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SIP Objects of Desire

Random mixed-integer optimization problem:
min {cT:z:—I—qu cTe+Wy = z(w), z€ X, y € Y}
(X,Y - mixed-integer, polyhedral)

with information constraints (non-anticipativity):

decide z — observe z(w) — decide y = y(z, z2(w))

= min {cT:c+ min{q'y : Wy = 2(w) =Tz, y€ Y} : z € X}
x y
= min {cTa: + P(2(w) —Tz) : z € X}

= min {f(x,z(w)) : a:EX}

here
() :=min{q'y : Wy=t, yecY}

mixed-integer value function



How to find “best” element in family

{f(z,2(w)) : z€ X}

of random variables 7

Answer: Mean-Risk Model

min {IEzf(a:,z) + p-R.f(x,2) : :UEX}

This creates a “whole zoo"” of NLPs.

(p>0)



Specification of Risk - Deviation Based

Variance:
Rvf(z,2) = E(f(z,2) — Ef(x,2))?

Central Deviation:

RCDf(maz) = E'f(.’L',Z)—Ef(CC,ZN

Semideviation:

RSDf(xaz) = F max{f(a:,z) - Ef(waz)a O}

Expected Excess of Target n € IR:

REEf(:EaZ) = IE max {f(w,z) - O}



Specification of Risk - Quantile Based

Excess Probability of Target n € IR:

REP.f(waz) = P(f(l‘,Z) >77)

a-Value-at-Risk (aVaR):

Rvarf(@,2) = min{n : P(f(&,2) <n) > a} (=i na(z))

(smallest of (1 — a)100% worst outcomes)

a-Conditional-Value-at-Risk (aCVaR):

Revarf(2,2) = E (f(z,2)| f(2,2) = na())

(expectation of (1 — «)100% worst outcomes)
(definition needs modification for discretely distributed f(z,z))



Integers in y:

o) =min{g'y+¢ 'y : Wy+ W'y =t,ye Z7, y € R}

Basic assumptions:

(A1) complete recourse:
W(Z}) + W'(RY) = IR,
(A2) sufficiently expensive recourse:
fueR° : Wlu<gq, Whu<q} #0,

(A3) finite first moment:

Eyllz]| = l2]ln(dz) < +oo.
Rs

Proposition [Blair/Jeroslow 1977, Bank/Mandel 1988]:

Assume (A1) , (A2). Then it holds

(i) & is real-valued and lower semicontinuous on IR?%,

(ii) there exists a countable partition IR®* = U, 7; such that the
restrictions of ® to 7; are piecewise linear and Lipschitz contin-

uous with a uniform constant L > 0 not depending on g,

(iii) each of the sets 7; has a representation
Ti = {ti + K} \ ULi{ty + K}

where K denotes the polyhedral cone W’'(IR™)
suitable points from IR, moreover, N does no jchepend on 1,

(iv) there exist positive constants 3,~ such that

|P(t1) — P(t2)| < B|ltr — t2f| +
whenever t1,t> € IR®.

and t;,t;; are



Analytical Properties - Convexity
Departure point:  Without integers (1), f(.,z) is convex.

Mean-risk models preserving convexity:

central deviation (for 0 < p <1/2):

= (1-2p)-Ef(z,2) + 2p- Emax{f(z,z2), Ef(z,2)}

semideviation (for 0 < p < 1):

Ef(xaz) + P IE max {f(:z:,z) - Ef(w,z),O}

- (1—p)Ef(a:,z) + pEmax{f(x,z),Ef(:c,z)}

expected excess (for n € IR and p > 0):

Ef(w,z)-l—pIEmaX{f(:c,z) _7770}

conditional value-at-risk:

RCVaRf(maz) = min {ﬂ+ﬁE max{f(waz)_na 0} : UER}

Minimizing a jointly convex function with respect to one variable gives
a function that is convex in the other variable.



Analytical Properties - Lipschitz Continuity

Deterring Result:

Proposition:

Suppose that
e q,q,W,W’ all have rational entries,
e (A1)-(A3) hold,
e . has a density,

e for any nonsingular linear transformation B € L(IR?, IR®) all one-
dimensional marginal distributions of u o B have bounded den-
sities which, outside some bounded interval, are monotonically
decreasing with growing absolute value of the argument.

Then IE f(z,z) is Lipschitz continuous on bounded sets.

Remark:

Last assumption indispensable. Counterexamples exist.



Analytical Properties - Lower Semicontinuity
Typical Result:

Proposition:

Assume (A1)-(A3). Then Ef(.,z)+ p-Rspf(.,z), with 0 < p <1, is
lower semicontinuous on IR™.

Remark:
Result invalid for Ry (variance), leading to ill-posed mean-risk prob-
lems (infimum finite, but not attained).



Analytical Properties - Continuity

Typical Result:

Proposition:
Assume (A1)-(A3) and that u(E(x)) = 0 where

E(z) = {z € IR’ : @ is discontinuous at z — T'z}.
Then Ef(.,2) +p-Rspf(.,z), with 0 < p <1, is continuous at z.

Remark:

Discontinuities of & contained in countable union of hyperplanes.
Result thus valid if x4 has a density.



Analytical Properties - Joint Continuity and Stability

Parametric Optimization Problem:

P(p) min {E“f(a;,z) + p-RFf(x,2) @ = EX}

Denote:

Qz,p) = E'f(z,2) + p-R¥f(z,2)

Parameter Space:

P(IR®*) - set of all Borel probability measures on IR*, equipped with
weak convergence of probability measures.

Strengthened (uniform) integrability:

Ak () = {v € P(R’) : / l2P v(dz) < K}

where p > 1 and K > 0 are fixed constants.

Proposition:

Assume (Al), (A2). Let p € A,x(IR*) for some p > 1 and K > O,
and u(E(x)) = 0.

Then, with R := Rgp, the function Q : R™ x A, x(IR°) — IR is
continuous at (z, ).

Remark:

This induces (Berge) stability of the parametric program P(u) and,
among others, justifies approximation of u by simpler measures, e.g.,
discrete ones.



Algorithms

Non-convex global optimization problem:

min {Q(w) = E.f(x,z) + p-R.f(z,2) : = GX}

Assume that u is discrete and finite !

Branch-and-Bound:

Upper Bounding:

e just function evaluation, although somehow “guided” by lower

bounds,

e no descent part, yet.

Lower Bounding:

“expanded” problem formulation, with explicit y-variables,
yvields large-scale, block-structured MILP,

depending on risk measure, block structure is decomposable or
not,

decomposable case: Lagrangean relaxation of nonanticipativity
leads to single-scenario subproblems,

non-decomposable case: identify decomposable bounds better
than just E.f(x,z).



Equivalent MILPs - Expectation Problem

p discrete with realizations z; and probabilities m;,5 =1,...,J
min {QE(:I:,,u) D x € X}

= min {lEz[cTw +d(z—Tzx)] : =z € X}

= min {cT:c + E,[®(z—Tz)] : = € X}

= min{c'z+ E.[min{q'y : Wy=2-Tz, yeY}] : z€ X}
z Yy

= min {cTa:+1Ez[min{qu  Te+Wy=2z2 yeY}] : meX}
z Yy

J
= min{c’z + g quTyj :
Z,Yj
=1
Tx + Wy, = zj,

w€X7 yJGYa.]=17ﬂJ}




Equivalent MILPs - Expected EXxcess

Qr(z,n) + p- Qpi(z, 1)

== Ezf(CC,Z) + pEZ maX{f(aj, Z) -mn O}

= E.[c'z 4+ ®(z—Tz)] + pE.max{c'z+ ®(z—Tz) —n, 0}

Equivalent minimization problem:

J J
min {ch + E quTyj—I—p-g TV -
Tz + Wy; = zj,
T T < o
crtqy—n < v,
re X, yj ey, Uj€R+,j=1,...,J}




Equivalent MILPs - Semideviation

Qe(z, 1) + pQp+(z, 1)
- Ezf(xa Z) + pEz max{f(:v, Z) - Ezf(xaz)a O}

= Ezf(ac,z)—l—p(Ez max{f(:v,z),]Ezf(ac,z)}—Ezf(ac,z))
= (1—p)Ezf(£C,Z) + pEz max{f(a:,z),]Ezf(a:,z)}
= (1—p)lE’z[cT:1:+¢(z—Tw)]

+ pIE, max {CT:E + ®(z —Tx), Efc'z + P(z — TCE)]}

Equivalent minimization problem:

J J
min {(1 —p)c'z + (1—p) Zﬂ'quyj +p- ijvj :

Jj=1 Jj=1




Lower Bounding I:

Relaxation of Nonanticipativity for Expected-Excess Model

Problem reformulation with explicit nonanticipativity (z1 = ... =)

1

NA




Lagrangian function and Lagrangian dual:

J
L(xz,y,v,\) = Z Li(xj,y;j,v5, )
j=1
with

L](xjayjavja)‘) = ﬂj(Cij +quJ +pv]) + )‘Tijja J= 17"')‘])

and
J
max{z D;(\) : Ae R}
j=1
with
Dj(A) = min{Lj(wj,’yj,’Uj,A) . ij + Wyj = zj,
c'zi+q'y;—n < v
z; € X,y; €Y, v; € Ry}.
Advantages:

- D;(\) given by scenario-specific MILP — decomposition !

- powerful algorithms and codes for solving Lagrangian dual and
scenario-specific MILPs (ILOG-CPLEX, CONIC BUNDLE)



Lower Bounding II:

Separable Minorants for Semideviation Model

Problem reformulation with explicit NA possible, but constraints

J
Cij—i_ g Wiqui S’Ujajzla"'aj
=1

prevent separability after relaxation of NA.

Question: Separable lower bounds for objectives ?

Answers:
e trivial bound Qg(z, 1),
e improvement by next lemma:

Lemma:

Fixze X, let n<Qg(z,n) and 0 <a < 1. Then

Qe(r,1) < |1 -p)QEe(z,n)+ pQp:(x, 1) + pn

< QE(xalu') +pQ'D+($a/J')°



Remarks:

e Wait-and-see solution IE®ws(z) with

dws(z) = min{ch—i—qu : Ta:—l—Wyzz,wEX,yEY}

provides feasible choice for n in the above lemma.

e Lower bound is strictly tighter than Qg (z,u) if

,u{z € IR° : Edbygs(z) > f(a:,z)} > 0.



Computational impact of improved bound:

Semideviation extension of real-life expectation model from chemical
engineering.

first stage: m=24 variables, all integer or binary, together with
3 constraints,

second stage: m=108 integer or binary and m’=224 continuous
variables, together with 311 constraints,

J=10 scenarios,

4 hours of cpu time, Sun V880 with 880 MHz processor and
4 GB of main memory,

gaps in %,

CPLEX: direct application of ILOG-CPLEX 8.1 to full equiv-
alent MILP,

B&B/EXP: our branch-and-bound algorithm with lower bounds
by O,

B&B/ENH: our branch-and-bound algorithm with lower bounds

enhanced by lemma.

Instance | CPLEX B&B/ENH B&B/EXP
1 86.40 3.01 5.05
2 94.30 16.16 47.41
3 57.80 4.02 6.94
4 10.99 4.31 4.43
5 89.26 7.49 20.86
6 8.73 4.46 7.54
7 6.06 3.62 7.41
8 5.31 5.34 8.64
9 5.34 1.18 5.45
10 97.03 3.87 6.79




