Prof. Dr. Peter Junghanns Dr. Ralf Hielscher Prof. Dr. Thomas Kalmes

Übungen zur Vorlesung Analysis 2

http://www.tu-chemnitz.de/~peju/

Übungsblatt 6 - Integration

Aufgabe 1: Zeigen Sie, dass für zwei integrierbare Funktionen $f,g:[a,b]\to\mathbb{R}$ auch die Funktionen $\max(f,g)$ und $\min(f,g)$ integrierbar sind.

Aufgabe 2: Finden Sie eine Folge integrierbarer Funktionen $f_n : [0,1] \to \mathbb{R}$ welche punktweise gegen eine integrierbare Funktion $f:[0,1]\to\mathbb{R}$ konvergiert, für welche aber nicht

$$\int_0^1 f(t) dt = \lim_{n \to \infty} \int_0^1 f_n(t) dt.$$

gilt

Aufgabe 3: Untersuchen Sie die folgenden Funktionen $f:[0,1]\to\mathbb{R}$ auf Integrierbarkeit:

a)
$$f(x) = \begin{cases} 1, & x = 0, \\ 0, & x \neq 0, \end{cases}$$
 c) $f(x) = \begin{cases} \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ e) $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

b) $f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$ d) $f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$

Aufgabe 4: Finden Sie eine differenzierbare Funktion $f:[0,1]\to\mathbb{R}$ so, dass $f':[0,1]\to\mathbb{R}$ nicht integrierbar ist.

Aufgabe 5: Zeigen Sie, ist $f:[a,b]\to\mathbb{C}$ eine stetige Funktion mit

$$\int_a^b |f(x)| \, \mathrm{d}x = 0,$$

so ist f(x) = 0 für alle $x \in [a, b]$. Ist die Voraussetzung der Stetigkeit notwendig oder reicht es die Integrierbarkeit von f zu fordern?

Aufgabe 6: Zeigen Sie, dass zwei integrierbare Funktionen, welche bis auf abzählbar viele Stellen übereinstimmen, das gleiche Integral haben.

Aufgabe 7: Berechnen Sie die folgenden Integrale

a)
$$\int \frac{dx}{(x^2-1)(x^2+1)}$$
,

c)
$$\int \frac{1+x}{1-x} dx,$$

b)
$$\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx,$$

d)
$$\int \frac{2x+5}{x^2+4x+6} dx$$
.

Aufgabe 8: Bestimmen Sie $\int \frac{dx}{\cos x}$ und verwenden Sie $\int \frac{dx}{\cos^2 x} = \tan x$ und partielle Integration, um eine Rekursionsformel für

$$I_n(x) = \int \frac{dx}{\cos^n x} (n \in \mathbb{N})$$

herzuleiten.

Aufgabe 9: Berechnen Sie

a)
$$\int_{-1}^{1} x |x| \, dx$$

a)
$$\int_{1}^{1} x|x| dx$$
, b) $\int_{2}^{3.5} \frac{dx}{\sqrt{5+4x-x^2}}$, c) $\int_{0}^{\pi/4} \tan(x) dx$, d) $\int_{0}^{\pi/4} \frac{x}{\cos^2 x} dx$.

d)
$$\int_0^{\pi/4} \frac{x}{\cos^2 x} \, dx$$

Aufgabe 10: Zeigen Sie, dass für eine stetige Funktion $f: [0,1] \to \mathbb{R}$ gilt

a)
$$\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$$
,

a)
$$\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$$
, b) $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$.

Aufgabe 11: Bestimmen Sie die folgenden Stammfunktionen durch elementare Zurückführung auf Grundintegrale

a)
$$\int \frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1-x^4}} dx$$
, b) $\int \frac{e^{3x}+1}{e^x+1} dx$,

c)
$$\int \tan^2 x \, dx$$
.

Aufgabe 12: Bestimme Sie mit Hilfe geeigneter Substitutionen

a)
$$\int \frac{x}{\sqrt{1-x^2}} \, dx$$

b)
$$\int \frac{1}{r^2} \sin \frac{1}{r} dx$$

a)
$$\int \frac{x}{\sqrt{1-x^2}} dx$$
, b) $\int \frac{1}{x^2} \sin \frac{1}{x} dx$, c) $\int \frac{dx}{(x \ln x) \ln(\ln x)}$, d) $\int \frac{dx}{\sin x}$.

Aufgabe 13: Bestimmen Sie mittels partieller Integration

a)
$$\int \sqrt{x} \ln^2 x \, dx$$

a)
$$\int \sqrt{x} \ln^2 x \, dx$$
, b) $\int \sin x \ln(\tan x) \, dx$, c) $\int x \ln \frac{1+x}{1-x} \, dx$.

c)
$$\int x \ln \frac{1+x}{1-x} \, dx$$

Aufgabe 14: Berechnen Sie mittels Partialbruchzerlegung

a)
$$\int \frac{2x+3}{(x-2)(x+5)} dx$$
, b) $\int \frac{x^4 dx}{x^4 + 5x^2 + 4}$, c) $\int \frac{dx}{x^4 + 1}$,

b)
$$\int \frac{x^4 dx}{x^4 + 5x^2 + 4}$$

c)
$$\int \frac{dx}{x^4 + 1},$$

Aufgabe 15: Bestimmen Sie

a)
$$\lim_{x \to \infty} \frac{1}{x} \int_a^x \arctan y \, dy$$
,

b)
$$\lim_{x \to 0} x \int_{x}^{1} \frac{\cos t}{t^2} dt.$$

Aufgabe 16: Es sei $f\colon [a,b] \to \mathbb{R}$ stetig und konkav. Zeigen Sie die Abschätzung

$$(b-a)\frac{f(a)+f(b)}{2} \le \int_a^b f(x) \, dx \le (b-a) \, f\left(\frac{a+b}{2}\right).$$

Aufgabe 17: Begründen Sie, warum der Grenzwert

$$\lim_{a \to \infty} \int_{-a}^{a} \sin x \, \mathrm{d}x$$

existiert, aber nicht das uneigentliche Integral

$$\int_{-\infty}^{\infty} \sin x \, \mathrm{d}x.$$

Hausaufgaben

Abgabe 25.06.2018

Aufgabe 1: Man bestimme mit Hilfe (elementarer) Zurückführung auf Grundintegrale

4 Punkte

a)
$$\int (1-x)(1-2x)(1-3x) dx$$
,

c)
$$\int \frac{\sqrt{x} - 2\sqrt[3]{x^2} + 1}{\sqrt[4]{x}} dx$$
,

b)
$$\int \frac{x+1}{\sqrt{x}} \, dx \,,$$

d)
$$\int \frac{(1-x)^3}{x\sqrt[3]{x}} dx.$$

Aufgabe 2: Berechnen Sie die folgenden Integrale

11 Punkte

a)
$$\int \frac{\arctan x}{1+x^2} \, dx \,,$$

e)
$$\int \frac{dx}{\sinh x}$$
,

i)
$$\int \frac{dx}{2\sin 2x},$$

$$b) \int \frac{x \, dx}{3 - 2x^2},$$

$$f) \int x^2 e^{-2x} \, dx \,,$$

j)
$$\int (\arcsin x)^2 dx$$
,

c)
$$\int \frac{e^x}{2 + e^x} \, dx \,,$$

g)
$$\int x^2 \sin 2x \, dx \,,$$

k)
$$\int x (\arctan x)^2 dx$$
.

$$d) \int x e^{-x^2} dx,$$

h)
$$\int \arctan x \, dx$$
,

k)
$$\int x (\arctan x)^2 dx$$

Aufgabe 3: Entwickeln Sie eine Rekursionsformel zur Berechnung von

2 Punkte

$$S_n(x) = \int \sin^n x dx \,.$$