Nonconvex Quadratic Programming

Dieter Vandenbussche
Department of Mechanical and Industrial Engineering University of Illinois Urbana-Champaign

Workshop on Integer Programming and Continuous Optimization, 2004

Outline

(1) General QP

- Introduction
- Reformulation to LP with Complementarity Constraints
- Bounding LP Relaxation
(2) Special Case
- Formulation
- Valid Inequalities
- Example
(3) Fixed Cost Variables
- Formulation
- Lifting
- Facets not from lifting

Collaborators

- George Nemhauser (Georgia Institute of Technology) aiorgin

- Tin-Chi Lin (University of Illinois U-C) I

Outline

(1) General QP

- Introduction
- Reformulation to LP with Complementarity Constraints
- Bounding LP Relaxation
(2) Special Case

3 Fixed Cost Variables

Quadratic Program (QP):

$$
\begin{aligned}
\max & \frac{1}{2} x^{T} Q x+c^{T} x \\
& A x \leq b
\end{aligned}
$$

- If Q is negative semidefinite, then QP is solvable in polynomial time.
- If Q is indefinite, QP is $\mathcal{N} \mathcal{P}$-hard.

Reformulating QP

KKT conditions:

$$
\begin{aligned}
& A^{T} y-Q x=c \\
& A x \leq b \quad y \geq 0 \\
& y^{T}(b-A x)=0
\end{aligned}
$$

For any KKT point,
$\frac{1}{2} x^{T} Q x+c^{T} x=\frac{1}{2}\left(c^{T} x+y^{T} b\right)$

Reformulating QP

KKT conditions:

$$
\begin{aligned}
& A^{T} y-Q x=c \\
& A x \leq b \quad y \geq 0 \\
& y^{T}(b-A x)=0
\end{aligned}
$$

For any KKT point,

$$
\frac{1}{2} x^{T} Q x+c^{T} x=\frac{1}{2}\left(c^{T} x+y^{T} b\right)
$$

Reformulation

$$
\begin{gathered}
\max \frac{1}{2}\left(c^{T} x+y^{T} b\right) \\
A^{T} y-Q x=c \\
A x \leq b \quad y \geq 0 \\
y^{T}(b-A x)=0
\end{gathered}
$$

Just make it an IP

Slack variables $s:=b-A x$
Can replace each complementarity $y_{i} s_{i}=0$ with

$$
\begin{aligned}
& y_{i} \leq M \delta_{i}^{y} \\
& s_{i} \leq M \delta_{i}^{s} \\
& \delta_{i}^{y}+\delta_{i}^{s} \leq 1 \\
& \delta_{i}^{y}, \delta_{i}^{s} \in\{0,1\}
\end{aligned}
$$

for a sufficiently large M.
Problems:

Just make it an IP

Slack variables $s:=b-A x$
Can replace each complementarity $y_{i} s_{i}=0$ with

$$
\begin{array}{r}
y_{i} \leq M \delta_{i}^{y} \\
s_{i} \leq M \delta_{i}^{s} \\
\delta_{i}^{y}+\delta_{i}^{s} \leq 1 \\
\delta_{i}^{y}, \delta_{i}^{s} \in\{0,1\}
\end{array}
$$

for a sufficiently large M.
Problems:

- Introduces many new variables
- big M yields poor LP relaxations
- Not as much fun

Just make it an IP

Slack variables $s:=b-A x$
Can replace each complementarity $y_{i} s_{i}=0$ with

$$
\begin{array}{r}
y_{i} \leq M \delta_{i}^{y} \\
s_{i} \leq M \delta_{i}^{s} \\
\delta_{i}^{y}+\delta_{i}^{s} \leq 1 \\
\delta_{i}^{y}, \delta_{i}^{s} \in\{0,1\}
\end{array}
$$

for a sufficiently large M .
Problems:

- Introduces many new variables
- big M yields poor LP relaxations
- Not as much fun

Just make it an IP

Slack variables $s:=b-A x$
Can replace each complementarity $y_{i} s_{i}=0$ with

$$
\begin{array}{r}
y_{i} \leq M \delta_{i}^{y} \\
s_{i} \leq M \delta_{i}^{s} \\
\delta_{i}^{y}+\delta_{i}^{s} \leq 1 \\
\delta_{i}^{y}, \delta_{i}^{s} \in\{0,1\}
\end{array}
$$

for a sufficiently large M .
Problems:

- Introduces many new variables
- big M yields poor LP relaxations
- Not as much fun

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

$$
\begin{array}{r}
\max \\
\frac{1}{2}\left(c^{T} x+y^{T} b\right) \\
A^{T} y-Q x=c \\
A x \leq b \quad y \geq 0
\end{array}
$$

Other contexts

- Beale and Tomlin: SOS sets
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:
© Branching Strategies.
(2) Development of cutting planes.
(3) Bounding the dual variables.

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc.
- DeFarias and Nemhauser: complementarity, cardinality, SOS

Challenges

(1) Branching Strategies.
(2) Development of cutting planes.
(3) Bounding the dual variables.

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:
(1) Branching Strategies.
(2) Development of cutting planes.
(아 Bounding the dual variables.

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:

(1) Branching Strategies.
(2) Development of cutting planes.
(3) Bounding the dual variables.

Bounding the LP relaxation

LP relaxation of complementarity reformulation:

$$
\begin{aligned}
& \max \frac{1}{2}\left(c^{T} x+y^{T} b\right) \\
& A^{T} y-Q x=c \\
& A x \leq b \quad y \geq 0
\end{aligned}
$$

Assume $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ nonempty and bounded, i.e. $\left\{r \in \mathbb{R}^{n}: A r \leq 0\right\}=\{0\}$.

Recession cone of the LP relaxation:

Bounding the LP relaxation

LP relaxation of complementarity reformulation:

$$
\begin{array}{r}
\max \\
\frac{1}{2}\left(c^{T} x+y^{T} b\right) \\
A^{T} y-Q x=c \\
A x \leq b \quad y \geq 0
\end{array}
$$

Assume $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ nonempty and bounded, i.e. $\left\{r \in \mathbb{R}^{n}: A r \leq 0\right\}=\{0\}$.

Recession cone of the LP relaxation:

$$
\begin{aligned}
& \mathcal{C}=\left\{(\gamma, r) \in \mathbb{R}^{m+n}: A r \leq 0, A^{T} \gamma-Q r=0, \gamma \geq 0\right\}= \\
& \quad\left\{(\gamma, 0) \in \mathbb{R}^{m+n}: A^{T} \gamma=0, \gamma \geq 0\right\}
\end{aligned}
$$

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \quad \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

\exists interior point, i.e. \bar{x} such that $A \bar{x}<b \Rightarrow$

$$
b^{T} \gamma>0 \forall(\gamma, 0) \in \mathcal{C} \backslash\{0\}
$$

\Rightarrow LP relaxation is unbounded.
If (y, x) is a feasible, complementary solution and $(\gamma, 0) \in \mathcal{C} \backslash\{0\}$, then

$$
(y+t \gamma)^{T}(b-A x)=t \gamma^{T} b>0 \text { for any } t>0
$$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Unfortunately, this is not easy in general

Complexity

Observation

Given an LP in the form of a poly-time separation oracle, optimizing an arbitrary linear objective function over the extreme points of this LP is $\mathcal{N} \mathcal{P}$-hard.

Dominant of convex hull of incidence vectors of $s-t$ paths:

$$
\left\{x \in \mathbb{R}_{+}^{|E|}: a_{H}^{T} x \geq 1 \quad \forall H \in \mathcal{H}\right\}
$$

- \mathcal{H} : set of $s-t$ cuts
- a_{H} : incidence vector of a cut H.

Finding vertex that maximizes arbitrary linear objective

$$
\Leftrightarrow \text { Longest Path }
$$

Bounding LP relaxation

Need a way to "truncate" the polyhedron

$$
\begin{aligned}
A^{T} y-Q x & =c \\
A x & \leq b \\
y & \geq 0
\end{aligned}
$$

without eliminating solutions that satisfy $y^{T}(b-A x)=0$.

- Could use information about sizes of vertices: vertex size $\leq 4 n^{2} \times$ inequality size
- Add valid inequalities
- Examine special cases

Outline

(1) General QP

(2) Special Case

- Formulation
- Valid Inequalities
- Example

3 Fixed Cost Variables

QP with simple bounds

Quadratic program with simple bounds (QPB):

$$
\begin{aligned}
\max & \frac{1}{2} x^{T} Q x+c^{T} x \\
& 0 \leq x \leq e
\end{aligned}
$$

- Can show this generalizes 0-1 QP
- $\mathcal{N} \mathcal{P}$-complete

KKT reformulation

Equivalent complementarity problem:

$$
\max \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e
$$

$y_{i}\left(1-x_{i}\right)=0$ and $z_{i} x_{i}=0 \Rightarrow y_{i} z_{i}=0$

KKT reformulation

Equivalent complementarity problem:

$$
\begin{aligned}
\max & \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e \\
& y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i} \quad \forall i \in N
\end{aligned}
$$

KKT reformulation

Equivalent complementarity problem:

$$
\begin{aligned}
\max & \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e \\
& y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i} \quad \forall i \in N \\
& y_{i}\left(1-x_{i}\right)=0 \quad \forall i \in N
\end{aligned}
$$

KKT reformulation

Equivalent complementarity problem:

$$
\begin{aligned}
\max & \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e \\
& y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i} \quad \forall i \in N \\
& y_{i}\left(1-x_{i}\right)=0 \quad \forall i \in N \\
& z_{i} x_{i}=0 \quad \forall i \in N
\end{aligned}
$$

KKT reformulation

Equivalent complementarity problem:

$$
\begin{aligned}
\max & \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e \\
& y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i} \quad \forall i \in N \\
& y_{i}\left(1-x_{i}\right)=0 \quad \forall i \in N \\
& z_{i} x_{i}=0 \quad \forall i \in N \\
& x \leq e \quad x, y, z \geq 0
\end{aligned}
$$

KKT reformulation

Equivalent complementarity problem:

$$
\begin{aligned}
\max & \frac{1}{2} c^{T} x+\frac{1}{2} y^{T} e \\
& y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i} \quad \forall i \in N \\
& y_{i}\left(1-x_{i}\right)=0 \quad \forall i \in N \\
& z_{i} x_{i}=0 \quad \forall i \in N \\
& x \leq e \quad x, y, z \geq 0
\end{aligned}
$$

$y_{i}\left(1-x_{i}\right)=0$ and $z_{i} x_{i}=0 \Rightarrow y_{i} z_{i}=0$

Bounding the LP relaxation

$$
\text { Row } i: \quad y_{i}-z_{i}-\sum_{j \in N} q_{i j} x_{j}=c_{i}
$$

Define

- $\bar{y}_{i} \equiv c_{i}+q_{i i}+\sum_{j \in N \backslash i} q_{i j}^{+}$
- $\bar{z}_{i} \equiv-c_{i}-\sum_{j \in N \backslash i} q_{i j}^{-}$
where $a^{+}=\max \{0, a\}$
where $a^{-}=\min \{0, a\}$

Bounding the LP relaxation

$$
\text { Row } i: \quad y_{i}-z_{i}-\sum_{j \in N} q_{i j} x_{j}=c_{i}
$$

Define

- $\bar{y}_{i} \equiv c_{i}+q_{i i}+\sum_{j \in N \backslash i} q_{i j}^{+}$
- $\bar{z}_{i} \equiv-c_{i}-\sum_{j \in N \backslash i} q_{i j}^{-}$
where $a^{+}=\max \{0, a\}$
where $a^{-}=\min \{0, a\}$
- If $y_{i}>0$, then $y_{i} \leq \bar{y}_{i}$

Yields two sets of valid inequalities:

Bounding the LP relaxation

$$
\text { Row } i: \quad y_{i}-z_{i}-\sum_{j \in N} q_{i j} x_{j}=c_{i}
$$

Define

- $\bar{y}_{i} \equiv c_{i}+q_{i i}+\sum_{j \in N \backslash i} q_{i j}^{+}$
- $\bar{z}_{i} \equiv-c_{i}-\sum_{j \in N \backslash i} q_{i j}^{-}$
where $a^{+}=\max \{0, a\}$
where $a^{-}=\min \{0, a\}$
- If $y_{i}>0$, then $y_{i} \leq \bar{y}_{i}$
- If $z_{i}>0$, then $z_{i} \leq \bar{z}_{i}$

Bounding the LP relaxation

$$
\text { Row } i: \quad y_{i}-z_{i}-\sum_{j \in N} q_{i j} x_{j}=c_{i}
$$

Define

- $\bar{y}_{i} \equiv c_{i}+q_{i i}+\sum_{j \in N \backslash i} q_{i j}^{+}$
- $\bar{z}_{i} \equiv-c_{i}-\sum_{j \in N \backslash i} q_{i j}^{-}$
where $a^{+}=\max \{0, a\}$
where $a^{-}=\min \{0, a\}$
- If $y_{i}>0$, then $y_{i} \leq \bar{y}_{i}$
- If $z_{i}>0$, then $z_{i} \leq \bar{z}_{i}$

Bounding the LP relaxation

$$
\text { Row } i: \quad y_{i}-z_{i}-\sum_{j \in N} q_{i j} x_{j}=c_{i}
$$

Define

- $\bar{y}_{i} \equiv c_{i}+q_{i i}+\sum_{j \in N \backslash i} q_{i j}^{+}$
- $\bar{z}_{i} \equiv-c_{i}-\sum_{j \in N \backslash i} q_{i j}^{-}$
where $a^{-}=\min \{0, a\}$
- If $y_{i}>0$, then $y_{i} \leq \bar{y}_{i}$
- If $z_{i}>0$, then $z_{i} \leq \bar{z}_{i}$

Yields two sets of valid inequalities:
(1) $y_{i} \leq \bar{y}_{i} x_{i}$

Make LP relaxation bounded
(2) $z_{i}+\bar{z}_{i} x_{i} \leq \bar{z}_{i}$

One-row relaxations

Find relaxations of the problem for which generating cuts is easy.
Consider the set

$$
\left.\begin{array}{rl}
S_{i} \equiv\left\{\left(y_{i}, z_{i}, x\right) \in \mathbb{R}^{n+2}: y_{i}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i}\right. \\
& y_{i}\left(1-x_{i}\right)=0, z_{i} x_{i}=0 \\
& x_{j} \leq 1 \forall j \in N, y_{i}, z_{i}, x \geq 0
\end{array}\right\}
$$

Want valid inequalities for $\operatorname{conv}\left(S_{i}\right)$.

- Much like knapsack relaxation
- Only 2 non-convexities (unlike knapsack)

Nontrivial facets

Facets not induced by bounds belong to one of two classes

- $z_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} \\
& \\
\alpha_{i} & \geq 0 \\
0 \leq \alpha_{j} & \leq q_{i j} \\
\forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\} S E P^{z}
$$

- $y_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{y}_{i} & & \\
\alpha_{i} & \leq 0 & & \\
-q_{i j} \leq \alpha_{j} & \leq 0 & \forall j \in N^{+} \\
0 \leq \alpha_{j} & \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\} S E P^{y}
$$

Example

$$
Q=\left[\begin{array}{rrrr}
-3 & 4 & -5 & -3 \\
4 & -5 & -1 & 5 \\
-5 & -1 & 6 & 2 \\
-3 & 5 & 2 & -2
\end{array}\right] \quad c=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Example

$$
Q=\left[\begin{array}{rrrr}
-3 & 4 & -5 & -3 \\
4 & -5 & -1 & 5 \\
-5 & -1 & 6 & 2 \\
-3 & 5 & 2 & -2
\end{array}\right] \quad c=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Max $\frac{1}{2} y_{1}+\frac{1}{2} y_{2}+\frac{1}{2} y_{3}+\frac{1}{2} y_{4}$

Example (cont.)

Optimal solution to LP:
$y^{*}=\left(\begin{array}{c}0 \\ 2 \\ 7.5 \\ 2.5\end{array}\right) \quad z^{*}=\left(\begin{array}{c}6 \\ 0.5 \\ 0 \\ 0\end{array}\right) \quad x^{*}=\left(\begin{array}{c}0 \\ 0.5 \\ 1 \\ 1\end{array}\right)$
Adding the following inequalities:

Cuts off the optimal LP solution and produces the optimal
complementary solution.

Example (cont.)

Optimal solution to LP:
$y^{*}=\left(\begin{array}{c}0 \\ 2 \\ 7.5 \\ 2.5\end{array}\right) \quad z^{*}=\left(\begin{array}{c}6 \\ 0.5 \\ 0 \\ 0\end{array}\right) \quad x^{*}=\left(\begin{array}{c}0 \\ 0.5 \\ 1 \\ 1\end{array}\right)$
Adding the following inequalities:

$$
\begin{array}{ll}
z_{2}+x_{4} & \leq 1 \\
y_{2}-3 x_{1}+x_{3} & \leq 1
\end{array}
$$

Cuts off the optimal LP solution and produces the optimal complementary solution.

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Theoretical Issues

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues
- Only vertices of $S E P^{z}$ and $S E P^{y}$ can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when \bar{y}_{i}

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues
- Only vertices of $S E P^{z}$ and $S E P^{y}$ can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $\bar{y}_{i} \leq 0$ or $\bar{z}_{i} \leq 0$

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues
- Only vertices of $S E P^{z}$ and $S E P^{y}$ can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $\bar{y}_{i} \leq 0$ or $\bar{z}_{i} \leq 0$

Comments

- Computational Issues
- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)
- Theoretical Issues
- Only vertices of $S E P^{z}$ and $S E P^{y}$ can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $\bar{y}_{i} \leq 0$ or $\bar{z}_{i} \leq 0$

Outline

(1) General QP

(2) Special Case

(3) Fixed Cost Variables

- Formulation
- Lifting
- Facets not from lifting

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Can reformulate as

$$
\max \frac{1}{2}\left(c^{T} x+e^{T} y^{1}\right)-f^{T} \delta
$$

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Can reformulate as

$$
\begin{array}{r}
\max \\
\frac{1}{2}\left(c^{T} x+e^{T} y^{1}\right)-f^{T} \delta \\
y^{1}+y^{0}-Q x-z=c
\end{array}
$$

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Can reformulate as

$$
\begin{aligned}
\max & \frac{1}{2}\left(c^{T} x+e^{T} y^{1}\right)-f^{T} \delta \\
& y^{1}+y^{0}-Q x-z=c \\
& y_{i}^{1}\left(1-x_{i}\right)=0 \quad y_{i}^{0} x_{i}=0 \quad z_{i} x_{i}=0 \quad \forall i \in N
\end{aligned}
$$

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Can reformulate as

$$
\begin{aligned}
& \max \frac{1}{2}\left(c^{T} x+e^{T} y^{1}\right)-f^{T} \delta \\
& y^{1}+y^{0}-Q x-z=c \\
& y_{i}^{1}\left(1-x_{i}\right)=0 \quad y_{i}^{0} x_{i}=0 \quad z_{i} x_{i}=0 \quad \forall i \in N \\
& 0 \leq x_{j} \leq \delta_{j} \forall j \in N \quad \delta_{j} \in\{0,1\} \forall j \in N \\
& y^{1}, y^{0}, z \geq 0
\end{aligned}
$$

Fixed cost variables

Consider the problem

$$
\begin{gathered}
\max \\
\frac{1}{2} x^{T} Q x+c^{T} x-f^{T} \delta \\
0 \leq x_{j} \leq \delta_{j} \forall j \in N \\
\delta_{j} \in\{0,1\} \forall j \in N
\end{gathered}
$$

Can reformulate as

$$
\begin{aligned}
& \max \frac{1}{2}\left(c^{T} x+e^{T} y^{1}\right)-f^{T} \delta \\
& y^{1}+y^{0}-Q x-z=c \\
& y_{i}^{1}\left(1-x_{i}\right)=0 \quad y_{i}^{0} x_{i}=0 \quad z_{i} x_{i}=0 \quad \forall i \in N \\
& 0 \leq x_{j} \leq \delta_{j} \forall j \in N \quad \delta_{j} \in\{0,1\} \forall j \in N \\
& y^{1}, y^{0}, z \geq 0
\end{aligned}
$$

WLOG, can also require that $y_{i}^{0} z_{i}=0$.

One-row relaxations

$$
\left.\begin{array}{rl}
S_{i} \equiv\left\{\left(y_{i}^{1}, y_{i}^{0}, z_{i}, x\right) \in \mathbb{R}^{n+2}: y_{i}^{1}+y_{i}^{0}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i}\right. \\
& y_{i}^{1}\left(1-x_{i}\right)=0, y_{i}^{0} x_{i}=0, z_{i} x_{i}=0 \\
& x_{j} \leq 1 \forall j \in N, y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0
\end{array}\right\},
$$

Projecting

$\left.S_{i}\right|_{, 0-n}$ gives the one-row relaxation from before

One-row relaxations

$$
\left.\begin{array}{rl}
S_{i} \equiv\left\{\left(y_{i}^{1}, y_{i}^{0}, z_{i}, x\right) \in \mathbb{R}^{n+2}: y_{i}^{1}+y_{i}^{0}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i}\right. \\
& y_{i}^{1}\left(1-x_{i}\right)=0, y_{i}^{0} x_{i}=0, z_{i} x_{i}=0 \\
& x_{j} \leq 1 \forall j \in N, y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0
\end{array}\right\}
$$

Projecting

$\left.S_{i}\right|_{y_{i}^{0}=0}$ gives the one-row relaxation from before

One-row relaxations

$$
\left.\begin{array}{rl}
S_{i} \equiv\left\{\left(y_{i}^{1}, y_{i}^{0}, z_{i}, x\right) \in \mathbb{R}^{n+2}: y_{i}^{1}+y_{i}^{0}-\sum_{j \in N} q_{i j} x_{j}-z_{i}=c_{i}\right. \\
& y_{i}^{1}\left(1-x_{i}\right)=0, y_{i}^{0} x_{i}=0, z_{i} x_{i}=0 \\
& x_{j} \leq 1 \forall j \in N, y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0
\end{array}\right\}
$$

Projecting

$\left.S_{i}\right|_{y_{i}^{0}=0}$ gives the one-row relaxation from before

Definition

$$
\bar{y}_{i}^{0}:=c_{i}+\sum_{j \in N^{+}} q_{i j}
$$

Lifting

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: z_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} & \\
\alpha_{i} & \geq 0 & \\
0 \leq \alpha_{j} & \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\}
$$

Lifting

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: z_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} \\
& \\
\alpha_{i} & \geq 0 \\
0 \leq \alpha_{j} & \leq q_{i j} \\
\forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\}
$$

Lifting problem

$$
\theta=\min \frac{\sum_{j}\left(\alpha_{j}^{+}-\alpha_{j} x_{j}\right)-z_{i}}{y_{i}^{0}},
$$

Lifting

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: z_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} & \\
\alpha_{i} & \geq 0 & \\
0 \leq \alpha_{j} & \leq q_{i j} \quad \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\} S E P^{z}
$$

Lifting problem simplified

$$
\begin{gathered}
\theta=\min \frac{\alpha_{i}+\sum_{j \in N^{+}} \alpha_{j}\left(1-x_{j}\right)-\sum_{j \in N^{-}} \alpha_{j} x_{j}}{y_{i}^{0}} \\
\left(0, y_{i}^{0}, 0, x\right) \in S_{i}, y_{i}^{0}>0
\end{gathered}
$$

Lifting

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: z_{i}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlr}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} & \\
\alpha_{i} & \geq 0 & \\
0 \leq \alpha_{j} & \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\} S E P^{z}
$$

Lifting problem solution

$$
\begin{gathered}
\theta=\frac{\alpha_{i}}{\bar{y}_{i}^{0}} \\
z_{i}+\frac{\alpha_{i}}{\bar{y}_{i}^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}
\end{gathered}
$$

Lifting (cont.)

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{y}_{i} & & \\
\alpha_{i} & \leq 0 & & \\
-q_{i j} \leq \alpha_{j} & \leq 0 & \forall j \in N^{+} \\
0 \leq \alpha_{j} & \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\}
$$

Lifting (cont.)

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{y}_{i} & & \\
\alpha_{i} & \leq 0 & & \\
-q_{i j} \leq \alpha_{j} & \leq 0 & \forall j \in N^{+} \\
0 \leq \alpha_{j} & \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\} S E P^{y}
$$

Lifting Problem

$$
\theta=\min \frac{\sum_{j}\left(\alpha_{j}^{+}-\alpha_{j} x_{j}\right)-y_{i}^{1}}{y_{i}^{0}},
$$

Lifting (cont.)

Facet of $\left.S_{i}\right|_{y_{i}^{0}=0}: y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}$

$$
\left.\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{y}_{i} & & \\
\alpha_{i} & \leq 0 & & \\
-q_{i j} \leq \alpha_{j} & \leq 0 & \forall j \in N^{+} \\
0 \leq \alpha_{j} & \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\} S E P^{y}
$$

Lifting Problem simplified

$$
\theta=\min \frac{\sum_{j \in N^{-}} \alpha_{j}\left(1-x_{j}\right)-\sum_{j \in N^{+}} \alpha_{j} x_{j}}{c_{i}+\sum_{j} q_{i j} x_{j}}
$$

Lifting (cont.)

Lifting Problem simplified

$$
\begin{gathered}
\theta=\min \frac{\sum_{j \in N^{-}} \alpha_{j}\left(1-x_{j}\right)-\sum_{j \in N^{+}} \alpha_{j} x_{j}}{c_{i}+\sum_{j} q_{i j} x_{j}} \\
\left(0, y_{i}^{0}, 0, x\right) \in S_{i}, y_{i}^{0}>0
\end{gathered}
$$

Set $x_{j}=1$ if $\alpha_{j}>0$ or if $j \in N^{+}$and $\alpha_{j}=0$
\longrightarrow Necessary condition to be facet of $\left.S_{i}\right|_{y_{i}^{0}=0}$

Lifting (cont.)

Lifting Problem simplified

$$
\begin{gathered}
\theta=\min \frac{\sum_{j \in N^{-}} \alpha_{j}\left(1-x_{j}\right)-\sum_{j \in N^{+}} \alpha_{j} x_{j}}{c_{i}+\sum_{j} q_{i j} x_{j}} \\
\left(0, y_{i}^{0}, 0, x\right) \in S_{i}, y_{i}^{0}>0
\end{gathered}
$$

Set $x_{j}=1$ if $\alpha_{j}>0$ or if $j \in N^{+}$and $\alpha_{j}=0$

Lifting (cont.)

Lifting Problem simplified

$$
\begin{gathered}
\theta=\min \frac{\sum_{j \in N^{-}} \alpha_{j}\left(1-x_{j}\right)-\sum_{j \in N^{+}} \alpha_{j} x_{j}}{c_{i}+\sum_{j} q_{i j} x_{j}} \\
\left(0, y_{i}^{0}, 0, x\right) \in S_{i}, y_{i}^{0}>0
\end{gathered}
$$

Set $x_{j}=1$ if $\alpha_{j}>0$ or if $j \in N^{+}$and $\alpha_{j}=0$
Feasible point if $c_{i}+\sum_{j \in N^{-}: \alpha_{j}>0} q_{i j}+\sum_{j \in N^{+}: \alpha_{j}=0} q_{i j}>0$
\longrightarrow Necessary condition to be facet of $\left.S_{i}\right|_{y_{i}^{0}=0}$.

Lifting (cont.)

Lifting problem solution

$$
\begin{gathered}
\theta=0 \\
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \sum_{j} \alpha_{j}^{+}
\end{gathered}
$$

if original inequality is facet of $\left.S_{i}\right|_{y_{i}^{0}=0}$
Set $x_{j}=1$ if $\alpha_{j}>0$ or if $j \in N^{+}$and $\alpha_{j}=0$
Feasible point if $\left.c_{i}+\sum_{j \in N^{-}: \alpha_{j}>0} q_{i j}+\sum_{j \in N^{+}: \alpha_{j}=0} q_{i j}>0\right)$
\longrightarrow Necessary condition to be facet of $\left.S_{i}\right|_{y_{i}^{0}=0}$.

Nontrivial Facets

Arbitrary Valid Inequality:

$$
\alpha^{y^{1}} y_{i}^{1}+\alpha^{y^{0}} y_{i}^{0}+\alpha^{z} z_{i}+\sum_{j \in N} \alpha_{j} x_{j} \leq \beta
$$

Nontrivial Facets

Arbitrary Valid Inequality:
$\alpha^{y^{1}} y_{i}^{1}+\alpha^{y^{0}} y_{i}^{0}+\alpha^{z} z_{i}+\sum_{j \in N} \alpha_{j} x_{j} \leq \beta$
Eliminate y_{i}^{1} using equality set:
$\alpha^{y^{0}} y_{i}^{0}+\alpha^{z} z_{i}+\sum_{j \in N} \alpha_{j} x_{j} \leq \beta$

Theorem

For anv nontrivial facet, $\alpha^{2} \geq 0$
Furthermore, $\alpha^{z}=0 \Rightarrow \alpha^{y^{0}}>0$ and $\alpha_{i}=0$

Consider two cases

Nontrivial Facets

Arbitrary Valid Inequality:
$\alpha^{y^{1}} y_{i}^{1}+\alpha^{y^{0}} y_{i}^{0}+\alpha^{z} z_{i}+\sum_{j \in N} \alpha_{j} x_{j} \leq \beta$
Eliminate y_{i}^{1} using equality set:

$$
\alpha^{y^{0}} y_{i}^{0}+\alpha^{z} z_{i}+\sum_{j \in N} \alpha_{j} x_{j} \leq \beta
$$

Theorem

For any nontrivial facet, $\alpha^{z} \geq 0$.
Furthermore, $\alpha^{z}=0 \Rightarrow \alpha^{y^{0}}>0$ and $\alpha_{i}=0$
Consider two cases
(1) $\alpha^{z}=0$
(2) $\alpha^{z}>0$

$$
\alpha^{z}=0
$$

$\underline{y_{i+i}^{0}+\sum_{j \neq i} \alpha_{j} \leq \sum_{j \neq i} \alpha_{j}^{\dagger}}$

$$
S E P^{y^{0}}:=\left\{\begin{array}{rlrl}
\sum_{j \neq i}\left|\alpha_{j}\right| & =\bar{y}_{i}^{0} & & \\
-q_{i j} \leq \alpha_{j} \leq 0 & & \forall j \in N^{+} \\
0 \leq \alpha_{j} \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\}
$$

Theorem
Suppose α is a vertex of SEPy0 and

$$
\alpha^{z}=0
$$

$y_{i}^{0}+\sum_{j \neq i} \alpha_{j} \leq \sum_{j \neq i} \alpha_{j}^{+}$

$$
S E P^{y^{0}}:=\left\{\begin{array}{rlrl}
\sum_{j \neq i}\left|\alpha_{j}\right| & =\bar{y}_{i}^{0} & & \\
-q_{i j} \leq \alpha_{j} \leq 0 & & \forall j \in N^{+} \\
0 \leq \alpha_{j} \leq-q_{i j} & \forall j \in N^{-}
\end{array}\right\}
$$

Theorem

Suppose α is a vertex of $S E P^{y^{0}}$ and

$$
c_{i}+q_{i i}+\sum_{j \in N^{+}: \alpha_{j}=0} q_{i j}+\sum_{j \in N^{-}: \alpha_{j}>0} q_{i j}>0,
$$

then inequality is a facet of $\operatorname{conv}\left(S_{i}\right)$.

$$
\alpha^{z}>0, \alpha_{i}<0
$$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\alpha^{z}>0, \alpha_{i}<0
$$

$z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta$
Conjecture
$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}}=0$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$$
\alpha^{z}>0, \alpha_{i}<0
$$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Conjecture

$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

$$
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}=0}$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$$
\alpha^{z}>0, \alpha_{i}<0
$$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Conjecture
$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

$$
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}^{0}=0}$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$\alpha^{z}>0, \alpha_{i}<0$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Conjecture

$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

$$
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}^{0}=0}$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$\alpha^{z}>0, \alpha_{i}<0$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Conjecture

$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

$$
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}^{0}=0}$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$\alpha^{z}>0, \alpha_{i}<0$

$z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta$
Conjecture
$\alpha_{i}<0 \Rightarrow \alpha^{y^{0}}=-1$
Use equality set to rewrite inequality as

$$
y_{i}^{1}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

- Consistent with lifting result
- Equivalent to y_{i}-inequalities from $\left.S_{i}\right|_{y_{i}^{0}=0}$
- Can use $S E P^{y}$ to separate
- Nothing new and hence no fun

$$
\alpha^{z}>0, \alpha_{i} \geq 0
$$

$z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta$

Theorem

$\alpha_{i} \geq 0 \Rightarrow$

- $\alpha_{j} \leq q_{i j} \forall j \in N^{+}$
- $\alpha_{j} \geq q_{i j} \forall j \in N^{-}$
- $\alpha^{y^{0}} \geq 0$

$\alpha^{z}>0, \alpha_{i} \geq 0$

$z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta$

Theorem

$\alpha_{i} \geq 0 \Rightarrow$

- $\alpha_{j} \leq q_{i j} \forall j \in N^{+}$
- $\alpha_{j} \geq q_{i j} \forall j \in N^{-}$
- $\alpha^{y^{0}} \geq 0$

Unlike with $\left.S_{i}\right|_{y_{i}^{0}=0}$, we cannot assume

- $\alpha_{j} \geq 0 \forall j \in N^{+}$
- $\alpha_{j} \leq 0 \forall j \in N^{-}$

$$
\alpha^{z}>0, \alpha_{i} \geq 0
$$

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

$$
\begin{aligned}
& \alpha_{i} \geq 0 \Rightarrow \\
& \quad \text { - } \alpha_{j} \leq q_{i j} \forall j \in N^{+} \\
& \quad \text { - } \alpha_{j} \geq q_{i j} \forall j \in N^{-} \\
& \quad \text { - } \alpha^{y^{0}} \geq 0
\end{aligned}
$$

Definition

$$
B^{+}:=\left\{j \in N^{+}: \alpha_{j}<0\right\} \quad B^{-}:=\left\{j \in N^{-}: \alpha_{j}>0\right\}
$$

$$
B=B^{+} \cup B^{-}
$$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{array}{rll}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} & \\
\alpha_{i} & \geq 0 & \\
0 \leq \alpha_{j} \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j}
$$

Previously $S E P^{z}=$

$$
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i}
$$

$$
\left\{\begin{aligned}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} \\
& \\
\alpha_{i} \geq 0 & \\
0 \leq \alpha_{j} \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 & \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+}
\end{gathered}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{array}{cc}
\sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} & \\
\alpha_{i} \geq 0 & \\
0 \leq \alpha_{j} \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 & \forall j \in N^{-}
\end{array}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{aligned}
& \sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} \\
& \\
& \alpha_{i} \geq 0 \\
& 0 \leq \alpha_{j} \leq q_{i j} \\
& q_{i j} \leq j \in N^{+} \\
& \leq 0 \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

$$
\alpha_{i}, \alpha^{y^{0}} \geq 0
$$

Previously $S E P^{z}=$

$$
\left\{\begin{aligned}
& \sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} \\
& \\
& \alpha_{i} \geq 0 \\
& 0 \leq \alpha_{j} \leq q_{i j} \\
& \quad \forall j \in N^{+} \\
& q_{i j} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{array}{rlrl}
\sum_{j}\left|\alpha_{j}\right| & =\bar{z}_{i} & & \\
\alpha_{i} & \geq 0 & & \\
0 \leq \alpha_{j} & \leq q_{i j} & \forall j \in N^{+} \\
q_{i j} \leq \alpha_{j} & \leq 0 \quad \forall j \in N^{-}
\end{array}\right\}
$$

$$
\alpha_{i}, \alpha^{y^{0}} \geq 0
$$

$$
\alpha_{i}=\sum_{j \in B^{+}} \alpha_{j}-\sum_{j \in B^{-}} \alpha_{j}+\bar{y}_{i}^{0} \alpha^{y^{0}}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

$$
\alpha_{i}, \alpha^{y^{0}} \geq 0
$$

$$
\alpha_{i}=\sum_{j \in B^{+}} \alpha_{j}-\sum_{j \in B^{-}} \alpha_{j}+\bar{y}_{i}^{0} \alpha^{y^{0}}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{aligned}
& \sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} \\
& \\
& \alpha_{i} \geq 0 \\
& 0 \leq \alpha_{j} \leq q_{i j} \\
& \forall j \in N^{+} \\
& q_{i j} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

$$
\alpha_{j}=-\alpha^{y^{0}} q_{i j} \forall j \in B
$$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

$$
\alpha_{i}, \alpha^{y^{0}} \geq 0
$$

$$
\alpha_{i}=\sum_{j \in B^{+}} \alpha_{j}-\sum_{j \in B^{-}} \alpha_{j}+\bar{y}_{i}^{0} \alpha^{y^{0}}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{aligned}
& \sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} \\
& \\
& \alpha_{i} \geq 0 \\
& 0 \leq \alpha_{j} \leq q_{i j} \\
& \quad \forall j \in N^{+} \\
& q_{i j} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

$$
\alpha_{j}=-\alpha^{y^{0}} q_{i j} \forall j \in B
$$

Necessary conditions

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

$$
\begin{gathered}
\beta=\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}+\sum_{j \in B^{-}} \alpha_{j} \\
\alpha_{i}+\sum_{j \in N^{+} \backslash B} \alpha_{j}-\sum_{j \in N^{-} \backslash B} \alpha_{j}=\bar{z}_{i} \\
0 \leq \alpha_{j} \leq q_{i j} \forall j \in N^{+} \backslash B^{+} \\
q_{i j} \leq \alpha_{j} \leq 0 \forall j \in N^{-} \backslash B^{-}
\end{gathered}
$$

$$
\alpha_{i}, \alpha^{y^{0}} \geq 0
$$

$$
\alpha_{i}=\sum_{j \in B^{+}} \alpha_{j}-\sum_{j \in B^{-}} \alpha_{j}+\bar{y}_{i}^{0} \alpha^{y^{0}}
$$

Previously $S E P^{z}=$

$$
\left\{\begin{aligned}
& \sum_{j}\left|\alpha_{j}\right|=\bar{z}_{i} \\
& \\
& \alpha_{i} \geq 0 \\
& 0 \leq \alpha_{j} \leq q_{i j} \\
& \quad \forall j \in N^{+} \\
& q_{i j} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{-}
\end{aligned}\right\}
$$

- $B=\emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

$$
\alpha_{j}=-\alpha^{y^{0}} q_{i j} \forall j \in B
$$

Facets

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

If $\left(\alpha^{y^{0}}, \alpha, \beta\right)$ is an extreme point, and

- $c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$
- $q_{i i}+c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$,
then it is a facet of S_{i}.

Facets

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

If $\left(\alpha^{y^{0}}, \alpha, \beta\right)$ is an extreme point, and

- $c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$
- $q_{i i}+c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$,
then it is a facet of S_{i}.
Some comments:
- Condition is also necessary.
- When $B=\emptyset$, gives facets which are lifted "non-facets"
- How to choose B ?

Facets

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

If $\left(\alpha^{y^{0}}, \alpha, \beta\right)$ is an extreme point, and

- $c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$
- $q_{i i}+c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$,
then it is a facet of S_{i}.
Some comments:
- Condition is also necessary.
- When $B=\emptyset$, gives facets which are lifted "non-facets"
- How to choose B ?

Facets

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

If $\left(\alpha^{y^{0}}, \alpha, \beta\right)$ is an extreme point, and

- $c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$
- $q_{i i}+c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$,
then it is a facet of S_{i}.
Some comments:
- Condition is also necessary.
- When $B=\emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

Facets

$$
z_{i}+\alpha^{y^{0}} y_{i}^{0}+\sum_{j} \alpha_{j} x_{j} \leq \beta
$$

Theorem

If $\left(\alpha^{y^{0}}, \alpha, \beta\right)$ is an extreme point, and

- $c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$
- $q_{i i}+c_{i}+\sum_{j \in N^{+} \backslash B} q_{i j}+\sum_{j \in B^{-}} q_{i j}>0$,
then it is a facet of S_{i}.
Some comments:
- Condition is also necessary.
- When $B=\emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

Future Work

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints

Future Work

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develon valid inequalities implied by binary variables and complementarity constraints

Future Work

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints

Future Work

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints

