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General QP
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Quadratic Program (QP):

1
max ExTQx +

Ax <b

e If () is negative semidefinite, then QP is solvable in
polynomial time.

e If Q is indefinite, QP is AN'P-hard.
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Reformulating QP

KKT conditions:

- For any KKT point,
Aly—Qr=c

Ax<b y>0 %xTQx—I—cT:L' =
y'(b— Az) =0

1

5 (ch + yTb)
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Reformulating QP

KKT conditions:
For any KKT point,

ATy —Qz =c

1 1
Ar<b y>0 EI'TQLE—{—CTa? =5 (ch + yTb)
y'(b— Az) =0

Reformulation

1

max > (c"z +y"b)
ATy —Qz=c
Ar<b y>0
y'(b— Az) =0
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Slack variables s :== b — Ax
Can replace each complementarity 3;s; = 0 with

yi < M6}

si < Mo;

67 +67 <1
67,67 € {0,1}

1771

for a sufficiently large M.
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General QP
oeo

Just make it an IP

Slack variables s :== b — Ax
Can replace each complementarity 3;s; = 0 with

yi < M6Y

si < Mo;

67 +67 <1
67,67 € {0,1}

1771

for a sufficiently large M.

Problems:
@ Introduces many new variables
@ big M yields poor LP relaxations

@ Not as much fun
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Direct Approach

Classic idea: max % (" +y"b)

@ solve LP relaxation
ATy —Qu=c

Az <b y >0
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Direct Approach

Classic idea:
@ solve LP relaxation
@ branch on complementarity

@ use branch-and-bound

Other contexts
@ Beale and Tomlin: SOS sets.
o Disjunctive Programs: Balas, Beaumont, etc...
@ DeFarias and Nemhauser: complementarity, cardinality, SOS.

Challenges:
@ Branching Strategies.
@ Development of cutting planes.
© Bounding the dual variables.
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Bounding the LP relaxation

LP relaxation of complementarity reformulation:

1

max 5 (cTa:—l—yTb)
ATy —Qz=c
Az <b y >0

Assume {z € R" : Az < b} nonempty and bounded,
ie. {reR": Ar <0} = {0}.
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Bounding the LP relaxation

LP relaxation of complementarity reformulation:

1

max 5 (cTa:—l—yTb)
ATy —Qz=c
Az <b y >0

Assume {z € R" : Az < b} nonempty and bounded,
ie. {reR": Ar <0} = {0}.

Recession cone of the LP relaxation:

C= {(y,r) GRWJF":ArgO,ATfy—Qr:O,yZO} —
{(2,0) € R™™ AT = 0,4 > 0}
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Extreme rays of LP relaxation

d interior point, i.e. Z such that Az <b =
b"y > 0V(v,0) € C\ {0}

= LP relaxation is unbounded.

If (y,z) is a feasible, complementary solution and (v, 0) € C \ {0},
then
(y +t7)T(b— Az) = t47b > 0 for any t > 0
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Extreme rays of LP relaxation

d interior point, i.e. Z such that Az <b =
b"y > 0V(v,0) € C\ {0}

= LP relaxation is unbounded.

If (y,z) is a feasible, complementary solution and (v, 0) € C \ {0},
then
(y +t7)T(b— Az) = t47b > 0 for any t > 0

@ Convex hull of complementary solutions is closed and bounded
@ Every vertex of this convex hull is a vertex of LP relaxation
@ Optimize over just the vertices of the LP relaxation?

@ Will not necessarily yield complementary solutions

Unfortunately, this is not easy in general
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Complexity

Observation
Given an LP in the form of a poly-time separation oracle,

optimizing an arbitrary linear objective function over the extreme
points of this LP is N'P-hard.

Dominant of convex hull of incidence vectors of s — ¢ paths:

{xGRf‘:agle VHG'H}

@ H: set of s — ¢ cuts

@ ay: incidence vector of a cut H.

Finding vertex that maximizes
. . - & | Longest Path
arbitrary linear objective
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Bounding LP relaxation

Need a way to "truncate” the polyhedron

ATy —Qz=c
Az <b
y=>0

without eliminating solutions that satisfy 47 (b — Az) = 0.

@ Could use information about sizes of vertices:
vertex size < 4n?x inequality size

@ Add valid inequalities

@ Examine special cases
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QP with simple bounds

Quadratic program with simple bounds (QPB):
1
max ExTQx + 'z

0<z<e

@ Can show this generalizes 0-1 QP
o N'P-complete
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max Ech + §yT6
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KKT reformulation

Equivalent complementarity problem:

1 1
max Ech + §yT6

yi_ZjGNQijxj_Zi:ci Vie N
yi(l—2,)=0 VieN

ziv;=0 Vie N

r<e xz,4,2>0
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KKT reformulation

Equivalent complementarity problem:

1 1
max Ech + §yT6

yi_ZjGNQijxj_Zi:ci Vie N
yi(l—2,)=0 VieN

ziv;=0 Vie N

r<e xz,4,2>0

yi(l — QS‘Z) =0 and ziv; =0 = Yiz; = 0
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Bounding the LP relaxation

Row i : — 2z — E qijTj = ¢
JEN

Define
® Ui=cit Gt jen qz-? where a™ = max{0,a}

® %= —Ci— D jeni i where ¢~ = min{0,a}
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Bounding the LP relaxation

Row 17 : — 7z — Z qijTj = ¢
JeEN
Define
® Ui=cit Gt jen qz-? where a™ = max{0,a}
® %= —Ci— D jeni i where a~ = min{0, a}

o If y; >0, then y; < ¥;
o If z; >0, then z; < Z;
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Bounding the LP relaxation

Row i : i —z — E QijTj = C;

JEN
Define
® Ui=cit Gt jen qz-? where a™ = max{0,a}
® %= —Ci— D jeni i where ¢~ = min{0,a}
o If yi >0, then y; < [Assume 7; >0 and z; > O]

o If z; >0, then z; < Z;
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Bounding the LP relaxation

Row i : y;— 2z — E qijTj = ¢

JEN
Define
® Ui=cit Gt jen qz-? where a™ = max{0,a}
® %= —Ci— D jeni i where ¢~ = min{0, a}
o If y; >0, then y; < g, [Assume 7; > 0and z; > O]
o If z; >0, then z; < Z;
Yields two sets of valid inequalities:
Q yi < yiz; Make LP relaxation bounded

Q z+ziz; <z
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One-row relaxations

Find relaxations of the problem for which generating cuts is easy.
Consider the set
S = {(yz‘,zi7$) ER™ 1y — > gimy — 2z = ¢
JEN
yi(l—2x;) =0,z2, =0
z; <1VjeN, yj,z,v>0 }

Want valid inequalities for conv(.S;).

@ Much like knapsack relaxation

@ Only 2 non-convexities (unlike knapsack)
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Nontrivial facets

Facets not induced by bounds belong to one of two classes

° zi—i—zjajwj < Zja;_

Zj |laj| = Zi

@i =0 SEP*
Ogaquij Vj€N+
Gij <a; <0 VjeN~

o yi+ Yy om; <3 0f
Zj\%‘\zﬂi
a; <0 SEPY
—qij <o <0 vjeNT
Ogozjg—qij Vje N~
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Q 5 -1 6 2 ““lo
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Example

-3 4 -5 -3 0
4 -5 -1 5 0

@=15 1 6 2 ““lo
-3 5 2 =2 0

Max 3y1 + 3y + 5ys + 3va

s.t Yy - 21 + 321 — 4o 4+ brs 4+ 3xz4 =0
Yo — 22 — 4x1 + bxy 4+  x3 — bz, =
Y3 — 23 + bx1 4+ — bx3 — 2x4 =
Ya — 2a 4+ 31 — bzy — 2x3 + 2x4 =0
y1 < lxg 21+ 8rp <8
Y2 < Axp 22  + @ <1
y3 < 83 23 + 6x3 <6
ya < by 24 + 3m4 <3
y, z, x >0 z <1



Special Case
oeo

Example (cont.)

Optimal solution to LP:

0 6 0
.| 2 . | o5 . | o5
Y =1 75 == o LR |

2.5 0 1
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Example (cont.)

Optimal solution to LP:

0 6 0
.| o2 . | o5 . | o5
Y =1 75 =1 o S
25 0 1

Adding the following inequalities:

Z2 + T4 <1
yp—3r1+23 <1

Cuts off the optimal LP solution and produces the optimal
complementary solution.
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Comments

e Computational Issues

Cuts can be separated in O(nlogn)

To be effective, cuts must be added and deleted aggressively
Use of cuts significantly expedites branch-and-bound

Direct method much better than conversion to IP

Strong branching very effective for "hard” instances

Tables of computational results available for those interested
(and can't find anything better to do)

@ Theoretical Issues

e Only vertices of SEP? and SEPY can yield facets
e Possible to identify which vertices yield facets
e Possible to characterize convex hull when §; <0 or z; <0
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© Fixed Cost Variables
@ Formulation
o Lifting
o Facets not from lifting
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1
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Can reformulate as
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Fixed Cost Variables
[ 1]

Fixed cost variables 1

Consider the problem
1
max §$TQ$ +cle—fTs
0<z;<0;VjeN
0; €{0,1}Vj € N
Can reformulate as
1
max > (" +elyt) — 16
v+ -Qr—z=c
y}(l—xi):0 y?:n¢:0 ziw; =0 VieN
0§$J§5JV]€N 5j€{0,1}Vj€N
y',y%2>0

WLOG, can also require that y9z; = 0.
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One-row relaxations I

Si = {(yilay'?aziax) e R"F2 .%1 _|_y? - Z QijTj — % = C;
jEN

IEJS].\V/]ENv yg‘??/?azi’xzo }



Fixed Cost Variables
oe

One-row relaxations I

S = {(yil,y?,zmr) ER iyl +y - > gywj -z =
JEN
1 0. 0% — 0. iz —
yi(l_xi)_oayixi—QZ'LCE'L—O

IL'JS].\V/JENv yg‘??/?azi’xzo }

Si\yf):o gives the one-row relaxation from before
1
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One-row relaxations I

Si = {(yilay'?uzhx) e R"F2 yll _|_y? - Z QijTj — % = C;
jEN

IL'JS].\V/JENv yg‘??/?azi’xzo }

Projecting

Sil,0—o gives the one-row relaxation from before
-0 .
Yp =6+ Z qij

JENT
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Lifting I

Facet of S’i’y?:O: z; + Zj a;jTj < Zj O‘;’L

Zj|aj|zfi

a,ZO
0<a; < g VjENJr
¢ij <o <0 VjeNT

SEP*
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Lifting I

Facet of S’i’y?:O: z; + Zj a;jTj < Zj O‘j

Zj|aj|:5i

aiZO
Oﬁaquij VjGNJr
Gij <a; <0 VjeN™

SEP*

Lifting problem

X lof — as;) —
y?

(ygaygaziax) € Sz,y? >0

6 = min
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Lifting I

Facet of Si’y?:O: Zi + Zj ;T < Zj a;“

Zj|aj|:2i

a; >0
0<a; < g VjEJVJr
Gij <a; <0 VjeN™

Lifting problem simplified
@+ D sen+ (1 = T5) = D jen- 0T

Y
(ang?o?x) S Slay? >0

SEP*

0 = min




Fixed Cost Variables

1

Lifting

Facet of S’i’y?:O: z; + Zj Q;jTj < Zj O‘j

Zj ;| = Z

=0 SEP*
Ogaquij VjeN*
Gij <a; <0 VjeN~

Lifting problem solution
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Lifting (cont.) I

Facet of Si]ygzoi Y+ > T < 3 a;L

Zj|aj|=?§i
a,SO
—qij <a; <0 VjeN*
OSajS—qij Vje N~

SEPY
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Lifting (cont.) I

Facet of Si]ygzoi Y + Zj QjTj < Zj a;r

Zj|aj|:?§i
a; <0
—qij <a; <0 VjeNT
0<a;<—qj VieN~

Lifting Problem

SEPY

il —ajzs) -y}
Y7
(ygaygaziax) € Sz,y? >0

6 = min
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Lifting (cont.) I

Facet of S,']yg:oi Y + >0 S 305 a;r

Zj|aj|=?§z’

a; <0
—¢ij<a; <0 VjeNT
OSajS—qij Vje N~

Lifting Problem simplified
ZjeN— O ZjeN+ ity

i+, 4T
(O,y?,O,x) < Szvy? >0

SEPY

0 = min
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Lifting (cont.) I

Lifting Problem simplified

ZjEN* aj(]' - xj) - Zj€N+ QT
i+ 22 4ijT;
(Ovyiovoax) € Szvy? >0

0 = min
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Lifting (cont.) I

Lifting Problem simplified

ZjEN* aj(]' - xj) - Zj€N+ QT
i+ 22 4ijT;
(Ovyiovoax) € Szvy? >0

0 = min

Setz;=1ifa;>0o0rif j€ NT and aj =0
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Lifting (cont.) I

Lifting Problem simplified

ZjEN* aj(]' - xj) - Zj€N+ QT
i+ 22 4ijT;
(Ovyiovoax) € Szvy? >0

0 = min

Setz;=1ifa;>0o0rif j€ NT and aj =0

Feasible point if | ¢; + Z qij + E qi; >0
JEN—:a;>0 JENT:a;=0

—— Necessary condition to be facet of Si|y(?:o-
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Lifting (cont.) I

Lifting problem solution

6=0
vi+ D o <) af
J J
if original inequality is facet of S;|,0_

Setz;=1ifa;>0o0rifj€NT and a; =0

Feasible point if | ¢; + Z qij + Z qij >0
JEN~:;>0 JENT:a;=0

—— Necessary condition to be facet of Si|yo:0.
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Nontrivial Facets 1

Arbitrary Valid Inequality:
[aylyl-l + ayoy? + 0%z + )N T < ﬁj

Eliminate y} using equality set:

0
¥ % + oz + djen oz <

Theorem

For any nontrivial facet, a* > 0.
0
Furthermore, «* = 0 = oY >0 and o; = 0
Consider two cases
Q o*=0
Q@ a*>0
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-0
Z‘aj‘:yi
J#i
—qij <o <0 Vje Nt
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SEPY .=



Fixed Cost Variables
0®00000

1

-0
Z‘aj‘:yi
J#i
—qij <o <0 Vje Nt
0<a;<—qy; VjeN~

Suppose « is a vertex of SEPY and

ctai+t Y. @it Y, @;>0,

JENT:a;=0 JEN~:a; >0

SEPY .=

then inequality is a facet of conv(sS;).
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1

i+ oV y? + > Ty < 5'

Conjecture

Oé,‘<0=>ay0:—].

Use equality set to rewrite inequality as

i+ aga; <
j

o Consistent with lifting result
@ Equivalent to y;-inequalities from Sz”yozo

@ Can use SEPY to separate
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Use equality set to rewrite inequality as

i+ aga; <
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Consistent with lifting result
Equivalent to y;-inequalities from Si’ygzo
Can use SEPY to separate

Nothing new and hence no fun
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Theorem

If(ayo, a, 3) is an extreme point, and

® ¢+ 3 jenr\p%ij T2 jep- 4 >0

® qii +¢i+ X jenn\B i T 2jeB- 4ii > 0,
then it is a facet of S;.

Some comments:
e Condition is also necessary.

@ When B = (), gives facets which are lifted "non-facets”.

@ How to choose B ?
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Future Work I

@ Determine how to "truncate” general LP relaxation

@ Develop valid inequalities for general QP

@ Determine most general structure of mixed integer QP that
allows reformulation

@ Develop valid inequalities implied by binary variables and
complementarity constraints
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