< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonconvex Quadratic Programming

Dieter Vandenbussche

Department of Mechanical and Industrial Engineering University of Illinois Urbana-Champaign

Workshop on Integer Programming and Continuous Optimization, 2004

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

General QP

- Introduction
- Reformulation to LP with Complementarity Constraints
- Bounding LP Relaxation

2 Special Case

- Formulation
- Valid Inequalities
- Example

3 Fixed Cost Variables

- Formulation
- Lifting
- Facets not from lifting

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Collaborators

• George Nemhauser (Georgia Institute of Technology)

• Tin-Chi Lin (University of Illinois U-C) 🔳

Outline

1 General QP

- Introduction
- Reformulation to LP with Complementarity Constraints
- Bounding LP Relaxation

2 Special Case

QP

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quadratic Program (QP):

$$\max \frac{1}{2}x^TQx + c^Tx$$
$$Ax \le b$$

- If Q is negative semidefinite, then QP is solvable in polynomial time.
- If Q is indefinite, QP is \mathcal{NP} -hard.

Special Case

Fixed Cost Variables

1

Reformulating QP

KKT conditions:

$$A^{T}y - Qx = c$$
$$Ax \le b \quad y \ge 0$$
$$y^{T}(b - Ax) = 0$$

For any KKT point,

$$\frac{1}{2}x^TQx + c^Tx = \frac{1}{2}\left(c^Tx + y^Tb\right)$$

Reformulation

$$\max \frac{1}{2} (c^T x + y^T b)$$
$$A^T y - Q x = c$$
$$A x \le b \quad y \ge 0$$
$$y^T (b - A x) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1

KKT conditions:

Reformulating QP

$$A^{T}y - Qx = c$$
$$Ax \le b \quad y \ge 0$$
$$y^{T}(b - Ax) = 0$$

For any KKT point,

$$\frac{1}{2}x^TQx + c^Tx = \frac{1}{2}\left(c^Tx + y^Tb\right)$$

Reformulation

$$\max \frac{1}{2} (c^T x + y^T b)$$
$$A^T y - Q x = c$$
$$A x \le b \quad y \ge 0$$
$$y^T (b - A x) = 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Special Case

Fixed Cost Variables

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Just make it an IP

Slack variables s := b - AxCan replace each complementarity $y_i s_i = 0$ with

$$\begin{aligned} y_i &\leq M \delta_i^y \\ s_i &\leq M \delta_i^s \\ \delta_i^y + \delta_i^s &\leq 1 \\ \delta_i^y, \delta_i^s &\in \{0,1\} \end{aligned}$$

for a sufficiently large M.

Problems:

- Introduces many new variables
- ullet big M yields poor LP relaxations
- Not as much fun

Special Case

Fixed Cost Variables

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Just make it an IP

Slack variables s := b - AxCan replace each complementarity $y_i s_i = 0$ with

$$\begin{aligned} y_i &\leq M \delta_i^y \\ s_i &\leq M \delta_i^s \\ \delta_i^y + \delta_i^s &\leq 1 \\ \delta_i^y, \delta_i^s &\in \{0,1\} \end{aligned}$$

for a sufficiently large M.

Problems:

- Introduces many new variables
- big M yields poor LP relaxations
- Not as much fun

Special Case

Fixed Cost Variables

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Just make it an IP

Slack variables s := b - AxCan replace each complementarity $y_i s_i = 0$ with

$$\begin{split} y_i &\leq M \delta_i^y \\ s_i &\leq M \delta_i^s \\ \delta_i^y + \delta_i^s &\leq 1 \\ \delta_i^y, \delta_i^s &\in \{0,1\} \end{split}$$

for a sufficiently large M.

Problems:

- Introduces many new variables
- big M yields poor LP relaxations

Not as much fun

Special Case

Fixed Cost Variables

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Just make it an IP

Slack variables s := b - AxCan replace each complementarity $y_i s_i = 0$ with

$$\begin{aligned} y_i &\leq M \delta_i^y \\ s_i &\leq M \delta_i^s \\ \delta_i^y + \delta_i^s &\leq 1 \\ \delta_i^y, \delta_i^s &\in \{0,1\} \end{aligned}$$

for a sufficiently large M.

Problems:

- Introduces many new variables
- big M yields poor LP relaxations
- Not as much fun

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:

- Branching Strategies.
- 2 Development of cutting planes.
- Bounding the dual variables.

$$\max \frac{1}{2} (c^T x + y^T b)$$
$$A^T y - Qx = c$$
$$Ax \le b \quad y \ge 0$$

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:

- Branching Strategies.
- ② Development of cutting planes.
- Bounding the dual variables.

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:

- Branching Strategies.
- ② Development of cutting planes.
- Bounding the dual variables.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Direct Approach

Classic idea:

- solve LP relaxation
- branch on complementarity
- use branch-and-bound

Other contexts

- Beale and Tomlin: SOS sets.
- Disjunctive Programs: Balas, Beaumont, etc...
- DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:

- Branching Strategies.
- Oevelopment of cutting planes.
- Sounding the dual variables.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Special Case

Fixed Cost Variables

1

Bounding the LP relaxation

$$\max \frac{1}{2} (c^T x + y^T b)$$
$$A^T y - Qx = c$$
$$Ax \le b \quad y \ge 0$$

Assume $\{x \in \mathbb{R}^n : Ax \leq b\}$ nonempty and bounded, i.e. $\{r \in \mathbb{R}^n : Ar \leq 0\} = \{0\}.$

Recession cone of the LP relaxation:

$$\mathcal{C} = \left\{ (\gamma, r) \in \mathbb{R}^{m+n} : Ar \le 0, A^T \gamma - Qr = 0, \gamma \ge 0 \right\} = \\ \left\{ (\gamma, 0) \in \mathbb{R}^{m+n} : A^T \gamma = 0, \gamma \ge 0 \right\}$$

・ロト・雪ト・雪ト・雪・ 今日・

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1

Bounding the LP relaxation

LP relaxation of complementarity reformulation:

$$\max \frac{1}{2} (c^T x + y^T b)$$
$$A^T y - Qx = c$$
$$Ax \le b \quad y \ge 0$$

Assume $\{x \in \mathbb{R}^n : Ax \leq b\}$ nonempty and bounded, i.e. $\{r \in \mathbb{R}^n : Ar \leq 0\} = \{0\}.$

Recession cone of the LP relaxation:

$$\mathcal{C} = \left\{ (\gamma, r) \in \mathbb{R}^{m+n} : Ar \leq \mathbf{0}, A^T \gamma - Qr = \mathbf{0}, \gamma \geq \mathbf{0}
ight\} = \left\{ (\gamma, \mathbf{0}) \in \mathbb{R}^{m+n} : A^T \gamma = \mathbf{0}, \gamma \geq \mathbf{0}
ight\}$$

F

Special Case

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

]

Extreme rays of LP relaxation

interior point, i.e.
$$\bar{x}$$
 such that $A\bar{x} < b \implies b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

F

Special Case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1

Extreme rays of LP relaxation

interior point, i.e.
$$\bar{x}$$
 such that $A\bar{x} < b \implies b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

1

Extreme rays of LP relaxation

$$\exists$$
 interior point, i.e. \bar{x} such that $A\bar{x} < b \Rightarrow b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

- ロ ト - 4 回 ト - 4 □ - 4

1

Extreme rays of LP relaxation

 $\exists \text{ interior point, i.e. } \bar{x} \text{ such that } A\bar{x} < b \implies b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Extreme rays of LP relaxation

$$\exists$$
 interior point, i.e. \bar{x} such that $A\bar{x} < b \implies b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

1

Extreme rays of LP relaxation

$$\exists$$
 interior point, i.e. \bar{x} such that $A\bar{x} < b \implies b^T \gamma > 0 \ \forall (\gamma, 0) \in \mathcal{C} \setminus \{0\}$

 \Rightarrow LP relaxation is unbounded.

If (y,x) is a feasible, complementary solution and $(\gamma,0)\in\mathcal{C}\setminus\{0\}$, then

$$(y+t\gamma)^T(b-Ax) = t\gamma^T b > 0$$
 for any $t > 0$

- Convex hull of complementary solutions is closed and bounded
- Every vertex of this convex hull is a vertex of LP relaxation
- Optimize over just the vertices of the LP relaxation?
- Will not necessarily yield complementary solutions

Complexity

1

Observation

Given an LP in the form of a poly-time separation oracle, optimizing an arbitrary linear objective function over the extreme points of this LP is NP-hard.

Dominant of convex hull of incidence vectors of s - t paths:

$$\left\{ x \in \mathbb{R}_{+}^{|E|} : a_{H}^{T} x \ge 1 \quad \forall H \in \mathcal{H} \right\}$$

• a_H : incidence vector of a cut H.

Finding vertex that maximizes arbitrary linear objective

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Bounding LP relaxation

General QP

00000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I

Need a way to "truncate" the polyhedron

$$A^T y - Qx = c$$
$$Ax \le b$$
$$y \ge 0$$

without eliminating solutions that satisfy $y^{T}(b - Ax) = 0$.

- Could use information about sizes of vertices: vertex size $\leq 4n^2 \times$ inequality size
- Add valid inequalities
- Examine special cases

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Outline

2 Special Case

- Formulation
- Valid Inequalities
- Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

QP with simple bounds

General QP

Quadratic program with simple bounds (QPB):

$$\max \frac{1}{2}x^TQx + c^Tx$$
$$0 \le x \le e$$

- Can show this generalizes 0-1 QP
- $\bullet \ \mathcal{NP}\text{-complete}$

I

KKT reformulation

Equivalent complementarity problem:

$$\begin{aligned} \max \frac{1}{2}c^T x + \frac{1}{2}y^T e \\ y_i - \sum_{j \in N} q_{ij}x_j - z_i &= c_i \quad \forall i \in N \\ y_i(1 - x_i) &= 0 \quad \forall i \in N \\ z_i x_i &= 0 \quad \forall i \in N \\ x \leq e \quad x, y, z \geq 0 \end{aligned}$$

$$y_i(1-x_i) = 0$$
 and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

KKT reformulation

$$\begin{aligned} \max \frac{1}{2}c^T x + \frac{1}{2}y^T e \\ y_i - \sum_{j \in N} q_{ij}x_j - z_i &= c_i \quad \forall i \in N \\ y_i(1 - x_i) &= 0 \quad \forall i \in N \\ z_i x_i &= 0 \quad \forall i \in N \\ x \leq e \quad x, y, z \geq 0 \end{aligned}$$

$$y_i(1-x_i) = 0$$
 and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

KKT reformulation

$$\max \frac{1}{2}c^T x + \frac{1}{2}y^T e$$

$$y_i - \sum_{j \in N} q_{ij}x_j - z_i = c_i \quad \forall i \in N$$

$$y_i(1 - x_i) = 0 \quad \forall i \in N$$

$$z_i x_i = 0 \quad \forall i \in N$$

$$x \le e \quad x, y, z \ge 0$$

$$y_i(1-x_i) = 0$$
 and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

KKT reformulation

$$\max \frac{1}{2}c^T x + \frac{1}{2}y^T e$$

$$y_i - \sum_{j \in N} q_{ij}x_j - z_i = c_i \quad \forall i \in N$$

$$y_i(1 - x_i) = 0 \quad \forall i \in N$$

$$z_i x_i = 0 \quad \forall i \in N$$

$$x \le e \quad x, y, z \ge 0$$

$$y_i(1-x_i) = 0$$
 and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

KKT reformulation

Equivalent complementarity problem:

$$\max \frac{1}{2}c^T x + \frac{1}{2}y^T e$$

$$y_i - \sum_{j \in N} q_{ij}x_j - z_i = c_i \quad \forall i \in N$$

$$y_i(1 - x_i) = 0 \quad \forall i \in N$$

$$z_i x_i = 0 \quad \forall i \in N$$

$$x \le e \quad x, y, z \ge 0$$

 $y_i(1-x_i) = 0$ and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

KKT reformulation

$$\begin{aligned} \max \frac{1}{2}c^T x + \frac{1}{2}y^T e \\ y_i - \sum_{j \in N} q_{ij}x_j - z_i &= c_i \quad \forall i \in N \\ \frac{y_i(1 - x_i) = 0}{z_i x_i} = 0 \quad \forall i \in N \\ x \leq e \quad x, y, z \geq 0 \end{aligned}$$

$$y_i(1-x_i) = 0$$
 and $z_i x_i = 0 \Rightarrow y_i z_i = 0$

Special Case

Fixed Cost Variables

1

Bounding the LP relaxation

Row
$$i: \quad y_i - z_i - \sum_{j \in N} q_{ij} x_j = c_i$$

Define

• $\bar{y}_i \equiv c_i + q_{ii} + \sum_{j \in N \setminus i} q_{ij}^+$ • $\bar{z}_i \equiv -c_i - \sum_{j \in N \setminus i} q_{ij}^-$ where $a^+ = \max\{0, a\}$ where $a^- = \min\{0, a\}$

• If $y_i > 0$, then $y_i \le \overline{y}_i$ • If $z_i > 0$, then $z_i \le \overline{z}_i$ Yields two sets of valid inequalities

 $\bigcirc y_i \le \bar{y}_i x_i$

 $z_i + \bar{z}_i x_i \le \bar{z}_i$

Assume $ar{y}_i > 0$ and $ar{z}_i > 0$

Make LP relaxation bounded

Fixed Cost Variables

1

Bounding the LP relaxation

Row
$$i: \quad y_i - z_i - \sum_{j \in N} q_{ij} x_j = c_i$$

Define

- $\bar{y}_i \equiv c_i + q_{ii} + \sum_{j \in N \setminus i} q_{ij}^+$
- $\bar{z}_i \equiv -c_i \sum_{j \in N \setminus i} q_{ij}^-$
- If $y_i > 0$, then $y_i \leq \bar{y}_i$
- If $z_i > 0$, then $z_i \leq \overline{z}_i$

Yields two sets of valid inequalities:

 $2 \quad z_i + \bar{z}_i x_i \le \bar{z}_i$

where $a^+ = \max\{0, a\}$ where $a^- = \min\{0, a\}$

$$igl({\sf Assume} \; ar y_i > {\sf 0} \; {\sf and} \; ar z_i > {\sf 0} igr)$$

Make LP relaxation bounded

Fixed Cost Variables

1

Bounding the LP relaxation

Row
$$i: \quad y_i - z_i - \sum_{j \in N} q_{ij} x_j = c_i$$

Define

- $\bar{y}_i \equiv c_i + q_{ii} + \sum_{j \in N \setminus i} q_{ij}^+$
- $\bar{z}_i \equiv -c_i \sum_{j \in N \setminus i} q_{ij}^-$
- If $y_i > 0$, then $y_i \leq \bar{y}_i$
- If $z_i > 0$, then $z_i \leq \bar{z}_i$

Yields two sets of valid inequalities:

 $2 \quad z_i + \bar{z}_i x_i \le \bar{z}_i$

where $a^+ = \max\{0, a\}$ where $a^- = \min\{0, a\}$

(Assume
$$ar{y}_i >$$
 0 and $ar{z}_i >$ 0

Make LP relaxation bounded
Fixed Cost Variables

Bounding the LP relaxation

Row
$$i: y_i - z_i - \sum_{j \in N} q_{ij} x_j = c_i$$

Define

- $\bar{y}_i \equiv c_i + q_{ii} + \sum_{j \in N \setminus i} q_{ij}^+$
- $\bar{z}_i \equiv -c_i \sum_{j \in N \setminus i} q_{ij}^-$
- If $y_i >$ 0, then $y_i \leq ar{y}_i$
- If $z_i > 0$, then $z_i \leq \bar{z}_i$

Yields two sets of valid inequalities:

 $2 \quad z_i + \bar{z}_i x_i \le \bar{z}_i$

where $a^+ = \max\{0, a\}$ where $a^- = \min\{0, a\}$

$$igl({\sf Assume} \; ar y_i > {\sf 0} \; {\sf and} \; ar z_i > {\sf 0} igr)$$

Make LP relaxation bounded

Fixed Cost Variables

Bounding the LP relaxation

Row
$$i$$
 : $y_i - z_i - \sum_{j \in N} q_{ij} x_j = c_i$

Define

• $\bar{y}_i \equiv c_i + q_{ii} + \sum_{j \in N \setminus i} q_{ij}^+$ • $\bar{z}_i \equiv -c_i - \sum_{j \in N \setminus i} q_{ij}^-$ where $a^+ = \max\{0, a\}$ where $a^- = \min\{0, a\}$

$$igl({\sf Assume} \; ar y_i > {\sf 0} \; {\sf and} \; ar z_i > {\sf 0} igr)$$

• If $y_i > 0$, then $y_i \le \overline{y}_i$ • If $z_i > 0$, then $z_i < \overline{z}_i$

 $2 \quad z_i + \overline{z_i} x_i \le \overline{z_i}$

Make LP relaxation bounded

Special Case

Fixed Cost Variables

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

One-row relaxations

Find relaxations of the problem for which generating cuts is easy. Consider the set

$$S_i \equiv \left\{ (y_i, z_i, x) \in \mathbb{R}^{n+2} : y_i - \sum_{j \in N} q_{ij} x_j - z_i = c_i \ y_i (1 - x_i) = 0, z_i x_i = 0 \ x_j \le 1 \ orall j \in N, \ y_i, z_i, x \ge 0 \end{array}
ight\}$$

Want valid inequalities for $conv(S_i)$.

- Much like knapsack relaxation
- Only 2 non-convexities (unlike knapsack)

Special Case

Fixed Cost Variables

Nontrivial facets

Facets not induced by bounds belong to one of two classes

•
$$z_i + \sum_j \alpha_j x_j \leq \sum_j \alpha_j^+$$

$$\sum_{\substack{j \mid \alpha_j \mid = \bar{z}_i \\ \alpha_i \geq 0 \\ 0 \leq \alpha_j \leq q_{ij} \quad \forall j \in N^+ \\ q_{ij} \leq \alpha_j \leq 0 \quad \forall j \in N^- \end{cases} SEP^z$$
• $y_i + \sum_j \alpha_j x_j \leq \sum_j \alpha_j^+$

$$\sum_{\substack{j \mid \alpha_j \mid = \bar{y}_i \\ \alpha_i \leq 0 \\ -q_{ij} \leq \alpha_j \leq 0 \quad \forall j \in N^+ \\ 0 \leq \alpha_j \leq -q_{ij} \quad \forall j \in N^- \end{cases} SEP^y$$

General QP	
00000000	

Fixed Cost Variables

Example

Max	$\frac{1}{2}y_1$	+	$\frac{1}{2}y_2$	$\frac{1}{2}y_{3}$	$\frac{1}{2}y_{4}$					
s.t.	$\overline{y_1}$		$\overline{z_1}$	$\overline{3}x_1$	$\overline{4}x_2$	+	5 <i>x</i> ₃		$3x_{4}$	
			z_2	$4x_{1}$	$5x_{2}$	+			$5x_4$	
				$5x_{1}$	x_2		6 <i>x</i> 3		$2x_4$	
	y_4		z_4	$3x_1$	$5x_{2}$		$2x_{3}$		$2x_4$	
	y_1		$1x_1$		z_1	+	$8x_{1}$			
			$4x_{2}$		z_2	+	x_2	≤ 1		
						+	$6x_{3}$	≤ 6		
	y_4		$5x_{4}$		z_4	+	$3x_4$	\leq 3		
		z,				≤ 1				
								E → < E	▶ 重	590

Special Case

Fixed Cost Variables

][

Example

 $+ \frac{1}{2}y_2$ $+ \frac{1}{2}y_3 + \frac{1}{2}y_4$ Max $\frac{1}{2}y_1$ $- z_1$ $3x_1 - 4x_2$ s.t. ++ $5x_{3}$ $3x_4$ = 0 y_1 + $- 4x_1 +$ $5x_2 +$ x_3 _ $5x_4$ = 0 $-z_2$ y_2 $x_2 6x_3 - 2x_4$ — $+ 5x_1 +$ = 0 y_3 z_3 $+ 3x_1$ _ $2x_3 + 2x_4$ z_4 _ $5x_2$ = 0 y_4 $8x_1 \leq 8$ y_1 $\leq 1x_1$ z_1 + \leq $+ x_2 \leq 1$ $4x_{2}$ z_2 y_2 $\leq 8x_3$ $+ 6x_3 \leq 6$ y_3 z_3 \leq 5 x_4 + $3x_4 \leq 3$ z_4 y_4 z, x> 0 < 1y,x

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Example (cont.)

Optimal solution to LP:

$$y^* = \begin{pmatrix} 0 \\ 2 \\ 7.5 \\ 2.5 \end{pmatrix} \quad z^* = \begin{pmatrix} 6 \\ 0.5 \\ 0 \\ 0 \end{pmatrix} \quad x^* = \begin{pmatrix} 0 \\ 0.5 \\ 1 \\ 1 \end{pmatrix}$$

Adding the following inequalities:

$$\begin{array}{ll} z_2 + x_4 & \leq 1 \\ y_2 - 3x_1 + x_3 & \leq 1 \end{array}$$

Cuts off the optimal LP solution and produces the optimal complementary solution.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example (cont.)

Optimal solution to LP:

$$y^* = \begin{pmatrix} 0 \\ 2 \\ 7.5 \\ 2.5 \end{pmatrix} \quad z^* = \begin{pmatrix} 6 \\ 0.5 \\ 0 \\ 0 \end{pmatrix} \quad x^* = \begin{pmatrix} 0 \\ 0.5 \\ 1 \\ 1 \end{pmatrix}$$

Adding the following inequalities:

$$\begin{array}{ll} z_2 + x_4 & \leq 1 \\ y_2 - 3x_1 + x_3 & \leq 1 \end{array}$$

Cuts off the optimal LP solution and produces the optimal complementary solution.

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

• Theoretical Issues

- Only vertices of SEP^{z} and SEP^{y} can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

Comments

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IF
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

• Theoretical Issues

- Only vertices of SEP^{z} and SEP^{y} can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IF
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

• Theoretical Issues

- Only vertices of SEP^{z} and SEP^{y} can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

• Theoretical Issues

- Only vertices of SEP^{z} and SEP^{y} can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

]

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

Comments

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

Comments

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- $\bullet\,$ Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

Comments

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

• Computational Issues

- Cuts can be separated in $\mathcal{O}(n \log n)$
- To be effective, cuts must be added and deleted aggressively
- Use of cuts significantly expedites branch-and-bound
- Direct method much better than conversion to IP
- Strong branching very effective for "hard" instances
- Tables of computational results available for those interested (and can't find anything better to do)

- Only vertices of SEP^z and SEP^y can yield facets
- Possible to identify which vertices yield facets
- Possible to characterize convex hull when $ar{y}_i \leq 0$ or $ar{z}_i \leq 0$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

2 Special Case

- 3 Fixed Cost Variables
 - Formulation
 - Lifting
 - Facets not from lifting

Special Case

・ロト・日本・モート モー うへぐ

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^T Q x + c^T x - f^T \delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$\max \frac{1}{2} (c^T x + c^T y^1) - f^T \delta y^1 + y^0 - Qx - z = c y_i^1 (1 - x_i) = 0 \quad y_i^0 x_i = 0 \quad z_i x_i = 0 \quad \forall i \in N 0 \le x_j \le \delta_j \; \forall j \in N \quad \delta_j \in \{0, 1\} \; \forall j \in N y^1, y^0, z \ge 0$$

WLOG, can also require that $y_i^0 z_i = 0$.

Special Case

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^TQx + c^Tx - f^T\delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$\max \frac{1}{2} (c^T x + e^T y^1) - f^T \delta$$

$$y^1 + y^0 - Qx - z = c$$

$$y_i^1 (1 - x_i) = 0 \quad y_i^0 x_i = 0 \quad z_i x_i = 0 \quad \forall i \in N$$

$$0 \le x_j \le \delta_j \; \forall j \in N \quad \delta_j \in \{0, 1\} \; \forall j \in N$$

$$y^1, y^0, z \ge 0$$

WLOG, can also require that $y_i^0 z_i = 0$.

・ロト・(四ト・(日下・(日下・))の(で)

Special Case

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^T Q x + c^T x - f^T \delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$\max \frac{1}{2} (c^T x + e^T y^1) - f^T \delta \\ y^1 + y^0 - Qx - z = c \\ y^1_i (1 - x_i) = 0 \quad y^0_i x_i = 0 \quad z_i x_i = 0 \quad \forall i \in N \\ 0 \le x_j \le \delta_j \; \forall j \in N \quad \delta_j \in \{0, 1\} \; \forall j \in N \\ y^1, y^0, z \ge 0$$

WLOG, can also require that $y_i^0 z_i = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Special Case

Fixed Cost Variables

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^T Q x + c^T x - f^T \delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$egin{aligned} \max rac{1}{2} \left(c^T x + e^T y^1
ight) - f^T \delta \ y^1 + y^0 - Qx - z &= c \ y_i^1 (1 - x_i) &= 0 \quad y_i^0 x_i = 0 \quad z_i x_i = 0 \quad orall i \in N \ 0 &\leq x_j \leq \delta_j \; orall j \in N \quad \delta_j \in \{0,1\} \; orall j \in N \ y^1, y^0, z \geq 0 \end{aligned}$$

WLOG, can also require that $y_i^0 z_i = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Special Case

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^T Q x + c^T x - f^T \delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$\max \frac{1}{2} (c^T x + e^T y^1) - f^T \delta$$

$$y^1 + y^0 - Qx - z = c$$

$$y_i^1 (1 - x_i) = 0 \quad y_i^0 x_i = 0 \quad z_i x_i = 0 \quad \forall i \in N$$

$$0 \le x_j \le \delta_j \; \forall j \in N \quad \delta_j \in \{0, 1\} \; \forall j \in N$$

$$y^1, y^0, z \ge 0$$

WLOG, can also require that $y_i^0 z_i = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Special Case

Fixed cost variables

Consider the problem

$$\max \frac{1}{2}x^T Q x + c^T x - f^T \delta$$
$$0 \le x_j \le \delta_j \; \forall j \in N$$
$$\delta_j \in \{0, 1\} \; \forall j \in N$$

Can reformulate as

$$\max \frac{1}{2} (c^{T}x + e^{T}y^{1}) - f^{T}\delta$$

$$y^{1} + y^{0} - Qx - z = c$$

$$y_{i}^{1}(1 - x_{i}) = 0 \quad y_{i}^{0}x_{i} = 0 \quad z_{i}x_{i} = 0 \quad \forall i \in N$$

$$0 \le x_{j} \le \delta_{j} \; \forall j \in N \quad \delta_{j} \in \{0, 1\} \; \forall j \in N$$

$$y^{1}, y^{0}, z \ge 0$$

WLOG, can also require that $y_i^0 z_i = 0$.

One-row relaxations

$$S_{i} \equiv \left\{ (y_{i}^{1}, y_{i}^{0}, z_{i}, x) \in \mathbb{R}^{n+2} : y_{i}^{1} + y_{i}^{0} - \sum_{j \in N} q_{ij}x_{j} - z_{i} = c_{i} \\ y_{i}^{1}(1 - x_{i}) = 0, y_{i}^{0}x_{i} = 0, z_{i}x_{i} = 0 \\ x_{j} \leq 1 \ \forall j \in N, \ y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0 \end{array} \right\}$$

Projecting

 $S_i|_{y_i^0=0}$ gives the one-row relaxation from before

Definition

$$\bar{y}_i^0 := c_i + \sum_{j \in N^+} q_{ij}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

1

One-row relaxations

$$S_{i} \equiv \left\{ (y_{i}^{1}, y_{i}^{0}, z_{i}, x) \in \mathbb{R}^{n+2} : y_{i}^{1} + y_{i}^{0} - \sum_{j \in N} q_{ij}x_{j} - z_{i} = c_{i} \\ y_{i}^{1}(1 - x_{i}) = 0, y_{i}^{0}x_{i} = 0, z_{i}x_{i} = 0 \\ x_{j} \leq 1 \ \forall j \in N, \ y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0 \end{array} \right\}$$

Projecting

 $S_i \vert_{y_i^0 = 0}$ gives the one-row relaxation from before

Definition

$$\bar{y}_i^0 := c_i + \sum_{j \in N^+} q_{ij}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1

One-row relaxations

$$S_{i} \equiv \left\{ (y_{i}^{1}, y_{i}^{0}, z_{i}, x) \in \mathbb{R}^{n+2} : y_{i}^{1} + y_{i}^{0} - \sum_{j \in N} q_{ij}x_{j} - z_{i} = c_{i} \\ y_{i}^{1}(1 - x_{i}) = 0, y_{i}^{0}x_{i} = 0, z_{i}x_{i} = 0 \\ x_{j} \leq 1 \ \forall j \in N, \ y_{i}^{1}, y_{i}^{0}, z_{i}, x \geq 0 \end{array} \right\}$$

Projecting

 $S_i \vert_{y_i^0 = 0}$ gives the one-row relaxation from before

Definition

$$\bar{y}_i^{\mathsf{O}} := c_i + \sum_{j \in N^+} q_{ij}$$

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

Facet of
$$S_i|_{y_i^0=0}$$
: $z_i + \sum_j \alpha_j x_j \leq \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{z}_i$$

$$\alpha_i \geq 0$$

$$0 \leq \alpha_j \leq q_{ij} \quad \forall j \in N^+$$

$$q_{ij} \leq \alpha_j \leq 0 \quad \forall j \in N^-$$

Lifting

Special Case

Fixed Cost Variables

Facet of
$$S_i|_{y_i^0=0}$$
: $z_i + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{z}_i$$

$$\alpha_i \ge 0$$

$$0 \le \alpha_j \le q_{ij} \quad \forall j \in N^+$$

$$q_{ij} \le \alpha_j \le 0 \quad \forall j \in N^-$$

Lifting problem

$$heta = \min rac{\sum_{j} (lpha_{j}^{+} - lpha_{j} x_{j}) - z_{i}}{y_{i}^{0}} \ (y_{i}^{1}, y_{i}^{0}, z_{i}, x) \in S_{i}, y_{i}^{0} > 0$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Special Case

Facet of
$$S_i|_{y_i^0=0}$$
: $z_i + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{z}_i$$

$$\alpha_i \ge 0$$

$$0 \le \alpha_j \le q_{ij} \quad \forall j \in N^+$$

$$q_{ij} \le \alpha_j \le 0 \quad \forall j \in N^-$$

Lifting problem simplified

$$heta = \min rac{lpha_i + \sum_{j \in N^+} lpha_j (1 - x_j) - \sum_{j \in N^-} lpha_j x_j}{y_i^0}
onumber \ (0, y_i^0, 0, x) \in S_i, y_i^0 > 0$$

Special Case

Fixed Cost Variables

Facet of
$$S_i|_{y_i^0=0}$$
: $z_i + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{z}_i$$

$$\alpha_i \ge 0$$

$$0 \le \alpha_j \le q_{ij} \quad \forall j \in N^+$$

$$q_{ij} \le \alpha_j \le 0 \quad \forall j \in N^-$$

Lifting problem solution

z

$$\theta = \frac{\alpha_i}{\overline{y}_i^0}$$
$$y_i^0 + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ 差 の Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Lifting (cont.)

Facet of
$$S_i|_{y_i^0=0}$$
: $y_i^1 + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{y}_i$$

$$\alpha_i \le 0$$

$$-q_{ij} \le \alpha_j \le 0 \quad \forall j \in N^+$$

$$0 \le \alpha_j \le -q_{ij} \quad \forall j \in N^-$$

Special Case

Lifting (cont.)

Facet of
$$S_i|_{y_i^0=0}$$
: $y_i^1 + \sum_j \alpha_j x_j \leq \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{y}_i$$

$$\alpha_i \leq 0$$

$$-q_{ij} \leq \alpha_j \leq 0 \quad \forall j \in N^+$$

$$0 \leq \alpha_j \leq -q_{ij} \quad \forall j \in N^-$$

Lifting Problem

$$heta = \min rac{\sum_{j} (lpha_{j}^{+} - lpha_{j} x_{j}) - y_{i}^{1}}{y_{i}^{0}} \ (y_{i}^{1}, y_{i}^{0}, z_{i}, x) \in S_{i}, y_{i}^{0} > 0$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Special Case

Fixed Cost Variables

Lifting (cont.)

Facet of
$$S_i|_{y_i^0=0}$$
: $y_i^1 + \sum_j \alpha_j x_j \leq \sum_j \alpha_j^+$

$$\sum_j |\alpha_j| = \bar{y}_i$$

$$\alpha_i \leq 0$$

$$-q_{ij} \leq \alpha_j \leq 0 \quad \forall j \in N^+$$

$$0 \leq \alpha_j \leq -q_{ij} \quad \forall j \in N^-$$

Lifting Problem simplified

$$\theta = \min \frac{\sum_{j \in N^{-}} \alpha_j (1 - x_j) - \sum_{j \in N^{+}} \alpha_j x_j}{c_i + \sum_j q_{ij} x_j} \\ (0, y_i^0, 0, x) \in S_i, y_i^0 > 0$$
うして ふぼう ふほう ふほう しょうくの

Lifting (cont.)

Lifting Problem simplified

$$\theta = \min \frac{\sum_{j \in N^{-}} \alpha_j (1 - x_j) - \sum_{j \in N^{+}} \alpha_j x_j}{c_i + \sum_j q_{ij} x_j} \\ (0, y_i^0, 0, x) \in S_i, y_i^0 > 0$$

Set $x_j = 1$ if $\alpha_j > 0$ or if $j \in N^+$ and $\alpha_j = 0$

Feasible point if
$$c_i + \sum_{j \in N^-: \alpha_j > 0} q_{ij} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} > 0$$

 \longrightarrow Necessary condition to be facet of $S_i|_{y_i^0=0}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Lifting (cont.)

Lifting Problem simplified

$$heta = \min rac{\sum_{j \in N^{-}} lpha_j (1 - x_j) - \sum_{j \in N^{+}} lpha_j x_j}{c_i + \sum_j q_{ij} x_j} \ (0, y_i^0, 0, x) \in S_i, y_i^0 > 0$$

Set $x_j = 1$ if $\alpha_j > 0$ or if $j \in N^+$ and $\alpha_j = 0$

Feasible point if
$$c_i + \sum_{j \in N^-: \alpha_j > 0} q_{ij} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} > 0$$

 \longrightarrow Necessary condition to be facet of $S_i|_{y_i^0=0}$

Lifting (cont.)

Lifting Problem simplified

$$heta = \min rac{\sum_{j \in N^{-}} lpha_j (1 - x_j) - \sum_{j \in N^{+}} lpha_j x_j}{c_i + \sum_j q_{ij} x_j} \ (0, y_i^0, 0, x) \in S_i, y_i^0 > 0$$

Set $x_j = 1$ if $\alpha_j > 0$ or if $j \in N^+$ and $\alpha_j = 0$

 $\text{Feasible point if} \left(c_i + \sum_{j \in N^-: \alpha_j > 0} q_{ij} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} > 0 \right)$

 \longrightarrow Necessary condition to be facet of $S_i|_{y_i^0=0}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Lifting (cont.)

Lifting problem solution

$$\theta = \mathbf{0}$$
$$y_i^1 + \sum_j \alpha_j x_j \le \sum_j \alpha_j^+$$

if original inequality is facet of $S_i|_{y_i^0=0}$

Set
$$x_j = 1$$
 if $\alpha_j > 0$ or if $j \in N^+$ and $\alpha_j = 0$

Feasible point if $c_i + \sum_{j \in N^-: \alpha_j > 0} q_{ij} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} > 0$

 \longrightarrow Necessary condition to be facet of $S_i|_{y_i^0=0}$.

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

I

Nontrivial Facets

Arbitrary Valid Inequality:

$$\left(\alpha^{y^1}y_i^1 + \alpha^{y^0}y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta\right)$$

Eliminate y_i^1 using equality set:

 $\alpha^{y^0} y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta$

Theorem

For any nontrivial facet, $lpha^z \ge 0$. Furthermore, $lpha^z = 0 \Rightarrow lpha^{y^0} > 0$ and $lpha_i = 0$

Consider two cases

 $0 \alpha^z = 0$

 $\ 0 \ \ \alpha^z > 0$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

I

Nontrivial Facets

Arbitrary Valid Inequality:

$$\left(\alpha^{y^1}y_i^1 + \alpha^{y^0}y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta\right)$$

Eliminate y_i^1 using equality set:

$$\alpha^{y^0} y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta$$

Theorem

For any nontrivial facet, $\alpha^{z} \geq 0$. Furthermore, $\alpha^{z} = 0 \Rightarrow \alpha^{y^{0}} > 0$ and $\alpha_{i} = 0$

Consider two cases

$$0 \alpha^z = 0$$

 $\ 2 \ \alpha^z > 0$

1

Nontrivial Facets

Arbitrary Valid Inequality:

$$\left(\alpha^{y^1}y_i^1 + \alpha^{y^0}y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta\right)$$

Eliminate y_i^1 using equality set:

$$\alpha^{y^0} y_i^0 + \alpha^z z_i + \sum_{j \in N} \alpha_j x_j \le \beta$$

Theorem

For any nontrivial facet, $\alpha^z \ge 0$. Furthermore, $\alpha^z = 0 \Rightarrow \alpha^{y^0} > 0$ and $\alpha_i = 0$

Consider two cases

$$0 \alpha^z = 0$$

$$2 \ \alpha^z > 0$$

General QP 00000000 Special Case

1

Fixed Cost Variables

$$\alpha^z = \mathbf{0}$$

$$y_i^0 + \sum_{j \neq i} \alpha_j \le \sum_{j \neq i} \alpha_j^+$$

$$SEP^{y^{0}} := \begin{cases} \sum_{j \neq i} |\alpha_{j}| = y_{i}^{*} \\ -q_{ij} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{+} \\ 0 \leq \alpha_{j} \leq -q_{ij} \quad \forall j \in N^{-} \end{cases}$$

_0

Theorem

Suppose α is a vertex of SEP^{y^0} and

$$c_i + q_{ii} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} + \sum_{j \in N^-: \alpha_j > 0} q_{ij} > 0,$$

then inequality is a facet of $conv(S_i)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

General QP 00000000 Special Case

Fixed Cost Variables

$$\alpha^z = \mathbf{0}$$

$$y_i^0 + \sum_{j \neq i} \alpha_j \le \sum_{j \neq i} \alpha_j^+$$

$$SEP^{y^{0}} := \left\{ \begin{array}{ll} \sum_{j \neq i} |\alpha_{j}| = \bar{y}_{i}^{0} \\ -q_{ij} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{+} \\ 0 \leq \alpha_{j} \leq -q_{ij} \quad \forall j \in N^{-} \end{array} \right\}$$

~

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Suppose α is a vertex of SEP^{y^0} and

$$c_i + q_{ii} + \sum_{j \in N^+: \alpha_j = 0} q_{ij} + \sum_{j \in N^-: \alpha_j > 0} q_{ij} > 0,$$

then inequality is a facet of $conv(S_i)$.

・ロト ・ 理 ト ・ ヨト ・ ヨー

$\alpha^z > 0, \alpha_i < 0$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i-inequalities from S_i|_{u⁰=0}
- Can use SEP^y to separate
- Nothing new and hence no fun

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

 $\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i-inequalities from S_i|_{y_i=0}
- Can use SEP^y to separate
- Nothing new and hence no fun

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i-inequalities from S_i|_{y_i=0}
- Can use SEP^y to separate
- Nothing new and hence no fun

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\alpha^z > 0, \alpha_i < 0$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

Use equality set to rewrite inequality as

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

• Consistent with lifting result

- Equivalent to y_i -inequalities from $S_i|_{y_i^0=0}$
- Can use SEP^y to separate
- Nothing new and hence no fun

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i -inequalities from $S_i|_{y_i^0=0}$
- Can use SEP^y to separate
- Nothing new and hence no fun

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i -inequalities from $S_i|_{y_i^0=0}$
- Can use SEP^y to separate
- Nothing new and hence no fun

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Conjecture

$$\alpha_i < \mathbf{0} \Rightarrow \alpha^{y^0} = -1$$

$$y_i^1 + \sum_j \alpha_j x_j \le \beta$$

- Consistent with lifting result
- Equivalent to y_i -inequalities from $S_i|_{y_i^0=0}$
- Can use SEP^y to separate
- Nothing new and hence no fun

$$\alpha^z > \mathbf{0}, \alpha_i \ge \mathbf{0}$$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

- $\alpha_i \ge 0 \Rightarrow$
 - $\alpha_j \leq q_{ij} \; \forall j \in N^+$
 - $\alpha_j \ge q_{ij} \; \forall j \in N^-$
 - $\alpha^{y^0} \geq 0$

$$\alpha^z > \mathbf{0}, \alpha_i \ge \mathbf{0}$$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

 $\alpha_i \geq \mathbf{0} \Rightarrow$

• $\alpha_j \leq q_{ij} \; \forall j \in N^+$

•
$$\alpha_j \ge q_{ij} \; \forall j \in N^-$$

•
$$\alpha^{y^0} \ge 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\alpha^z > \mathbf{0}, \alpha_i \ge \mathbf{0}$$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

 $\alpha_i \geq \mathbf{0} \Rightarrow$

•
$$\alpha_j \le q_{ij} \ \forall j \in N^+$$

•
$$\alpha_j \ge q_{ij} \; \forall j \in N^-$$

•
$$\alpha^{y^0} \ge 0$$

Unlike with $S_i|_{y_i^0=0}$, we cannot assume

•
$$\alpha_j \geq 0 \ \forall j \in N^+$$

•
$$\alpha_j \leq 0 \ \forall j \in N^-$$

$$\alpha^z > \mathbf{0}, \alpha_i \ge \mathbf{0}$$

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

 $\alpha_i \geq \mathbf{0} \Rightarrow$

•
$$\alpha_j \le q_{ij} \ \forall j \in N^+$$

•
$$\alpha_j \ge q_{ij} \; \forall j \in N^-$$

•
$$\alpha^{y^0} \ge 0$$

Definition

$$B^+ := \{ j \in N^+ : \alpha_j < 0 \}$$

$$B^- := \{j \in N^- : \alpha_j > \mathbf{0}\}$$

$$B = B^+ \cup B^-$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \forall j \in B$$

Previously SEP^z =	
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$	
$\left\{ \alpha_i \ge 0 \right\}$	
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$)

- $B = \emptyset$ same as lifting.
- For fixed B, separation still O(n log n)

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \ \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \ \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \ \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

Fixed Cost Variables

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \ \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \ \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \ \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ l q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \ \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \ \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \ \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$)

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \; \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \; \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum \alpha_j - \sum \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$

$$\begin{array}{l} \text{Previously } SEP^{z} = \\ \left\{ \begin{array}{l} \sum_{j} |\alpha_{j}| = \bar{z}_{i} \\ \alpha_{i} \geq 0 \\ 0 \leq \alpha_{j} \leq q_{ij} \quad \forall j \in N^{+} \\ q_{ij} \leq \alpha_{j} \leq 0 \quad \forall j \in N^{-} \end{array} \right\} \end{array}$$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \; \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \; \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \; \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \ \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \ \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \ \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \; \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \; \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \; \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	Ş
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ l q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^{-}$

- $B = \emptyset$ same as lifting.
- For fixed *B*, separation still $O(n \log n)$

1

Necessary conditions

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

$$\beta = \alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j + \sum_{j \in B^-} \alpha_j$$
$$\alpha_i + \sum_{j \in N^+ \setminus B} \alpha_j - \sum_{j \in N^- \setminus B} \alpha_j = \bar{z}_i$$
$$0 \le \alpha_j \le q_{ij} \; \forall j \in N^+ \setminus B^+$$
$$q_{ij} \le \alpha_j \le 0 \; \forall j \in N^- \setminus B^-$$
$$\alpha_i, \alpha^{y^0} \ge 0$$
$$\alpha_i = \sum_{j \in B^+} \alpha_j - \sum_{j \in B^-} \alpha_j + \bar{y}_i^0 \alpha^{y^0}$$
$$\alpha_j = -\alpha^{y^0} q_{ij} \; \forall j \in B$$

Previously SEP^z =	=
$\int \sum_{j} \alpha_{j} = \bar{z}_{i}$)
$\left\{ \alpha_i \ge 0 \right\}$	ļ
$0 \le \alpha_j \le q_{ij}$	$\forall j \in N^+$
$ q_{ij} \le \alpha_j \le 0 $	$\forall j \in N^-$

- $B = \emptyset$ same as lifting.
- For fixed B, separation still $\mathcal{O}(n \log n)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

If $(\alpha^{y^0}, \alpha, \beta)$ is an extreme point, and • $c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$

•
$$q_{ii} + c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$$
,
hen it is a facet of S_i .

- Condition is also necessary.
- When $B = \emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

If $(lpha^{y^0}, lpha, eta)$ is an extreme point, and

•
$$c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$$

• $a_{ij} + c_{ij} + \sum_{j \in B^-} q_{ij} > 0$

• $q_{ii} + c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$, then it is a facet of S_i .

- Condition is also necessary.
- When $B = \emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

If $(\alpha^{y^0}, \alpha, \beta)$ is an extreme point, and

•
$$c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$$

• $q_{ii} + c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$,

then it is a facet of S_i .

- Condition is also necessary.
- When $B = \emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

If $(\alpha^{y^0}, \alpha, \beta)$ is an extreme point, and

•
$$c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$$

• $q_{ii} + c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$

then it is a facet of S_i .

- Condition is also necessary.
- When $B = \emptyset$, gives facets which are lifted "non-facets".
- How to choose B?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$z_i + \alpha^{y^0} y_i^0 + \sum_j \alpha_j x_j \le \beta$$

Theorem

If $(\alpha^{y^0}, \alpha, \beta)$ is an extreme point, and

•
$$c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$$

• $q_{ii} + c_i + \sum_{j \in N^+ \setminus B} q_{ij} + \sum_{j \in B^-} q_{ij} > 0$

then it is a facet of S_i .

- Condition is also necessary.
- When $B = \emptyset$, gives facets which are lifted "non-facets".
- How to choose B ?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Future Work

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Determine how to "truncate" general LP relaxation
- Develop valid inequalities for general QP
- Determine most general structure of mixed integer QP that allows reformulation
- Develop valid inequalities implied by binary variables and complementarity constraints