Prof. Dr. Peter Junghanns Dr. Ralf Hielscher Prof. Dr. Thomas Kalmes

Übungen zur Vorlesung Analysis 2

http://www.tu-chemnitz.de/~peju/

Übungsblatt 8 - Differentialrechnung für Funktionen mehrerer Veränderlicher

Aufgabe 1: Sei $A \in \mathbb{R}^{n \times n}$ eine orthogonale Matrix, d.h. A ist invertierbar und es gilt $A^{-1} = A^T$. Zeigen Sie $\sigma(A) \subset \{z \in \mathbb{C} \mid |z| = 1\}$

Aufgabe 2: Berechnen Sie das Spektrum $\sigma(A)$ und die Norm ||A|| der folgenden Matrizen

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 b) $\mathbf{A} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ c) $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Aufgabe 3: Betrachten Sie zu $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ und $\boldsymbol{b} \in \mathbb{R}^n$ das Funktional

$$F \colon \mathbb{R}^n o \mathbb{R}, \quad F(oldsymbol{x}) = rac{1}{2} oldsymbol{x}^T oldsymbol{A} oldsymbol{x} + oldsymbol{b}^T oldsymbol{x}.$$

- a) Zeigen Sie, dass F in jede Richtung $e \in \mathbb{R}^n$ differenzierbar ist und berechnen Sie die entsprechende Richtungsableitung.
- b) Ist F differenzierbar? Geben Sie gegebenfalls F'(x) an.
- c) Es seien $N:=\{\boldsymbol{x}\in\mathbb{R}^n:F(\boldsymbol{x})=0\}$ und $G:\mathbb{R}^n\backslash N\to\mathbb{R}, G(\boldsymbol{x})=\frac{1}{F(\boldsymbol{x})}$. Ist G differenzierbar? Können Sie $G'(\boldsymbol{x})$ angeben, falls G in \boldsymbol{x} differenzierbar ist?

Aufgabe 4: Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(\boldsymbol{x}) = egin{cases} rac{x_1 x_2^6}{x_1^2 + x_2^4}, & \boldsymbol{x}
eq 0, \ 0, & \boldsymbol{x} = 0. \end{cases}$$

Zeigen Sie, dass für $\boldsymbol{x} \in \mathbb{R}^2$ und $\boldsymbol{r} \in \mathbb{R}^2 \setminus \{0\}$ die Funktion $g_{\boldsymbol{x},\boldsymbol{r}}(t) := f(\boldsymbol{x} + t\boldsymbol{r})$ beliebig oft differenzierbar ist. Insbesondere ist f damit in jedem \boldsymbol{x} in jede Richtung differenzierbar. Ist f differenzierbar?

Aufgabe 5:

a) Bestimmen Sie jeweils den Gradienten der Funktion $f: U \to \mathbb{R}$.

i)
$$U = \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = 3x_1^2 x_2^4 x_3 - 8x_2 + x_1^{14} - x_2 x_3 + 1$,

ii)
$$U = (0, \infty) \times \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = \sin(\sqrt{x_1}) \exp(x_2^2 - x_3)$,

iii)
$$U = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 \notin \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}\}, f(x_1, x_2) = \frac{\tan(x_1 x_2) \ln(1 + x_1^2)}{1 + x_2^2}.$$

b) Bestimmen Sie für jedes f aus Teil a) die Richtungsableitung von f an $x_0 \in U$ in Richtung e.

Aufgabe 6: Es sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und es existiere $k \in \mathbb{N}$, so dass $f(t\boldsymbol{x}) = t^k f(\boldsymbol{x})$ für alle $\boldsymbol{x} \in \mathbb{R}^n$ und t > 0. Zeigen Sie

$$\forall x \in \mathbb{R}^n : f'(x)x = kf(x).$$

Aufgabe 7: Bestimmen Sie die lokalen Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2) = (x_1^2 + 1)e^{x_2^2}$.

Aufgabe 8: Gegeben seien

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2) = x_1^2 - x_2$$

sowie

$$h: \mathbb{R}^2 \to \mathbb{R}, h(x_1, x_2) = (1 - x_1^2 - x_2^2)(1 - x_2).$$

Gesucht ist das Minimum von f unter der Nebenbedingung $h(x_1, x_2) = 0$.

Hausaufgaben

Abgabe 12.07.18

Aufgabe 1: Sei $A \in \mathbb{R}^{n \times n}$ eine Projektion, d.h. $A^2 = A$. Zeigen Sie $\sigma(A) \subset \{0,1\}$.

2 Punkte

Aufgabe 2: Berechnen Sie die Ableitung der folgenden Funktionen

3 Punkte

a)
$$f: \mathbb{R} \to \mathbb{R}^4$$
, $f(x) = (3x^2, \sin 3x, 42, \cos^2 x)^T$,

b)
$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
, $g(x, y, z) = (4x^2y^3, xye^z, e^{xy})^T$,

c)
$$h: (0, \infty) \times \mathbb{R}^2 \to \mathbb{R}, h(x, y, z) = \sin(zx) \ln(x + y^2).$$

Aufgabe 3: Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sqrt{|xy|}$ stetig und partiell 2 Punkte differenzierbar ist, aber nicht differenzierbar ist.

Aufgabe 4: Betrachten Sie die Funktion

2 Punkte

$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = -4x^2 - 2y^2 - \frac{1}{2}z^2 + 4xy + yz + 100z.$$

Geben Sie alle stationären Punkte von f an. Bei welchen handelt es sich um lokale Extremstellen?

Aufgabe 5: Berechnen Sie mit Hilfe der Definition die Ableitung der Funktion

2 Punkte

$$F: \mathbb{R}^n \to \mathbb{R}^{n \times n}, \quad F(\boldsymbol{x}) = \boldsymbol{x} \boldsymbol{x}^T.$$

Aufgabe 6: Gegeben seien

2 Punkte

$$f: \mathbb{R}^3 \to \mathbb{R}, f(x_1, x_2, x_3) = x_2$$

sowie

$$h_1: \mathbb{R}^3 \to \mathbb{R}, h_1(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 1 \text{ und } h_2: \mathbb{R}^3 \to \mathbb{R}, h_2(x_1, x_2, x_3) = x_3 - \frac{1}{2}.$$

Gesucht ist das Minimum von f unter den Nebenbedingungen $h_1(x_1, x_2, x_3) = 0$ und $h_2(x_1, x_2, x_3) = 0$.