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Mixed-Integer NLP

(P) min f(x, y) Objective Function

s.t. g(x, y) ≤ 0 Constraints

x ∈ R
n Continuous Variables

y ∈ Z
p Integrality Restrictions

Challenges:

Multimodal Objective

f(x)

Feasible Space

Objective

Integrality

f(x)

Nonconvex Feasible Space

Projected Objective

Convex Objective

Nonconvex Constraints



DETERMINISTIC ALGORITHMS
• Branch-and-Bound

– Bound problem over successively 
refined partitions

» Falk and Soland, 1969
» McCormick, 1976

• Convexification
– Outer-approximate with increasingly 

tighter convex programs
– Tuy, 1964
– Sherali and Adams, 1994

• Decomposition
– Project out some variables by 

solving subproblem
» Duran and Grossmann, 1986
» Visweswaran and Floudas, 1990

• Our approach
– Branch-and-bound
– Separable and differentiable 

reformulation
– Constraint propagation & duality-

based reduction 
– Convex envelopes and 

convexification
• Tawarmalani, M. and N. V. 

Sahinidis, Convexification and 
Global Optimization in 
Continuous and Mixed-Integer 
Nonlinear Programming, Kluwer 
Academic Publishers, Nov. 2002.



Branch and Bound Algorithm
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Functional Decomposition

f(x, y, z, w) =
√

exp(xy + z ln w)z3

f︷ ︸︸ ︷
(

x5︷ ︸︸ ︷
exp( xy︸︷︷︸

x1

+

x3︷ ︸︸ ︷
z ln w︸︷︷︸

x2︸ ︷︷ ︸
x4

)

x6︷︸︸︷
z3

︸ ︷︷ ︸
x7

)0.5

x1 = xy

x2 = ln(w)

x3 = zx2

x4 = x1 + x3

x5 = exp(x4)

x6 = z3

x7 = x5x6

f =
√

x7

• Introduce variables for intermediate quantities

• Retain terms with known convex envelopes

• Bound bilinear terms using McCormick’s envelopes

Tawarmalani and Sahinidis, Mathematical Programming, 2004



Branch And Reduce
Optimization Navigator

Components

• Modeling Language

• Preprocessor

• Range Reduction

• Interval Arithmetic

• Automatic Differentiator

• IEEE Exception Handling

• Cutting Planes

Capabilities

• Fully automated MINLP solver

• Specialized modules: IP, LMP,

IQP, FCP, . . .

• Links to CPLEX, OSL, MINOS,

SNOPT

• Expandable Branch and Bound

Framework

• GAMS links since November 2000; AIMMS link in 2004



Pooling Problem: (Haverly 1978)

y22

X ≤ 100

Blend Y

Pool
≤ 1% S

≤ 2% S

$16

$10

Blend X$6
≤ 2.5% S

$9

≤ 1.5% S

$15
Y ≤ 200

≤ 3% S

x12

x21

x11

y11

y21

y12

min

cost︷ ︸︸ ︷
6x11 + 16x21 + 10x12 −

X-revenue︷ ︸︸ ︷
9(y11 + y21) −

Y -revenue︷ ︸︸ ︷
15(y12 + y22)

s.t. Sulfur Mass Balance

q =
3x11 + x21

y11 + y12

Quality Requirements

qy11 + 2y21 ≤ 2.5(y11 + y21)

qy12 + 2y22 ≤ 1.5(y12 + y22)

Mass Balance

x11 + x21 = y11 + y12

x12 = y21 + y22

Demands

y11 + y21 ≤ 100

y12 + y22 ≤ 200



Pooling Problem: (Ben Tal 1994)

$16 X ≤ 100

Blend Y

Pool

≤ 2% S

$10

Blend X
≤ 2.5% S

$9

≤ 1.5% S

$15
Y ≤ 200

z32

z31

y12

y11

y11q11 + y12q11

y11q21 + y12q21

$6≤ 3% S

≤ 1% S

min

cost︷ ︸︸ ︷
6 (y11q11 + y12q11) + 16 (y11q21 + y12q21) + 10 (z31 + z32)

−
X-revenue︷ ︸︸ ︷
9(y11 + y21) −

Y -revenue︷ ︸︸ ︷
15(x12 + x22)

s.t. Mass Balance

q11 + q21 = 1

Quality Requirements

−0.5z31 + 3y11q11 + y11q21 ≤ 2.5y11

0.5z32 + 3y12q11 + y12q21 ≤ 1.5y12

Demands

y11 + z31 ≤ 100

y12 + z32 ≤ 200



Pooling Problem: pq formulation

$16 X ≤ 100

Blend Y

Pool

≤ 2% S

$10

Blend X
≤ 2.5% S

$9

≤ 1.5% S

$15
Y ≤ 200

z32

z31

y12

y11

y11q11 + y12q11

y11q21 + y12q21

$6≤ 3% S

≤ 1% S

min

cost︷ ︸︸ ︷
6 (y11q11 + y12q11) + 16 (y11q21 + y12q21) + 10 (z31 + z32)

−
X-revenue︷ ︸︸ ︷
9(y11 + y21) −

Y -revenue︷ ︸︸ ︷
15(x12 + x22)

s.t. Mass Balance

q11 + q21 = 1

Quality Requirements

−0.5z31 + 3y11q11 + y11q21 ≤ 2.5y11

0.5z32 + 3y12q11 + y12q21 ≤ 1.5y12

Demands

y11 + z31 ≤ 100

y12 + z32 ≤ 200

Convexification Constraints

q11y11 + q21y11 = y11

q11y12 + q21y12 = y12



RELAXATION-ONLY CONSTRAINTS

• Can strengthen relaxation by adding to the 
model:

– Nonlinear reformulations (RLT)
– First-order optimality conditions
– Problem-specific optimality conditions and symmetry-

breaking constraints

• Traditionally, modeling languages for 
optimization pass single model

• RELAXATION_ONLY_EQUATIONS construct 
added to BARON’s modeling language

• Strengthen relaxation without complicating 
local search



LOCAL SEARCH WITH CONOPT



GLOBAL SEARCH WITH BARON



TIGHT RELAXATIONS

x x

Concave 
over-estimator

Convex 
under-estimator

)(xf )(xf Concave envelope

Convex envelope

)(xf

x

Convex/concave envelopes often finitely generated



The Generating Set of a Function

Definition:∗ The generating set of the epigraph of a function g(x) over

a compact convex set C is defined as

Gepi
C (g) =

{
x

∣∣∣∣ (x, y) ∈ vert

(
epi conv

(
g(x)

))}
,

where vert(·) is the set of extreme points of (·).

Examples:

g(x) = −x2

−x2

Convex Envelope

x

Gepi
[0,6](g) = {0} ∪ {6}

g(x) = xy

xy

x

y

Gepi
[1,4]2(g) = {1, 1} ∪ {1, 4} ∪ {4, 1} ∪ {4, 4}



Identifying the Generating Set
Characterization: x0 �∈ Gepi

C (g) if and only if there exists X ⊆ C and

x0 �∈ Gepi
X (g).

Example I: X is linear joining (xL, y0) and (xU, y0)

y
x
y

x

Gepi(x/y) =
{
(x, y)

∣∣ x ∈ {xL, xU}}

Example II: X is ε neighborhood of (x0, y0)

x2y2

x

y
U

y

x L

xU y
L

Gepi(x2y2) =
{
(x, y)

∣∣ x ∈ {xL, xU}} ∪{
(x, y)

∣∣ y ∈ {yL, yU}}



Properties: Envelope of x/y

Comparison of Tightness:

0.1
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0.1

x

0.5

4

y

Ratio: x/y
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x/y − Factorable

Maximum Gap: Envelope and Factorable Relaxation (using McCormick):

Point:

(
xU, yL +

yL(yU − yL)(xUyU − xLyL)

xUyU 2 − xLyL2

)

Gap:
xU (yU − yL)2(xUyU − xLyL)2

yLyU (2xUyU − xLyL − xUyL)(xUyU 2 − xLyL2)

Tawarmalani and Sahinidis, Mathematical Programming, 2002



A Geometric Perspective



Example: General Multilinear Functions

Definition: A general multilinear function

1. defined over a Cartesian product of polytopes P = P1×· · ·×Pn.

2. For any j, the function is linear in xj (xj ∈ Pj) when all xk,

k �= j (xk ∈ Pk) are fixed.

Known Fact: There exists an extreme point of P where the general

multilinear function is optimized (minimized/maximized).

Simple Consequence: The following set can be convexified using dis-

junctive programming on “lifted” extreme points of P .

z1 = L1(x1, . . . , xn)
...

zm = Lm(x1, . . . , xn)

xi ∈ Pi

since
∑n

i=1 αixi +
∑m

i=1 βiLi(x1, · · · , xm) is also general multilinear.



Inclusion Certificates: Two Points in a Plane

(x1, y1)

(x2, y2)
(x, y)

f1(x, y) = x2−x
x2−x1

f2(x, y) = x−x1

x2−x1

Inclusion Certificate Has Different Forms but is Unique in this Case!



Inclusion Certificate: 0-1 Rectangle

(0, 0) (1, 0)

(0, 1) (1, 1)

f1(x)

f3(x)

f4(x)

f2(x)

Two Possible Certificates:

1. f1(x) = (1 − x1)(1 − x2), f2(x) = x1(1 − x2), f3(x) = (1 − x1)x2, f4(x) = x1x2

2. If x1 + x2 − 1 > 0,

f1(x) = 0, f2(x) = 1 − x2, f3(x) = 1 − x1, f4(x) = x1 + x2 − 1

else

f1(x) = 1 − x1 − x2, f2(x) = x1, f3(x) = x2, f4(x) = 0

Certificate is not necessarily unique!



Convexifying Disjunctions

Theorem: (An informal statement) Consider the collection C. The convex

hull of (x, λ1, . . . , λm) where λ1, . . . , λm is any set of convex multipliers

that provides a certificate of the inclusion of x in conv(C) is the same as the

convex hull of the lifted sets {(xi, ei) | xi ∈ Ci} which in turn is:

conv

{
(x, λ1, . . . , λm)

∣∣∣∣ m∑
i=1

λi = 1,

m∑
i=1

λixi = x, λi ≥ 0, λixi ∈ λiCi,

and λixi = λix if i ∈ J

}

where J ⊆ {1, . . . , m}.

Example:

Lifting

Lifting

(0.2, 0.8, 0.2)



The Motivation/Use of Theorem

The set:

z1 ≥ x1x2

y1

z2 = x1x2

z3 = x1x2x3

z4 ≤ x1x2 − x1

y1y2

0 ≤ x1, x2, x3 ≤ 1

0 < yL ≤ y1, y2 ≤ yU

can be convexified by disjunctive programming restricting x to binary

values. The disjunctive sets that need to be considered correspond

to the following points/sets in x-space: (1, 1, 1), (1, 1, 0), (1, 0, x3)

and (0, x2, x3). The convex multipliers for the first two sets can be

identified with z3, z2 − z3 respectively.

General (non-unit) hypercubes can be handled similarly



Example Contd.

The convex hull is the convex hull of the following disjunction:

(I) z1 ≥ 1

y1

z4 ≤ 0

yL ≤ y1, y2 ≤ yU

(x1, x2, x3, z2, z3) = (1, 1, 1, 1, 1)

(II) z1 ≥ 1

y1

z4 ≤ 0

yL ≤ y1, y2 ≤ yU

(x1, x2, x3, z2, z3) = (1, 1, 0, 1, 0)

(III) z1 ≥ 0

z4 ≤ −1

y1y2

yL ≤ y1, y2 ≤ yU

0 ≤ x3 ≤ 1

(x1, x2, z2, z3) = (1, 0, 0, 0)

(IV) z1 ≥ 0

z4 ≤ 0

yL ≤ y1, y2 ≤ yU

0 ≤ x2, x3 ≤ 1

(x1, z2, z3) = (0, 0, 0, 0)



Proof of Equivalence

• (⊆) The convex hull of disjunctive set is a subset of the convex

hull of the example constraint set

• (⊇) The equality follows since the example constraint set is a

subset of the set we constructed. Consider λI = x1x2x3, λII =

x1x2(1 − x3), λIII = x1(1 − x2), λIV = 1 − x1.

Some Observations

• Presence of z1z2 ≥ x1x2

y1
does not change the convex hull . . .

• Potential use of RELAXATION ONLY CONSTRAINTS



POLYHEDRAL
OUTER-APPROXIMATION

• Convex NLP solvers are not as robust as LP solvers
• Linear programs can be solved efficiently
• Outer-approximate convex relaxation by polyhedron

Developed a sandwich algorithm that enjoys quadratic 
convergence (Tawarmalani and Sahinidis, 2004)



EXPLOITING CONVEXITY

• Polyhedral relaxations of univariate functions 
facilitate reliable lower bounding via fast LP routines

• Outstanding issues:
– Weakening of lower bound
– Polyhedral relaxations of convex multivariate functions

» Gruber (1993), Böröczky and Reitzner (2004)



RECURSIVE FUNCTIONAL 
COMPOSITIONS

• Consider h=g(f), where 
– g and f are multivariate convex functions 
– g is non-decreasing in the range of each nonlinear 

components of f

• h is convex
• Two outer approximations of the composite 

function h:
– S1: a single-step procedure that constructs supporting 

hyperplanes of h at a predetermined number of points
– S2: a two-step procedure that constructs supporting 

hyperplanes for g and f at corresponding points



THEOREM: S2 is Contained in S1

2S

1S



224 )(xx =

4 and 1at   ingapproximat-Outer 4 == xxx



OUTER APPROXIMATION OF x2+y2

+



TWO-STEP IS BETTER

• Theorem: An exponential number of 
supporting hyperplanes in S1 may be 
required to cover S2

h = f1(x1) + … + fm(xm) where each fi is strictly convex

• Separable functions are quite common in 
nonconvex optimization

• S2 has the potential of providing much tighter 
polyhedral outer approximations than S1 with 
a comparable number of supporting 
hyperplanes



AUTOMATIC DETECTION AND 
EXPLOITATION OF CONVEXITY
• Composition rule: h = g(f), where 

– g and f are multivariate convex functions 
– g is non-decreasing in the range of each nonlinear 

component of f

• Subsumes many known rules for detecting 
convexity/concavity

– However, logexp(x) = log(ex1 + … + exn)
– CONVEX_EQUATIONS modeling language construct



ILLUSTRATIVE EXAMPLE 1:  
CUTS FROM CONVEX ENVELOPES

Solution -1118 
at (34.3, 31.8)

Cutting planes 
reduce root-node
gap by 86%

With cuts: 7 nodes
Without: 47 nodes



ILLUSTRATIVE EXAMPLE 2:  
CONVEX_EQUATIONS CONSTRUCT

Solution 83 
at (34.3, 31.8)

Cutting planes 
reduce root-node
gap by 99.5%

With cuts: 35 nodes
Without: 1793 nodes



ROOT-NODE GAP REDUCTIONS 
FOR PROBLEMS FROM globallib

0
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Range from 0.05% to 100%.  Average 48%.



SOLUTION TO GLOBALITY



19 PROBLEMS FROM 
globallib AND minlplib

Minimum Maximum Average

Constraints 2 215 64
Variables 4 205 68
Discrete 
variables

0 92 33

Without 
cuts

With cuts % reduction

Nodes 1,148,501 13,278 99

Nodes in 
memory

21,636 712 97

CPU sec 9,561 1,032 89



BRANCH-AND-REDUCE
Convexification

Range Reduction

x*

Finiteness

• Separable reformulation leads to automatic 
convexity exploitation and tight relaxations

• Polyhedral cutting planes significantly reduce 
relaxation gaps, memory and CPU requirements

• Modeling constructs facilitate exploitation of 
relaxation-only and convex constraints

• Implemented in BARON 7.2
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