Formelsammlung: Mathematik für Informatiker

Daniel Klaffenbach

14. Februar 2011

Inhaltsverzeichnis

1	Kon	nplexe Zahlen	3			
	1.1	Allgemeines	3			
	1.2	Rechenregeln	3			
	1.3	Potenzen	3			
2	Mat	Matrizen				
	2.1		4			
	2.2		4			
	2.3		4			
	2.4	Symmetrie von Matrizen	4			
	ъ. с		_			
3		-0	6			
	3.1	9	6			
	3.2		6			
	3.3	Symmetrie von Funktionen	6			
4	Rela	ationen	7			
	4.1		7			
	4.2		7			
	4.3	Ordungsrelationen	7			
	4.4	Extremale Elemente	7			
5	A lø	ebraische Operationen	8			
	5.1	•	8			
	5.2		8			
	5.3	Rechengesetze (allgemein)	8			
	.		_			
6			9			
	6.1	9 0	9			
	6.2		9			
	6.3		9			
	6.4	Operatoren und Projektoren	9			
7	Ana		1			
	7.1	Skalarprodukt				
	7.2	Vektorprodukt (Kreuzprodukt)				
	7.3	Projektion eines Vektors auf einen anderen				
	7.4	Lagebeziehungen				
		7.4.1 Lagebeziehungen zweier Geraden	12			
	7.5	Schnittwinkel	12			
	7.6		12			
	7.7	Rotationen	12			
8	Line	eare Gleichungssysteme 1	3			
9	Eige	enwertprobleme 1	3			
			13			
	0.1	•	13			

10	Differentialrechnung	14
	10.1 Kurvendiskussion	14
	10.2 Spezielle Grenzwerte	14
	10.3 Regel von l'Hospital	14
	10.4 Richtungsableitungen	14
	10.5 Tangentialebene	14
	Integralrechnung	15
	11.1 Grundintegrale	15
12	Vektoranalysis	15
	12.1 Polarkoordinaten	15
	12.2 Vektor- und Skalarfelder	
13	Zufällige Ereignisse und Wahrscheinlichkeiten	16
	13.1 Grundelemente aus Mengenlehre und Kombinatorik	16
	13.2 Kenngrößen	
	13.3 Zufällige Ereignisse	
	13.4 Bedingte Wahrscheinlichkeiten	
	13.5 Binomialverteilung	
	13.6 Poissonverteilung	
	13.7 Stetige Zufallsgrößen	
	13.8 Exponentialverteilung	
	13.9 Normalverteilung	
	13.10Funktionen von Zufallsgrößen	
	13.11Grenzverteilungssätze	
14	Mathematische Statistik	18
	14.1. Statistische Prüfverfahren	18

 $http://www.tu\text{-}chemnitz.de/{\sim}klada$

 $^{^{1}}$ Diese Formelsammlung erhebt weder Anspruch auf Vollständigkeit noch Richtigkeit. Der Autor bietet sie kostenlos und ohne jegliche Gewährleistung an.

1 Komplexe Zahlen

1.1 Allgemeines

- $i = \sqrt{-1}$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$
- $z = a + i \cdot b = r \cdot (\cos \varphi + i \cdot \sin \varphi) = r \cdot e^{i\varphi}$
- $\bullet \ \overline{z} = a i \cdot b$
- $a = r \cos \varphi \ b = r \sin \varphi$

1.2 Rechenregeln

- $\bullet \ (\overline{z_1 + z_2}) = \overline{z_1} + \overline{z_2}$
- $\bullet \ (\overline{z_1 z_2}) = \overline{z_1} \cdot \overline{z_2}$
- $z + \overline{z} = 2a$, $z \overline{z} = i \cdot 2b$
- $z \cdot \overline{z} = a^2 + b^2$
- $|z| = r = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$

1.3 Potenzen

- $\bullet \ z^{-1} = \frac{\overline{z}}{|z|^2}$
- $z^2 = (a+i \cdot b)^2 = a^2 b^2 + i \cdot 2ab$
- $z^3 = (a+i \cdot b)^3 = a^3 3ab^2 + i \cdot (3a^2b b^3)$
- $z^4 = (a+i\cdot b)^4 = a^4 6a^2b^2 + b^4 + i(4a^3b 4ab^3)$
- $z^n = re^{i\varphi} \rightarrow n$ -Lösungen: $z_k = \sqrt[n]{r}e^{i\varphi_k}$ $\varphi_k = \frac{\varphi}{n} + \frac{2\pi(k-1)}{n}$

2 Matrizen

2.1 Rechengesetze (allgemein)

- A + B = B + A (kommutativ)
- (A+B)+C=A+(B+C) (assoziativ)
- \exists **Nullmatrix** O: A + O = A
- zu jeder Matrix $A = (a_{ij})$ existiert eine Matrix $(-A) = (-a_{ij})$ mit A + (-A) = O
- $(\lambda \mu) \cdot A = \lambda \cdot (\mu A) \quad \forall A \in \mathbf{K}^{m \times n} \quad \forall \lambda, \mu \in \mathbf{K}$
- $(\lambda + \mu)A = \lambda A + \mu A$
- $\lambda(A+B) = \lambda A + \lambda B$
- $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- $(A+B) \cdot C = AC + BC$
- $C \cdot (A+B) = CA + CB$
- $(\lambda A)B = \lambda(AB) = A(\lambda B)$
- Für jede $(m \times n)$ Matrix gibt es eine Matrix $I_n \in \mathbf{K}^{n \times n}$ und $I_m \in \mathbf{K}^{m \times m}$, sodass gilt: $A \cdot I_n = A \cdot I_m = A$. $\Rightarrow (m \times m)$ bzw. $(n \times n)$ Einheitsmatrizen

2.2 Rechengesetze für spezielle Matrizen

- $\bullet \ A^{-1} = \frac{1}{\det A} \cdot A^T$
- $\bullet \ (A^T)^T = A$
- $\bullet \ (A+B)^T = A^T + B^T$
- $\bullet \ (\lambda A)^T = \lambda A^T$
- $\bullet \ (AB)^T = B^T A^T$

2.3 Eigenschaften von Matrizen

- A^T : transponierte Matrix, Spiegelung an der Hauptdiagonalen $((n \times m)$ -Matrix wird zu $(m \times n)$ -Matrix)
- $A^* = \overline{A^T}$: transponierte Matrix; bei komplexen Zahlen wird **zusätzlich** das konjugiert Komplexe gebildet
- $A \cdot A^{-1} = I = A^{-1} \cdot A$: inverse Matrix
- hermitesch: $A = A^*$ (Hauptdiagonale reell (\mathbb{R}))
- schiefhermitsch: $A^* = -A$ (Hauptdiagonale komplex (\mathbb{C}))
- unitär: $T \cdot T^* = I = T^* \cdot T$

2.4 Symmetrie von Matrizen

Eine $(n \times n)$ -Matrix ist

- symmetrisch, wenn $A = A^T \Leftrightarrow a_{ij} = a_{ji}$
- schiefsymmetrisch, wenn $A^T = -A \Leftrightarrow a_{ij} = -a_{ji}$
- orthogonal, wenn $A^T \cdot A = A \cdot A^T = I$

- Jede $(n \times n)$ -Matrix lässt sich als Summe $A^+ + A^-$ schreiben mit A^+ ist symmetrisch [hermitesch] und A^- ist schiefsymmetrisch [schief hermitesch]
- $A^+ = \frac{1}{2}(A + A^*)$
- $A^- = \frac{1}{2}(A A^*)$

3 Mengenlehre

3.1 Eigenschaften

•
$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$ (Kommutativität)

•
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$ (Assoziativität)

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivität)

•
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (De Morgansche Gesetze)

•
$$A \subset B \Leftrightarrow A \cap B = A \land A \cup B = B$$

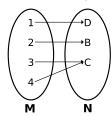
•
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

 $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

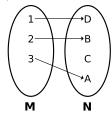
3.2 Funktionen

$$f: M \longrightarrow N$$

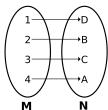
 \bullet Surjektivität: fist eine Abbildung von Mauf N



• Injektivität: f ist eine Abbildung von M in N (Allen Elementen in N wird höchstens ein Element aus M zugeordnet)



• Bijektivität: f ist eine eindeutige Abbildung von M in N (Surjektivität und Injektivität zugleich)



3.3 Symmetrie von Funktionen

- f_1 ist eine **gerade Funktion**, wenn $f_1(x) = f_1(-x)$
- f_2 ist eine **ungerade Funktion**, wenn $-f_2(x) = f_2(-x)$

4 Relationen

4.1 Eigenschaften von Relationen

- $R \subset M \times M$ heißt **reflexiv**, wenn $(x, x) \in R \quad \forall x \in M$
- $R \subset M \times M$ heißt symmetrisch, wenn $(x,y) \in R \Rightarrow (y,x) \in R \quad \forall x,y \in M$
- $R \subset M \times M$ heißt antisymmetrisch, wenn $((x,y) \in R \land (y,x) \in R) \Rightarrow x = y \quad \forall x,y \in M$
- $R \subset M \times M$ heißt **transitiv**, wenn $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R \quad \forall x,y,z \in M$

4.2 Äquivalenzrelationen

- Reflexiv, symmetrisch und transitiv
- ullet Äquivalenzklassen: Eine Äquivalenzrelation in einer Menge M bewirkt eine Aufteilung von M in nichtleere paarweise disjunkte Teilmengen

4.3 Ordungsrelationen

• Reflexiv, antisymmetrisch und transitiv

4.4 Extremale Elemente

Sei (M, \prec) eine teilweise geordnete Menge und $T \prec M$, dann gilt:

- 1. $\underline{x} \in T$ ist **kleinstes Element** in T, wenn gilt: $\underline{x} \prec x \quad \forall x \in T$ $\overline{x} \in T$ ist **größtes Element** in T, wenn gilt: $\overline{x} \succ x \quad \forall x \in T$
- 2. $\underline{a} \in T$ ist **minimales Element** in T, wenn für $\underline{\ker} \ x \in T$ gilt: $x \prec \underline{a} \ (x \neq \underline{a})$ $\overline{a} \in T$ ist **maximales Element** in T, wenn für $\underline{\ker} \ x \in T$ gilt: $\overline{a} \prec x \ (x \neq \overline{a})$
- 3. $\underline{s} \in M$ ist **untere Schranke** von T, wenn gilt: $\underline{s} \prec x \quad \forall x \in T$ $\overline{s} \in M$ ist **obere Schranke** von T, wenn gilt: $\overline{s} \succ x \quad \forall x \in T$
- 4. $\underline{g} \in M$ ist **größte untere Schranke** von T, wenn gilt: $\underline{s} \prec \underline{g} \quad \forall \underline{s} \in M$ $\overline{g} \in M$ ist **kleinste obere Schranke** von T, wenn gilt: $\overline{g} \prec \overline{s} \quad \forall \overline{s} \in M$

5 Algebraische Operationen

5.1 Algebraische Strukturen

Die folgenden Definitionen implizieren jeweils alle ihre Voranstehenden (5. impliziert 1.-4., usw.):

- 1. Algebraische Struktur: $[M,\Omega]$: die Operation Ω wird über der Menge M ausgeführt, $M \neq 0$
- 2. **Gruppoid:** Operation führt wieder in die Menge $M: a * b \in M \quad \forall a, b \in M$
- 3. Halbgruppe: * ist assoziativ: $(a*b)*c = a*(b*c) \quad \forall a,b,c \in M$
- 4. Monoid: \exists ein neutrales Element: $e = e_L = e_R$
- 5. **Gruppe:** \exists ein inverses Element: $\forall a \in M \quad \exists a^{-1} \in M \text{ mit } a * a^{-1} = a^{-1} * a = e$
- 6. Abelsche Gruppe: * ist kommutativ: $a * b = b * a \quad \forall a, b \in M$

5.2 Besondere algebraische Strukturen

- Ring: $[M, \oplus, \otimes]$ mit:
 - $[M, \oplus]$ ist Abelsche Gruppe
 - $-[M, \otimes]$ ist Halbgruppe
 - und ein Distributivgesetz gilt
- Integritätsbereich: $[M, \oplus, \otimes]$ mit:
 - $[M, \oplus]$ ist Abelsche Gruppe
 - $-[M, \otimes]$ ist kommutativer Monoid
 - frei von Nullteilern
 - und ein Distributivgesetz gilt
- Körper: $[M, \oplus, \otimes]$ mit:
 - $[M, \oplus]$ ist Abelsche Gruppe
 - $-[M \setminus \theta, \otimes]$ ist Abelsche Gruppe, wobei θ das neutrale Element von \oplus ist (Nullelement)
 - und ein Distributivgesetz gilt

5.3 Rechengesetze (allgemein)

- Kommutativgesetz: $a + b = b + a \quad \forall a, b \in M$
- Assoziativgesetz 1: $(a+b)+c=a+(b+c) \quad \forall a,b,c \in M$
- Assoziativgesetz 2: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in M$
- Distributivgesetz 1: $(a+b) \cdot c = a \cdot c + b \cdot c \quad \forall a,b,c \in M$
- Distributivgesetz 2: $a \cdot (c+b) = a \cdot c + a \cdot b \quad \forall a, b, c \in M$

6 Lineare Räume

6.1 Lineare Abhängigkeit

$$\bullet \overrightarrow{a_1} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \overrightarrow{a_2} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, \dots, \overrightarrow{a_n} = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$$

- ullet n-Vektoren heißen linear abhängig, wenn einer der Vektoren Linearkombination der anderen ist
- $\lambda_1 \cdot \overrightarrow{a_1} + \lambda_2 \cdot \overrightarrow{a_2} + ... + \lambda_n \cdot \overrightarrow{a_n} = \overrightarrow{0}$ \rightarrow linear unabhängig, wenn nur die triviale Lösung existiert ($\lambda_1 = \lambda_2 = ... = \lambda_n = 0$), sonst linear abhängig

6.2 Vektorräume

- Vektorraum: $[M, \oplus, \otimes]$ mit:
 - $[M, \oplus]$ ist Abelsche Gruppe
 - $[M, \otimes]$ ist Körper:

$$* \ \alpha \cdot x \in M \quad \forall \alpha \in K, \forall x \in M$$

$$* \alpha \cdot (x+y) = \alpha x + \alpha y$$

$$* (\alpha + \beta)x = \alpha x + \beta x \quad \forall \alpha, \beta \in K, \forall x, y \in M$$

$$* (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

*
$$\exists$$
 Einselement: $1 \cdot x = x$

6.3 Orthonormalbasis

- ullet n linear unabhängige Vektoren v bilden eine Basis B eines Raumes der Dimension n
- \rightarrow Anwendung des Gram-Schmidtschen Orthogonalisierungsverfahren zur Bestimmung der Orthonormalbasis $B_0 = \{s_1, s_2, ..., s_n\}$:

$$- s_{1} = \frac{v_{1}}{\|v_{1}\|}$$

$$- u_{2} = v_{2} - \langle v_{2}, s_{1} \rangle \cdot s_{1}$$

$$- s_{2} = \frac{u_{2}}{\|u_{2}\|}$$

$$- u_{3} = v_{3} - \langle v_{3}, s_{1} \rangle \cdot s_{1} - \langle v_{3}, s_{2} \rangle \cdot s_{2}$$

$$- s_{3} = \frac{u_{3}}{\|u_{3}\|}$$

$$\vdots$$

$$- u_{n} = v_{n} - \sum_{i=1}^{n-1} \langle v_{n}, s_{i} \rangle \cdot s_{i}$$

$$- s_{n} = \frac{u_{n}}{\|u_{n}\|}$$

6.4 Operatoren und Projektoren

• A ist ein linearer Operator, wenn gilt:

$$A(x + \tilde{x}) = Ax + A\tilde{x}$$

$$A(\lambda x) = \lambda \cdot Ax$$

• Bild:
$$Ax = z$$

• Urbild:
$$Az = x$$

$$P^2x = P(Px) = Px$$

• Orthoprojektor:

$$P^{2}x = P(Px) = Px$$

$$P^{*}x = \langle Px, y \rangle = \langle x, P^{*}y \rangle = Px$$

• Operationen mit Projektoren:

$$- \ker P: \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$- \operatorname{im} P: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$$

$$\begin{array}{c}
-im P: \\
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$$

7 Analytische Geometrie

7.1 Skalarprodukt

- $\langle \overrightarrow{a}, \overrightarrow{b} \rangle := ||\overrightarrow{a}|| \cdot ||\overrightarrow{b}|| \cdot \cos \varphi$ $\varphi := \text{Winkel zwischen } \overrightarrow{a} \text{ und } \overrightarrow{b}$ $||\overrightarrow{a}|| := a = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- Es gilt:

$$\begin{aligned} & - \left\langle \overrightarrow{a}, \overrightarrow{a} \right\rangle = ||\overrightarrow{a}|| \cdot \cos 0 = ||\overrightarrow{a}||^2 \\ & - \left\langle \overrightarrow{a}, \overrightarrow{b} \right\rangle = 0 \Leftrightarrow a = 0 \lor b = 0 \lor \overrightarrow{a} \bot \overrightarrow{b} \\ & - \left\langle \overrightarrow{a}, \overrightarrow{b} \right\rangle > 0 \Leftrightarrow 0 \le \varphi \le \frac{\pi}{2} \\ & - \left\langle \overrightarrow{a}, \overrightarrow{b} \right\rangle < 0 \Leftrightarrow \frac{\pi}{2} < \varphi \le \pi \end{aligned}$$

• Regeln:

$$\begin{split} &-\langle\overrightarrow{a},\overrightarrow{b}\rangle=\langle\overrightarrow{b},\overrightarrow{a}\rangle\\ &-\langle\lambda\overrightarrow{a},\overrightarrow{b}\rangle=\lambda\cdot\langle\overrightarrow{a},\overrightarrow{b}\rangle\\ &-\langle\overrightarrow{a}+\overrightarrow{b},\overrightarrow{c}\rangle=\langle\overrightarrow{a},\overrightarrow{c}\rangle+\langle\overrightarrow{b},\overrightarrow{c}\rangle\\ &-\langle\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b},\overrightarrow{c}\rangle=\langle\overrightarrow{a},\overrightarrow{c}\rangle+\langle\overrightarrow{b},\overrightarrow{c}\rangle\\ &-\langle\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{a}\rangle=\|\overrightarrow{a}-\overrightarrow{b}\|^2\\ &-\langle\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{a}\rangle=\langle\overrightarrow{a},\overrightarrow{a}\rangle-\langle\overrightarrow{a},\overrightarrow{b}\rangle-\langle\overrightarrow{b},\overrightarrow{a}\rangle+\langle\overrightarrow{b},\overrightarrow{b}\rangle=\|\overrightarrow{a}^2\|-2\langle\overrightarrow{a},\overrightarrow{b}\rangle+\|\overrightarrow{b}^2\| \end{split}$$

7.2 Vektorprodukt (Kreuzprodukt)

- $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$: $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$
- $||\overrightarrow{c}|| = ||\overrightarrow{a} \times \overrightarrow{b}|| = ||\overrightarrow{a}|| \cdot ||\overrightarrow{b}|| \cdot \sin \varphi$
- Es gilt:

$$\begin{aligned} & -\overrightarrow{a}\times\overrightarrow{a}=0\\ & -\overrightarrow{a}\times\overrightarrow{b}=-\overrightarrow{b}\times\overrightarrow{a}\\ & -(\lambda\overrightarrow{a})\times\overrightarrow{b}=\lambda(\overrightarrow{a}\times\overrightarrow{b})=\overrightarrow{a}\times(\lambda\overrightarrow{b})\\ & -(\overrightarrow{a}+\overrightarrow{b})\times\overrightarrow{c}=\overrightarrow{a}\times\overrightarrow{c}+\overrightarrow{b}\times\overrightarrow{c}\\ & -\overrightarrow{a}\times\overrightarrow{b}=0\Leftrightarrow\overrightarrow{a}=0\vee\overrightarrow{b}=0\vee\overrightarrow{a}\parallel\overrightarrow{b}\\ & -(\overrightarrow{a}\times(\overrightarrow{b}\times\overrightarrow{c}))=\overrightarrow{b}(\overrightarrow{a}\cdot\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}\cdot\overrightarrow{b}) \end{aligned}$$

$$\bullet \overrightarrow{a} \times \overrightarrow{b} = \det \begin{bmatrix} \alpha_1 & \beta_1 & i \\ \alpha_2 & \beta_2 & j \\ \alpha_3 & \beta_3 & k \end{bmatrix} = (\alpha_2 \beta_3 - \alpha_3 \beta_2)i - (\alpha_1 \beta_3 - \alpha_3 \beta_1)j + (\alpha_1 \beta_2 - \alpha_2 \beta_1)k$$

7.3 Projektion eines Vektors auf einen anderen

- $\overrightarrow{a} = \operatorname{proj}_{\overrightarrow{b}} \overrightarrow{a} + \operatorname{orth}_{\overrightarrow{b}} \overrightarrow{a}$
- $\operatorname{proj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{\langle \overrightarrow{a}, \overrightarrow{b} \rangle}{||\overrightarrow{b}||^2} \cdot \overrightarrow{b} = ||\overrightarrow{a}|| \cdot \cos \varphi \cdot \overrightarrow{b}$ (Parallelkomponente)
- $\operatorname{orth}_{\overrightarrow{b}}\overrightarrow{a} = \overrightarrow{a} \operatorname{proj}_{\overrightarrow{b}}\overrightarrow{a} = \frac{||\overrightarrow{a} \times \overrightarrow{b}||}{||\overrightarrow{b}||} \cdot \overrightarrow{b} = ||\overrightarrow{a}|| \cdot |\sin \varphi| \cdot \overrightarrow{b}$ (Normalkomponente)

7.4 Lagebeziehungen

$$g: \overrightarrow{x} = \overrightarrow{p_0} + \lambda \overrightarrow{r}$$
$$h: \overrightarrow{x} = \overrightarrow{p_1} + \lambda \overrightarrow{q}$$
$$\epsilon: \alpha x + \beta y + \gamma z + \delta = 0$$

7.4.1 Lagebeziehungen zweier Geraden

- Geraden liegen in einer Ebene: $\overrightarrow{r}, \overrightarrow{q}, \overrightarrow{p_1} - \overrightarrow{p_0}$ sind linear abhängig
 - Parallelität: $g||h \Leftrightarrow \overrightarrow{r} \text{ und } \overrightarrow{q} \text{ sind linear abhängig}$
 - Geraden schneiden sich: \overrightarrow{r} und \overrightarrow{q} sind linear unabhängig

7.5 Schnittwinkel

• Winkel zwischen einander schneidenden Geraden: $\cos\varphi = \frac{|\langle \overrightarrow{r}, \overrightarrow{q} \rangle|}{||\overrightarrow{r'}|| \cdot ||\overrightarrow{q}||}$

$$\cos \varphi = \frac{|\langle \overrightarrow{r}, \overrightarrow{q} \rangle|}{||\overrightarrow{r}|| \cdot ||\overrightarrow{q}||}$$

• Winkel zwischen Ebene und Gerade:
$$\sin \varphi = \frac{|\langle \overrightarrow{n}, \overrightarrow{r'} \rangle|}{||\overrightarrow{n}|| \cdot ||\overrightarrow{r'}||}$$

$$\cos \varphi = \frac{\langle \overrightarrow{n_1}, \overrightarrow{n_2} \rangle}{||\overrightarrow{n_1}|| \cdot ||\overrightarrow{n_2}||}$$

• Winkel zwischen 2 Ebenen: $\cos\varphi = \frac{\langle \overrightarrow{n_1}, \overrightarrow{n_2} \rangle}{||\overrightarrow{n_1}|| \cdot ||\overrightarrow{n_2}||} \quad \text{mit } \overrightarrow{n_1}, \overrightarrow{n_2} \text{ Normalenvektor der Ebenen}$

7.6 Abstände

• Abstand Punkt-Ebene: $dist(\overrightarrow{OP},\epsilon) = |\frac{\alpha_{\epsilon}x_P + \beta_{\epsilon}y_P + \gamma_{\epsilon}z_P + \delta}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}|$

$$dist(OP, \epsilon) = \left| \frac{1 + (-1)^{2} + (-1)^{2}}{\sqrt{\alpha^{2} + \beta^{2} + \gamma^{2}}} \right|$$

$$\begin{array}{l} \bullet \ \, \text{Abstand Punkt-Gerade:} \\ \operatorname{dist}(\overrightarrow{OP_1},g) = |\langle (\overrightarrow{p}_1 - \overrightarrow{p}_0), \frac{\overrightarrow{r'}}{||\overrightarrow{r'}||} \rangle| \end{array}$$

7.7Rotationen

$$\begin{array}{l} \bullet \ \ \text{Drehung um Winkel} \ \varphi \ \text{in} \ \mathbb{R}^2 : \\ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Drehung um Winkel φ in \mathbb{R}^3 :
 - Rotationsmatrix für die Drehung eines Punktes um die x-Achse:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

- Rotationsmatrix für die Drehung eines Punktes um die y-Achse:

$$\begin{pmatrix}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{pmatrix}$$

- Rotationsmatrix für die Drehung eines Punktes um die z-Achse:

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix}$$

8 Lineare Gleichungssysteme

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{b}$$

• Cramersche Regel:

$$\det \begin{pmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \dots & a_{mn} \end{pmatrix}$$
$$x_1 = \frac{\det A_k}{\det A}$$

9 Eigenwertprobleme

- Charakteristisches Polynom von A: $\varphi_A(\lambda) = \det(A \lambda I)$
- Eigenwert λ_n von $A \equiv \text{Nullstellen von } \varphi_A(\lambda)$
 - Regeln:
 - * EW $(A) = EW(A^T)$
 - * EW $(A^n) = (EW(A))^n$
 - * EW $(\alpha A) = \alpha EW(A) \quad \forall \alpha \in \mathbb{N}$
- Eigenvektor $\overrightarrow{x_n}$: $(A - \lambda_n I) \cdot \overrightarrow{x_n} = \overrightarrow{0}$
- Eigenraum: $N(A \lambda I)$

9.1 Hauptachsentransformationen

$$M = X\Lambda X^{-1}$$

$$X = \left(\begin{pmatrix} \vdots \\ \overrightarrow{x_1} \\ \vdots \end{pmatrix} & \cdots & \begin{pmatrix} \vdots \\ \overrightarrow{x_n} \\ \vdots \end{pmatrix} \right)$$
$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

9.1.1 Polynome

$$ax_{1}^{2} + bx_{2}^{2} + cx_{3}^{2} + dx_{1}x_{2} + ex_{1}x_{3} + fx_{2}x_{3} + g = 0$$

$$= (x_{1} \quad x_{2} \quad x_{3}) \underbrace{\begin{pmatrix} a & \frac{d}{2} & \frac{e}{2} \\ \frac{d}{2} & b & \frac{f}{2} \\ \frac{e}{2} & \frac{f}{2} & c \end{pmatrix}}_{A} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + \underbrace{\begin{pmatrix} d & e & f \end{pmatrix}}_{b^{T}} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + g$$

$$= (y_{1} \quad y_{2} \quad y_{3}) \Lambda_{A} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} + \underbrace{\tilde{b}^{T}}_{b^{T}} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} + g$$

10 Differentialrechnung

10.1 Kurvendiskussion

- Monotonie:
 - streng monoton wachsend: $f'(x) > 0 \ \forall x \in [a, b]$
 - streng monoton fallend: $f'(x) < 0 \ \forall x \in [a, b]$
- Extremwerte: f'(x) = 0
 - lokales Maximum: f''(x) < 0
 - lokales Minimum: f''(x) > 0
- Wendestellen: f''(x) = 0 und $f'''(x) \neq 0$
- \bullet Unstetigkeiten 1. Art: $\lim_{x \to x_0 \pm 0} f(x)$ exisitert eigentlich
 - hebbare Unstetigkeit:

$$\exists \lim_{x \to x_0} f(x) = g$$

 $x \to x_0$ aber entweder:

- $* x_0 \notin DB$
- * $g \neq f(x_0)$
- Sprungstelle:

$$\lim_{x \to x_0 - 0} f(x) \neq \lim_{x \to x_0 + 0} f(x)$$

- Unstetigkeiten 2. Art:
 - Polstellen:

$$\lim_{x \to x_0 \pm 0} f(x) = \infty \quad \text{oder}$$

$$\lim_{x \to x_0 \pm 0} f(x) = \pm \infty$$

10.2 Spezielle Grenzwerte

- $\bullet \lim_{n \to \infty} \frac{1}{n} = 0$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- $\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^z \quad \forall z \in \mathbb{R}, \mathbb{C}$
- $\lim_{n \to \infty} n(a^{\frac{1}{n}} 1) = \ln a \quad \forall a \in \mathbb{R}, a > 0$

10.3 Regel von l'Hospital

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = \lim_{x \to x_0} \frac{u'(x)}{v'(x)} \quad \forall u(x_0) = 0, v(x_0) = 0$$

10.4 Richtungsableitungen

$$\frac{\partial f}{\partial r} = < \triangledown f, \frac{r}{||r||} >$$

10.5 Tangentialebene

Tangentialebene ϵ von f(x,y) im Punkt (x,y):

$$\epsilon = \begin{pmatrix} x \\ y \\ f(x,y) \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ f_x(1,0) \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ f_y(0,1) \end{pmatrix}$$

11 Integralrechnung

Grundintegrale 11.1

$$\bullet \int \frac{1}{\cos^2 x} dx = \tan x + c$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

Vektoranalysis 12

Polarkoordinaten 12.1

•
$$x = r \cdot \cos \varphi$$

•
$$y = r \cdot \sin \varphi$$

$$\bullet \ r = \sqrt{x^2 + y^2}$$

•
$$\varphi = \arctan \frac{y}{x}$$

Vektor- und Skalarfelder

• Gradient:
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} f$$

– Bei Polarkoordinaten:
$$\nabla z = \frac{\partial z}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial z}{\partial \varphi} \frac{\partial \varphi}{\partial x}$$

• Divergenz:
$$\nabla \cdot F = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$

• Divergenz:
$$\nabla \cdot F = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$
• Rotation: $\nabla \times F = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} \times \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{vmatrix} i & \frac{\partial}{\partial x_1} & f_1 \\ j & \frac{\partial}{\partial x_2} & f_2 \\ k & \frac{\partial}{\partial x_3} & f_3 \end{vmatrix}$

Zufällige Ereignisse und Wahrscheinlichkeiten 13

13.1 Grundelemente aus Mengenlehre und Kombinatorik

- ullet Modell: Ziehen von k Kugeln aus Urne mit n Kugeln Anzahl der Möglichkeiten:
 - Reihenfolge beachten, mit Zurücklegen: ${}^{w}V_{n}^{k}=n^{k}$
 - Reihenfolge beachten, ohne Zurücklegen: $V_n^k = \frac{n!}{(n-k)!}$
 - Reihenfolge nicht beachten, mit Zurücklegen: ${}^wC_n^k = \binom{n+k-1}{k}$
 - Reihenfolge nicht beachten, ohne Zurücklegen: $C_n^k = \binom{n}{k}$
- Spezielle Verteilungen:
 - Auswahl von kaus n Elementen ohne Zurücklegen mit m Treffern: $N_m = \binom{n-k}{k-m} \cdot \binom{k}{m}$

$$N_m = \begin{pmatrix} n-k \\ k-m \end{pmatrix} \cdot \begin{pmatrix} k \\ m \end{pmatrix}$$

- Hypergeometrische Verteilung:

N: Kugeln insgesammt n: Kugeln gezogen

M: Nieten insgesammt m: Anzahl der gezogenen Nieten

$$P = \frac{\binom{N-M}{n-m} \cdot \binom{M}{m}}{\binom{N}{n}}$$

13.2 Kenngrößen

 \bullet Erwartungswert EX

$$EX = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

• Varianz
$$D^2 X$$

 $D^2 X = E(X - EX)^2 = \sum_{i=1}^{n} (x_i - EX)^2 P(X = x_i)$

- Standardabweichung σ

$$\sigma = \sqrt{D^2 X}$$

Zufällige Ereignisse 13.3

• Wahrscheinlichkeitsraum $(\Omega, \mathfrak{a}, P)$

mit: Ω - Ergebnismenge, $\mathfrak a$ - Ereignisfeld, P - Wahrscheinlichkeitsmaß

• Elementarereignis ω_j :

$$\omega_j \cap \omega_i = \varnothing \quad \forall i \neq j$$

- Ereignisfeld a:
 - $-\Omega \in \mathfrak{a}$
 - $-A \in \mathfrak{a} \Rightarrow \overline{A} \in \mathfrak{a}$
 - $-A_i \in \mathfrak{a} \Rightarrow \bigcup A_i \in \mathfrak{a}$
- Axiomensystem von Kolmogorov

Für eine Ereignismenge Ω mit dem Ereignisfeld \mathfrak{a} gilt:

- $-0 \le P(A) \le 1$
- $-P(\Omega)=1$

$$-A, B, A \cap B \neq \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

Rechenregeln:

- $-P(\varnothing)=0$
- $-P(\overline{A}) = 1 P(A)$
- -A, B beliebig: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- -A, B unabhängig: $P(A \cap B) = P(A) \cdot P(B)$
- geometrische Wahrscheinlichkeit: $P(A) = \frac{Inhalt\ von\ A}{Inhalt\ von\ \Omega}$

13.4 Bedingte Wahrscheinlichkeiten

- Satz von Bayes: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$ (Wahrscheinlichkeit von Ereignis A unter der Bedingung, dass B eingetreten ist)
- Rechergel: $P(\overline{A}|B) = 1 P(A|B)$
- Totale Wahrscheinlichkeit: $P(A) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)$

Spezialfall:
$$n = 2$$
: $B_1 = B$, $B_2 = \overline{B}$

13.5Binomialverteilung

• $X \sim B(n,p)$:

$$A \sim B(n,p)$$
:
$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad \text{(Bedingung: } n \text{ unabhängige Versuche, } P(A) = p = \text{konstant)}$$

13.6Poissonverteilung

- Bedingungen (Poissonstrom):
 - Homogenität (gleichbleibende Intensität)
 - Stationarität (blitzartiges Eintreten)
 - Ordinärität (Unabhängigkeit einzelner sich nicht-überlappender Intervalle)
- $X \sim \Pi_t(\mu)$:

$$P(X_t = k) = \frac{(\mu \cdot t)^k}{k!} e^{-\mu t}$$

$$EX = \mu \cdot t$$

 μ : Intensität, t: Zeit

13.7Stetige Zufallsgrößen

• Dichtefunktion F(x)

$$F(x) = \int_{-\infty}^{x} f(t)dt = 1$$

$$-P(X < a) = F(a)$$

$$- P(a \le X < b) = F(b) - F(a)$$

$$-P(X \ge a) = 1 - F(a)$$

13.8 Exponentialverteilung

• Exponentielle Zufallsgröße $X \sim Ex(\lambda)$:

Exponentiene Zuransgroße
$$F(x) = \begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases}$$

$$EX = \frac{1}{\lambda}$$

$$\tilde{x} = \frac{\ln 2}{\lambda}$$

13.9 Normalverteilung

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$= \Phi(\frac{X - \mu}{\sigma})$$

$$\Phi(x) - \Phi(-x) = 2\Phi(x) - 1$$

13.10 Funktionen von Zufallsgrößen

•
$$E(aX) = a \cdot EX$$

•
$$D^2(aX) = a \cdot D^2X$$

$$\bullet$$
 $E(X+Y) = EX + EY$

•
$$D^2(X+Y) = D^2X + D^2Y$$
 für X, Y stochastisch unabhängig

• für
$$X, Y$$
 stochastisch unabhängig und $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ gilt:

$$-aX \sim N(a\mu_1, a^2\sigma_1^2)$$

$$-X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Grenzverteilungssätze

•
$$X \sim B(n,p)$$
 für große n

- Moivre/Laplace:
$$X \approx N(np, np(1-p))$$

 \Rightarrow Regel: $np(1-p) > 9$

Regularität (Übergang von diskreter zu stetiger ZG):
$$P(a \leq x \leq b) = \Phi(\frac{b+0,5-np}{\sqrt{np(1-p)}} - \Phi(\frac{a-0,5-np}{\sqrt{np(1-p)}}))$$

- Poisson:
$$X \approx \Pi_1(\mu)$$
 mit $\mu = n \cdot p$
 \Rightarrow Regel: $np \le 10, \quad n \ge 1500p$

14 Mathematische Statistik

•
$$EX: \overline{x_n} = \frac{1}{n} \sum_{i=1}^n x_i$$

•
$$D^2X : s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x_n})$$

•
$$\sigma: s_n = \sqrt{s_n^2}$$
 (Casio CFX-9850 Equivalent: $x\sigma n^{-1}$)

Statistische Prüfverfahren

- 1. Aufstellen einer Hypothese H_0 über die Verteilung von X, Bilden der Gegenhypothese H_1
- 2. Konstruktion der Testgröße T, deren Verteilung bekannt ist, falls H_0 tichtig ist
- 3. Konstruktion eines kritischen Bereiches K_{α} , sodass zu vorgegebenen α gilt: $P(T \in K_{\alpha}|H_0richtig) = \alpha$

mit α : Signifikanzniveau/Irrtumswahrscheinlichkeit

4. Auswertung:

$$T \notin K_{\alpha} \Rightarrow \text{Test nicht signifikant - man kann auf Basis dieses Tests nichts gegen } H_0$$
 einwenden.

$$T \in K_{\alpha} \Rightarrow \text{Test ist signifikant}$$

$$\rightarrow$$
 Lehne H_0 ab

$$\rightarrow$$
 Mit Wahrscheinlichkeit $1-\alpha$ ist H_0 falsch