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QP

Quadratic Program (QP):

max
1

2
xT Qx + cT x

Ax ≤ b

If Q is negative semidefinite, then QP is solvable in
polynomial time.

If Q is indefinite, QP is NP-hard.
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Reformulating QP

KKT conditions:

AT y −Qx = c

Ax ≤ b y ≥ 0

yT (b−Ax) = 0

For any KKT point,

1

2
xT Qx+cT x =

1

2

(
cT x + yT b

)
Reformulation

max
1

2

(
cT x + yT b

)
AT y −Qx = c

Ax ≤ b y ≥ 0
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Just make it an IP

Slack variables s := b−Ax
Can replace each complementarity yisi = 0 with

yi ≤ Mδy
i

si ≤ Mδs
i

δy
i + δs

i ≤ 1

δy
i , δs

i ∈ {0, 1}

for a sufficiently large M.

Problems:

Introduces many new variables

big M yields poor LP relaxations

Not as much fun
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Direct Approach

Classic idea:

solve LP relaxation

branch on complementarity

use branch-and-bound

#

"

 

!
max

1

2

(
cT x + yT b

)
AT y −Qx = c

Ax ≤ b y ≥ 0

Other contexts

Beale and Tomlin: SOS sets.

Disjunctive Programs: Balas, Beaumont, etc...

DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:
1 Branching Strategies.
2 Development of cutting planes.
3 Bounding the dual variables.
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Bounding the LP relaxation

LP relaxation of complementarity reformulation:#

"

 

!
max

1

2

(
cT x + yT b

)
AT y −Qx = c

Ax ≤ b y ≥ 0

Assume {x ∈ Rn : Ax ≤ b} nonempty and bounded,
i.e. {r ∈ Rn : Ar ≤ 0} = {0}.

Recession cone of the LP relaxation:

C =
{
(γ, r) ∈ Rm+n : Ar ≤ 0, AT γ −Qr = 0, γ ≥ 0

}
={

(γ, 0) ∈ Rm+n : AT γ = 0, γ ≥ 0
}
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Extreme rays of LP relaxation

∃ interior point, i.e. x̄ such that Ax̄ < b ⇒
bT γ > 0 ∀(γ, 0) ∈ C \ {0}

⇒ LP relaxation is unbounded.

If (y, x) is a feasible, complementary solution and (γ, 0) ∈ C \ {0},
then

(y + tγ)T (b−Ax) = tγT b > 0 for any t > 0

Convex hull of complementary solutions is closed and bounded

Every vertex of this convex hull is a vertex of LP relaxation

Optimize over just the vertices of the LP relaxation?

Will not necessarily yield complementary solutions

Unfortunately, this is not easy in general
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Complexity

Observation

Given an LP in the form of a poly-time separation oracle,
optimizing an arbitrary linear objective function over the extreme
points of this LP is NP-hard.

Dominant of convex hull of incidence vectors of s− t paths:{
x ∈ R|E|

+ : aT
Hx ≥ 1 ∀H ∈ H

}
H: set of s− t cuts

aH : incidence vector of a cut H.�



�
	Finding vertex that maximizes

arbitrary linear objective
⇔
�� ��Longest Path



General QP Special Case Fixed Cost Variables

Bounding LP relaxation

Need a way to ”truncate” the polyhedron

AT y −Qx = c

Ax ≤ b

y ≥ 0

without eliminating solutions that satisfy yT (b−Ax) = 0.

Could use information about sizes of vertices:
vertex size ≤ 4n2× inequality size

Add valid inequalities

Examine special cases
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QP with simple bounds

Quadratic program with simple bounds (QPB):

max
1

2
xT Qx + cT x

0 ≤ x ≤ e

Can show this generalizes 0-1 QP

NP-complete
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KKT reformulation

Equivalent complementarity problem:

max
1

2
cT x +

1

2
yT e

yi −
∑

j∈N
qijxj − zi = ci ∀i ∈ N

yi(1− xi) = 0 ∀i ∈ N

zixi = 0 ∀i ∈ N

x ≤ e x, y, z ≥ 0

yi(1− xi) = 0 and zixi = 0 ⇒ yizi = 0
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Bounding the LP relaxation

Row i : yi − zi −
∑
j∈N

qijxj = ci

Define

ȳi ≡ ci + qii +
∑

j∈N\i q
+
ij where a+ = max{0, a}

z̄i ≡ −ci −
∑

j∈N\i q
−
ij where a− = min{0, a}

If yi > 0, then yi ≤ ȳi

If zi > 0, then zi ≤ z̄i

�� ��Assume ȳi > 0 and z̄i > 0

Yields two sets of valid inequalities:

1 yi ≤ ȳixi

2 zi + z̄ixi ≤ z̄i

Make LP relaxation bounded
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ȳi ≡ ci + qii +
∑

j∈N\i q
+
ij where a+ = max{0, a}

z̄i ≡ −ci −
∑

j∈N\i q
−
ij where a− = min{0, a}

If yi > 0, then yi ≤ ȳi
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If zi > 0, then zi ≤ z̄i
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One-row relaxations

Find relaxations of the problem for which generating cuts is easy.

Consider the set

Si ≡
{

(yi, zi, x) ∈ Rn+2 :yi −
∑
j∈N

qijxj − zi = ci

yi(1− xi) = 0, zixi = 0

xj ≤ 1 ∀j ∈ N, yi, zi, x ≥ 0
}

Want valid inequalities for conv(Si).

Much like knapsack relaxation

Only 2 non-convexities (unlike knapsack)
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Nontrivial facets

Facets not induced by bounds belong to one of two classes

zi +
∑

j αjxj ≤
∑

j α+
j∑

j
|αj | = z̄i

αi ≥ 0

0 ≤ αj ≤ qij ∀j ∈ N+

qij ≤ αj ≤ 0 ∀j ∈ N−

 SEP z

yi +
∑

j αjxj ≤
∑

j α+
j∑

j
|αj | = ȳi

αi ≤ 0

−qij ≤ αj ≤ 0 ∀j ∈ N+

0 ≤ αj ≤ −qij ∀j ∈ N−

 SEP y
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Example

Q =


−3 4 −5 −3

4 −5 −1 5
−5 −1 6 2
−3 5 2 −2

 c =


0
0
0
0


Max 1

2y1 + 1
2y2 + 1

2y3 + 1
2y4

s.t. y1 − z1 + 3x1 − 4x2 + 5x3 + 3x4 = 0
y2 − z2 − 4x1 + 5x2 + x3 − 5x4 = 0
y3 − z3 + 5x1 + x2 − 6x3 − 2x4 = 0
y4 − z4 + 3x1 − 5x2 − 2x3 + 2x4 = 0
y1 ≤ 1x1 z1 + 8x1 ≤ 8
y2 ≤ 4x2 z2 + x2 ≤ 1
y3 ≤ 8x3 z3 + 6x3 ≤ 6
y4 ≤ 5x4 z4 + 3x4 ≤ 3
y, z, x ≥ 0 x ≤ 1
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Example (cont.)

Optimal solution to LP:

y∗ =


0
2

7.5
2.5

 z∗ =


6

0.5
0
0

 x∗ =


0

0.5
1
1


Adding the following inequalities:

z2 + x4 ≤ 1
y2 − 3x1 + x3 ≤ 1

Cuts off the optimal LP solution and produces the optimal
complementary solution.
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Comments

Computational Issues

Cuts can be separated in O(n log n)
To be effective, cuts must be added and deleted aggressively
Use of cuts significantly expedites branch-and-bound
Direct method much better than conversion to IP
Strong branching very effective for ”hard” instances
Tables of computational results available for those interested
(and can’t find anything better to do)

Theoretical Issues

Only vertices of SEP z and SEP y can yield facets
Possible to identify which vertices yield facets
Possible to characterize convex hull when ȳi ≤ 0 or z̄i ≤ 0
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Strong branching very effective for ”hard” instances
Tables of computational results available for those interested
(and can’t find anything better to do)

Theoretical Issues

Only vertices of SEP z and SEP y can yield facets
Possible to identify which vertices yield facets
Possible to characterize convex hull when ȳi ≤ 0 or z̄i ≤ 0
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General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

Fixed cost variables

Consider the problem

max
1

2
xT Qx + cT x− fT δ

0 ≤ xj ≤ δj ∀j ∈ N

δj ∈ {0, 1} ∀j ∈ N

Can reformulate as

max
1

2

(
cT x + eT y1

)
− fT δ

y1 + y0 −Qx− z = c

y1
i (1− xi) = 0 y0

i xi = 0 zixi = 0 ∀i ∈ N

0 ≤ xj ≤ δj ∀j ∈ N δj ∈ {0, 1} ∀j ∈ N

y1, y0, z ≥ 0

WLOG, can also require that y0
i zi = 0.



General QP Special Case Fixed Cost Variables

One-row relaxations

Si ≡
{

(y1
i , y

0
i , zi, x) ∈ Rn+2 :y1

i + y0
i −

∑
j∈N

qijxj − zi = ci

y1
i (1− xi) = 0, y0

i xi = 0, zixi = 0

xj ≤ 1 ∀j ∈ N, y1
i , y

0
i , zi, x ≥ 0

}
Projecting

Si|y0
i =0 gives the one-row relaxation from before

Definition

ȳ0
i := ci +

∑
j∈N+

qij
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Lifting

Facet of Si|y0
i =0: zi +

∑
j αjxj ≤

∑
j α+

j∑
j
|αj | = z̄i

αi ≥ 0

0 ≤ αj ≤ qij ∀j ∈ N+

qij ≤ αj ≤ 0 ∀j ∈ N−

 SEP z
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i =0: zi +
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j∑
j
|αj | = z̄i
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qij ≤ αj ≤ 0 ∀j ∈ N−

 SEP z

Lifting problem

θ = min

∑
j(α

+
j − αjxj)− zi

y0
i

(y1
i , y

0
i , zi, x) ∈ Si, y

0
i > 0
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Lifting problem simplified

θ = min
αi +

∑
j∈N+ αj(1− xj)−

∑
j∈N− αjxj

y0
i

(0, y0
i , 0, x) ∈ Si, y

0
i > 0
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Lifting

Facet of Si|y0
i =0: zi +

∑
j αjxj ≤

∑
j α+

j∑
j
|αj | = z̄i

αi ≥ 0

0 ≤ αj ≤ qij ∀j ∈ N+

qij ≤ αj ≤ 0 ∀j ∈ N−

 SEP z

Lifting problem solution

θ =
αi

ȳ0
i

zi +
αi

ȳ0
i

y0
i +

∑
j

αjxj ≤
∑

j

α+
j
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Lifting (cont.)

Facet of Si|y0
i =0: y1

i +
∑

j αjxj ≤
∑

j α+
j∑

j
|αj | = ȳi

αi ≤ 0

−qij ≤ αj ≤ 0 ∀j ∈ N+

0 ≤ αj ≤ −qij ∀j ∈ N−

 SEP y
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Lifting (cont.)

Facet of Si|y0
i =0: y1

i +
∑
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j∑
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|αj | = ȳi
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−qij ≤ αj ≤ 0 ∀j ∈ N+
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Lifting Problem simplified

θ = min

∑
j∈N− αj(1− xj)−

∑
j∈N+ αjxj

ci +
∑

j qijxj

(0, y0
i , 0, x) ∈ Si, y

0
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Lifting (cont.)

Lifting Problem simplified

θ = min

∑
j∈N− αj(1− xj)−

∑
j∈N+ αjxj

ci +
∑

j qijxj

(0, y0
i , 0, x) ∈ Si, y

0
i > 0

Set xj = 1 if αj > 0 or if j ∈ N+ and αj = 0

Feasible point if

�
�

�
�

ci +
∑

j∈N−:αj>0

qij +
∑

j∈N+:αj=0

qij > 0

−→ Necessary condition to be facet of Si|y0
i =0.
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Lifting (cont.)

Lifting problem solution

θ = 0

y1
i +

∑
j

αjxj ≤
∑

j

α+
j

if original inequality is facet of Si|y0
i =0

Set xj = 1 if αj > 0 or if j ∈ N+ and αj = 0

Feasible point if

�
�

�
�

ci +
∑

j∈N−:αj>0

qij +
∑

j∈N+:αj=0

qij > 0

−→ Necessary condition to be facet of Si|y0
i =0.
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Nontrivial Facets

Arbitrary Valid Inequality:�



�
	αy1

y1
i + αy0

y0
i + αzzi +

∑
j∈N αjxj ≤ β

Eliminate y1
i using equality set:

αy0
y0

i + αzzi +
∑

j∈N αjxj ≤ β

Theorem

For any nontrivial facet, αz ≥ 0.
Furthermore, αz = 0 ⇒ αy0

> 0 and αi = 0

Consider two cases

1 αz = 0

2 αz > 0
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αz = 0

y0
i +

∑
j 6=i αj ≤

∑
j 6=i α

+
j

SEP y0
:=


∑
j 6=i

|αj | = ȳ0
i

−qij ≤ αj ≤ 0 ∀j ∈ N+

0 ≤ αj ≤ −qij ∀j ∈ N−


Theorem

Suppose α is a vertex of SEP y0
and

ci + qii +
∑

j∈N+:αj=0

qij +
∑

j∈N−:αj>0

qij > 0,

then inequality is a facet of conv(Si).
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αz > 0, αi < 0

zi + αy0
y0

i +
∑

j αjxj ≤ β

Conjecture

αi < 0 ⇒ αy0
= −1

Use equality set to rewrite inequality as

y1
i +

∑
j

αjxj ≤ β

Consistent with lifting result

Equivalent to yi-inequalities from Si|y0
i =0

Can use SEP y to separate

Nothing new and hence no fun
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αz > 0, αi ≥ 0

zi + αy0
y0

i +
∑

j αjxj ≤ β

Theorem

αi ≥ 0 ⇒
αj ≤ qij ∀j ∈ N+

αj ≥ qij ∀j ∈ N−

αy0 ≥ 0



General QP Special Case Fixed Cost Variables

αz > 0, αi ≥ 0

zi + αy0
y0

i +
∑

j αjxj ≤ β

Theorem

αi ≥ 0 ⇒
αj ≤ qij ∀j ∈ N+

αj ≥ qij ∀j ∈ N−

αy0 ≥ 0



General QP Special Case Fixed Cost Variables

αz > 0, αi ≥ 0

zi + αy0
y0

i +
∑

j αjxj ≤ β

Theorem

αi ≥ 0 ⇒
αj ≤ qij ∀j ∈ N+

αj ≥ qij ∀j ∈ N−

αy0 ≥ 0

Unlike with Si|y0
i =0, we cannot assume

αj ≥ 0 ∀j ∈ N+

αj ≤ 0 ∀j ∈ N−
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αz > 0, αi ≥ 0

zi + αy0
y0

i +
∑

j αjxj ≤ β

Theorem

αi ≥ 0 ⇒
αj ≤ qij ∀j ∈ N+

αj ≥ qij ∀j ∈ N−

αy0 ≥ 0

Definition

B+ := {j ∈ N+ : αj < 0} B− := {j ∈ N− : αj > 0}

B = B+ ∪B−
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Necessary conditions

zi + αy0
y0

i +
∑

j αjxj ≤ β

β = αi +
∑

j∈N+\B

αj +
∑

j∈B−

αj

αi +
∑

j∈N+\B

αj −
∑

j∈N−\B

αj = z̄i

0 ≤ αj ≤ qij ∀j ∈ N+ \B+

qij ≤ αj ≤ 0 ∀j ∈ N− \B−

αi, α
y0 ≥ 0

αi =
∑

j∈B+

αj −
∑

j∈B−

αj + ȳ0
i α

y0

αj = −αy0
qij ∀j ∈ B

Previously SEP z =

∑
j
|αj | = z̄i

αi ≥ 0

0 ≤ αj ≤ qij ∀j ∈ N+

qij ≤ αj ≤ 0 ∀j ∈ N−


B = ∅ same as lifting.

For fixed B, separation
still O(n log n)



General QP Special Case Fixed Cost Variables

Necessary conditions

zi + αy0
y0

i +
∑

j αjxj ≤ β

β = αi +
∑

j∈N+\B

αj +
∑

j∈B−

αj

αi +
∑

j∈N+\B

αj −
∑

j∈N−\B

αj = z̄i

0 ≤ αj ≤ qij ∀j ∈ N+ \B+

qij ≤ αj ≤ 0 ∀j ∈ N− \B−

αi, α
y0 ≥ 0

αi =
∑

j∈B+

αj −
∑

j∈B−

αj + ȳ0
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then it is a facet of Si.

Some comments:

Condition is also necessary.

When B = ∅, gives facets which are lifted ”non-facets”.

How to choose B ?
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allows reformulation

Develop valid inequalities implied by binary variables and
complementarity constraints
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