g \in \mathbb{Z}\} \cap \{x \in \mathbb{Z} : x = 3g, g \in \mathbb{Z}\} ,$$

$$M_{2} = \{x \in \mathbb{Z} : x = 2g, g \in \mathbb{Z}\} \cup \{x \in \mathbb{Z} : x = 3g, g \in \mathbb{Z}\} ,$$

$$M_{3} = \{x \in \mathbb{R} : (x+1)^{3} = x^{3} + 1\} , M_{4} = \{x \in \mathbb{R} : \sin x = \cos x\} (\mathbf{HA}) ,$$

$$M_{5} = \{x \in \mathbb{R} : e^{x} = 0\} , M_{6} = \{x \in \mathbb{R} : \sin x = -\cos x\} (\mathbf{HA}) ,$$

$$M_{7} = \{x \in \mathbb{R} : x^{2} + 1 + 2x = (x+1)^{2}\} (\mathbf{HA}) ,$$

$$M_{8} = \{x \in \mathbb{R} : \sqrt{x^{2} - 1} = x - 1\} , M_{9} = \{x \in \mathbb{Q} : x^{2} = 3\} .$$

- 3. Welche Beziehungen (Inklusionen) bestehen zwischen (Grundmenge sei stets die Menge \mathbb{R} der reellen Zahlen)
 - (a) der Lösungsmenge der Gleichung $\sin \frac{x}{3} \cdot \sin \frac{x}{5} = 0$, der Lösungsmenge der Gleichung $\sin \frac{x}{3} = 0$ und der Lösungsmenge der Gleichung $\sin \frac{x}{5} = 0$,
 - (b) **(HA)** der Lösungsmenge der Gleichung $2\sin^2 x = 1$ und der Lösungsmenge der Gleichung $\sin x = \frac{1}{\sqrt{2}}$?
- 4. Bilden Sie für die Mengen $I=\{a\}$ und $M=\{\ell,m,n\}$ die Mengen $I\times M$, $M\times I$ und M^2 .
- 5. Es seien A, B, C beliebige Mengen. Zeigen Sie die Gültigkeit folgender Gleichungen:
 - (a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
 - (b) **(HA)** $A = (A \cap B) \cup (A \setminus B)$,
 - (c) **(HA)** $A \cap (B \setminus C) = (A \cap B) \setminus C$,
 - (d) $A\Delta B = (A \cup B) \setminus (A \cap B)$, wobei $A\Delta B := (A \setminus B) \cup (B \setminus A)$ die sog. symmetrische Differenz zweier Mengen A und B bezeichnet,
 - (e) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.
- 6. Für t > 0 sei $M_t = \{x \in \mathbb{R} : 0 < x \le t\}$. Bestimmen Sie
 - (a) $\bigcup_{0 < t \le 1} M_t$, (b) $\bigcap_{0 < t \le 1} M_t$, (c) $\bigcap_{1 \le t \le 2} M_t$,
 - (d) **(HA)** $\bigcup_{0 < t < 1} M_t$, (e) **(HA)** $\bigcap_{0 < t < 1} M_t$.

7. Es seien I eine beliebige Indexmenge und $\{M_{\alpha}\}_{{\alpha}\in I}$ ein Mengensystem mit $M_{\alpha}\subset E$ für beliebiges ${\alpha}\in I$. Zeigen Sie

(a)
$$\bigcap_{\alpha \in I} M_{\alpha}^{c} = \left(\bigcup_{\alpha \in I} M_{\alpha}\right)^{c}$$
,

(b) **(HA)**
$$\bigcup_{\alpha \in I} M_{\alpha}^{c} = \left(\bigcap_{\alpha \in I} M_{\alpha}\right)^{c},$$

wobei $M_{\alpha}^c := E \setminus M_{\alpha}$ die sog. Komplementärmenge von M_{α} bzgl. der Menge E bezeichnet.

- 8. Man gebe die Potenzmenge $\mathcal{P}(M)$ und die Menge $N:=M^2$ (HA) für $M=\{1,3,5\}$ an.
- 9. Das Symbol #M bezeichne die Anzahl der Elemente einer Menge M. Man beweise, daß für jede Menge M mit # $M < \infty$ die Beziehung # $\mathcal{P}(M) = 2^{\#M}$ gilt.
- 10. Geben Sie alle Funktionen $f: I \longrightarrow M$ an für
 - (a) $I = \{a_1, a_2\}$, $M = \{1, 2\}$,
 - (b) $I = \{1\}$, $M = \{\ell, m, n\}$,
 - (c) $I = \{a, b\}$, $M = \{3\}$.
- 11. Entscheiden Sie, ob folgende Funktionen $f: A \longrightarrow B$ injektiv, surjektiv, bijektiv sind:
 - (a) $A = B = \mathbb{R}, f(x) = e^x,$
 - (b) **(HA)** $A = \mathbb{R}$, $B = \mathbb{R}_+ := \{x \in \mathbb{R} : x \ge 0\}$, $f(x) = e^x$,
 - (c) $A = \mathbb{R}_+, B = \mathbb{R}, f(x) = \sqrt{x},$
 - (d) $A = B = \mathbb{R}$, $f(x) = \sin x$,
 - (e) **(HA)** $A = \mathbb{R} \setminus \left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\}, B = \mathbb{R}, f(x) = \tan x,$
 - (f) **(HA)** $A = B = \mathbb{N}, f(n) = n^2,$
 - (g) $A = \mathbb{N}, B = \mathbb{Q}, f(n) = \frac{1}{n},$
 - (h) $A = B = \mathbb{R}$, f(x) = |2x 4|.
- 12. Es sei $f: X \longrightarrow Y$ eine Abbildung. Man zeige:
 - (a) Aus $A \subset B \subset X$ folgt $f(A) \subset f(B)$.
 - (b) Für beliebge $A, B \subset X$ gilt $f(A \cup B) = f(A) \cup f(B)$.
 - (c) **(HA)** Es gilt $f(A \cap B) \subset f(A) \cap f(B) \ \forall A, B \in \mathcal{P}(X)$.
 - (d) **(HA)** Geben Sie ein Beispiel dafür an, dass $f(A \cap B) \neq f(A) \cap f(B)$.
 - (e) Für beliebige $A, B \subset Y$ gilt $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 13. Es seien $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ zwei Abbildungen und

$$h = q \circ f : X \longrightarrow Z, \quad x \mapsto q(f(x))$$

ihre Komposition. Zeigen Sie, dass h surjektiv (injektiv, bijektiv) ist, wenn f und g surjektiv (injektiv, bijektiv) sind. (Ist h auch unter schwächeren Vorausetzungen an f und g bijektiv?)

14. Für welche reellen Zahlen a, b, c, d ist die Abbildung

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (ax+b, cy+d)$

surjektiv, injektiv, bijektiv?

- 15. Sei S_n die Menge aller Permutationen der Ordnung n. Man bestimme $\#S_n$.
- 16. Es seien

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \quad \text{und} \quad \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}.$$

Man berechne $\sigma_1 \circ \sigma_2$ (**HA**), $\sigma_1 \circ \sigma_1$ (**HA**), $\sigma_3 \circ \sigma_2 \circ \sigma_1$ und σ_3^{-1} .

17. In der Menge $M = \{1, 2, 3, 4\}$ seien folgende Relationen R_1 bis R_6 erklärt:

$$R_1 = \{(1,1), (2,2), (3,3)\}, \quad R_2 = \{(4,4)\} \cup R_1, \quad R_3 = R_2 \cup \{(1,3)\} (\mathbf{HA}),$$

 $R_4 = R_3 \cup \{(3,1)\}, \quad R_5 = R_4 \cup \{(1,2), (2,1), (3,2), (2,3)\} (\mathbf{HA}),$
 $R_6 = R_2 \cup \{(2,3), (3,2), (1,2), (2,1)\}.$

- (a) Welche Relationen sind Äquivalenzrelationen?
- (b) Man ergänze die Relationen, die keine Äquivalenzrelationen sind, durch Hinzufügen möglichst weniger weiterer Elemente aus $M \times M$ zu einer Äquivalenzrelation.
- (c) Man bestimme jeweils alle Äquivalenzklassen.
- 18. Welche der folgenden Relationen auf der Menge X sind reflexiv, symmetrisch, transitiv?
 - (a) $X = \mathbb{N}$, $m R_a n \Leftrightarrow_{\text{def}} m + n$ ist gerade,
 - (b) **(HA)** $X = \mathbb{N}$, $m R_b n \Leftrightarrow_{\text{def}} m + n$ ist ungerade,
 - (c) $X = \mathbb{N}$, $m R_c n \Leftrightarrow_{\text{def}} |m n| \leq 2$,
 - (d) $X = \mathbb{N}$, $m R_d n \Leftrightarrow_{\text{def}} \frac{m}{n}$ ist ganzzahlige Potenz von 2,
 - (e) $X = \mathbb{N}$, $m R_e n \Leftrightarrow_{\text{def}} m | n$
 - (f) $X = \mathbb{R}$, $x R_f y \Leftrightarrow_{\text{def}} e^x = e^y$,
 - (g) **(HA)** $X = \mathbb{R}$, $x R_q y \Leftrightarrow_{\text{def}} x^2 = y^2$,
 - (h) $X = \mathbb{Z}$, $a R_h b \Leftrightarrow_{\text{def}} 4 | (a b)$,
 - (i) **(HA)** $X = \mathbb{N}$, $m R_i n \Leftrightarrow_{\text{def}} mn$ ist ungerade,
 - (j) $X = \mathbb{R}$, $x R_i y \Leftrightarrow_{\text{def}} x \leq y$.
- 19. Zeigen Sie, dass die Relation $(a_1, b_1)R(a_2, b_2) \Leftrightarrow_{\text{def}} a_1b_2 = a_2b_1$ auf \mathbb{N}^2 eine Äquivalenzrelation ist und dabei jede Äquivalenzklasse mit einer positiven rationalen Zahl identifiziert werden kann.
- 20. Es sei $P \subset \mathcal{P}(M)$ ein System paarweise disjunkter, nichtleerer Teilmengen von M mit

$$\bigcup_{A\in P}A=M\,,$$

d.h. P ist eine Partition von M. Die Relation $R \subset M \times M$ sei definiert durch

$$(x,y) \in R \Leftrightarrow_{\text{def}} \exists A \in P : x \in A \text{ und } y \in A.$$

Man zeige, dass R eine Äquivalenzrelation ist.