

Fakultät für Mathematik

Prof. Dr. Peter Junghanns

Chemnitz, 13. Februar 2008

Prüfungsklausur Algebra I für Physiker

• **Arbeitszeit**: 90 min, 9:00–10:30

• Hilfsmittel: dünne Formelsammlung (kein Taschenrechner)

• Der Lösungsweg sollte klar erkennbar sein. Alle Aussagen sind zu begründen!

Viel Erfolg!

- 1. Gilt im Allg. die Mengengleichheit $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$? Begründen Sie Ihre Aussage **ohne** Verwendung eines Venn-Diagramms!
- 2. (a) Wann heißt eine Funktion

$$f: X \longrightarrow Y, \quad x \mapsto f(x)$$

injektiv, surjektiv bzw. bijektiv?

- (b) Untersuchen Sie folgende Funktionen auf diese Eigenschaften:
 - (b1) $f_1: \mathbb{C} \to \mathbb{C}, \quad f(z) = z^6 1,$
 - (b2) $f_2: \mathbb{R} \to \mathbb{R}, \quad f(z) = z^6 1,$
 - (b3) $f_3:(0,\infty)\to(-1,\infty), \quad f(z)=z^6-1.$
- (c) Bestimmen Sie die Menge N der Lösungen der Gleichung $f_1(z) = 0$ und zeigen Sie, dass diese mit der üblichen Multiplikation komplexer Zahlen eine Gruppe bildet.
 - \mathbf{Zusatz} : Ist N zyklisch? Wenn ja, geben Sie alle Elemente an, die N erzeugen!
- (d) Zeigen Sie, dass durch

$$z_1 R z_2 \Leftrightarrow_{\text{def}} z_1 z_2^{-1} \in \mathbb{R}$$

eine Äquivalenzrelation auf N erklärt ist. Geben Sie die Klasseneinteilung an!

Bitte wenden!

3. Für welche komplexen Zahlen $z \in \mathbb{C}$ (in algebraischer Darstellung) gilt

(a)
$$z = \frac{(1+\mathbf{i})^{10}}{1-\mathbf{i}}$$
, (b) $z(z-4\mathbf{i}) = 4$, (**Zusatz**) $\left|\frac{\bar{z}}{z}\right| + 1 = z$?

- 4. Es seien g_P , g_Q und g_R drei Geraden, die jeweils durch den Koordinatenursprung und den Punkt P(1,1,1), Q(1,2,1) bez. R(2,2,0) verlaufen. Desweiteren enthalte die Ebene E_1 die Geraden g_P und g_Q , und die Ebene E_2 enthalte g_P und g_R .
 - (a) Unter welchem Winkel schneiden sich E_1 und E_2 ?
 - (b) Bestimmen Sie den Abstand von R zu E_1 sowie den Lotfußpunkt von R auf E_1 .
 - (c) Bestimmen Sie das Volumen der durch $P,\ Q,\ R$ und den Ursprung gegebenen 3-seitigen Pyramide.
- 5. $\mathbb{R}_4[x] = \{p(x) = \sum_{i=0}^4 a_i x^i : a_0, \dots, a_4 \in \mathbb{R}\}$ ist die Menge aller Polynome mit reellen Koeffizienten vom Grad höchstens 4.
 - (a) Überprüfen Sie, dass die Menge

$$W = \{ p \in \mathbb{R}_4[x] : p(\pi) = 0 \},\,$$

versehen mit den üblichen Operationen

$$(p+q)(x) = p(x) + q(x), \quad (\alpha p)(x) = \alpha p(x) \qquad (p, q \in W, \alpha \in \mathbb{R}),$$

einen \mathbb{R} -Vektorraum bildet.

- (b) Wann heißt eine Teilmenge $B = \{p_1, \dots, p_m\} \subset W$ Basis des Vektorraums W?
- (c) Bestimmen Sie eine Basis von W.

Punktbewertung der einzelnen Aufgaben:

1 411	ILU O	O *** CI	Carry	5 40.	. 0111	20111	.011 1	-415						
1			2				3			4			5	
	a	b	c	\mathbf{Z}	d	a	b	\mathbf{Z}	a	b	c	a	b	c
3	2	3	4	1	4	2	2	1	3	2	1	2	2	2

Gesamtpunktzahl: 32+2Z

Note	1,0	1,3	1,7	2,0	2,3	2,7	3,0	3,3	3,7	4,0
Punkte	30	29	27	25	24	21	19	17	14	13