Workshop on Integer Programming and Continuous Optimization Chemnitz, November 7-9, 2004

SIP from NLP Perspective

Rüdiger Schultz

(Universität Duisburg-Essen)

SIP Objects of Desire

Random mixed-integer optimization problem:

$$\min\left\{c^{\top}x+q^{\top}y\ :\ Tx+Wy\,=\,z(\omega),\ x\in X,\ y\in Y\right\}$$

(X, Y - mixed-integer, polyhedral)

with information constraints (non-anticipativity):

decide
$$x \mapsto$$
 observe $z(\omega) \mapsto$ decide $y = y(x, z(\omega))$

$$= \min_{x} \left\{ c^{\top} x + \min_{y} \{ q^{\top} y : Wy = z(\omega) - Tx, \ y \in Y \} \ : \ x \in X \right\}$$

$$= \min \left\{ c^{\top} x + \Phi(z(\omega) - Tx) : x \in X \right\}$$

$$= \min \left\{ f(x, z(\omega)) : x \in X \right\}$$

here

$$\Phi(t) := \min\{q^{\top}y : Wy = t, y \in Y\}$$

mixed-integer value function

How to find "best" element in family

$$\{f(x,z(\omega)) : x \in X\}$$

of random variables?

Answer: Mean-Risk Model

$$\min \left\{ \mathbb{E}_z f(x,z) + \rho \cdot \mathcal{R}_z f(x,z) : x \in X \right\} \qquad (\rho \ge 0)$$

This creates a "whole zoo" of NLPs.

Specification of Risk - Deviation Based

Variance:

$$\mathcal{R}_V f(x,z) := \mathbb{E} \left(f(x,z) - \mathbb{E} f(x,z) \right)^2$$

Central Deviation:

$$\mathcal{R}_{CD}f(x,z) := \mathbb{E} |f(x,z) - \mathbb{E} f(x,z)|$$

Semideviation:

$$\mathcal{R}_{SD}f(x,z) := \mathbb{E} \max\{f(x,z) - \mathbb{E}f(x,z), 0\}$$

Expected Excess of Target $\eta \in \mathbb{R}$:

$$\mathcal{R}_{EE}f(x,z) := \mathbb{E} \max\{f(x,z) - \eta, 0\}$$

Specification of Risk - Quantile Based

Excess Probability of Target $\eta \in \mathbb{R}$:

$$\mathcal{R}_{EP}f(x,z) := \mathbb{P}\left(f(x,z) > \eta\right)$$

 α -Value-at-Risk (α VaR):

$$\mathcal{R}_{VaR}f(x,z) := \min \left\{ \eta : \mathbb{P}\left(f(x,z) \leq \eta\right) \geq \alpha \right\} \quad (=: \eta_{\alpha}(x))$$

(smallest of $(1 - \alpha)100\%$ worst outcomes)

 α -Conditional-Value-at-Risk (α CVaR):

$$\mathcal{R}_{CVaR}f(x,z) := I\!\!E \left(f(x,z) \,|\, f(x,z) \geq \eta_{lpha}(x)
ight)$$

(expectation of (1-lpha)100% worst outcomes)

(definition needs modification for discretely distributed f(x,z))

Integers in y:

$$\Phi(t) = \min\{q^{\top}y + q'^{\top}y' : Wy + W'y' = t, y \in \mathbb{Z}_{+}^{\bar{m}}, y' \in \mathbb{R}_{+}^{m'}\}$$

Basic assumptions:

(A1) complete recourse:

$$W(\mathbb{Z}_{+}^{\bar{m}}) + W'(\mathbb{R}_{+}^{m'}) = \mathbb{R}^{s},$$

(A2) sufficiently expensive recourse:

$$\{u \in \mathbb{R}^s : W^T u \le q, W'^T u \le q'\} \ne \emptyset,$$

(A3) finite first moment:

$$I\!\!E_{\mu} ||z|| := \int_{I\!\!R^s} ||z|| \mu(dz) < +\infty.$$

Proposition [Blair/Jeroslow 1977, Bank/Mandel 1988]:

Assume (A1), (A2). Then it holds

- (i) Φ is real-valued and lower semicontinuous on $I\!\!R^s$,
- (ii) there exists a countable partition $I\!\!R^s = \bigcup_{i=1}^\infty \mathcal{T}_i$ such that the restrictions of Φ to \mathcal{T}_i are piecewise linear and Lipschitz continuous with a uniform constant L>0 not depending on i,
- (iii) each of the sets \mathcal{T}_i has a representation

$$\mathcal{T}_i = \{t_i + \mathcal{K}\} \setminus \cup_{j=1}^N \{t_{ij} + \mathcal{K}\}$$

where \mathcal{K} denotes the polyhedral cone $W'(\mathbb{R}^{m'}_+)$ and t_i, t_{ij} are suitable points from \mathbb{R}^s , moreover, N does not depend on i,

(iv) there exist positive constants β, γ such that

$$|\Phi(t_1) - \Phi(t_2)| \le \beta ||t_1 - t_2|| + \gamma$$

whenever $t_1, t_2 \in I\!\!R^s$.

Analytical Properties - Convexity

Departure point: Without integers (!!), f(.,z) is convex.

Mean-risk models preserving convexity:

central deviation (for $0 \le \rho \le 1/2$):

$$\begin{split} & \mathbb{E}f(x,z) + \rho \cdot \mathbb{E}|f(x,z) - \mathbb{E}f(x,z)| \\ &= (1 - 2\rho) \cdot \mathbb{E}f(x,z) + 2\rho \cdot \mathbb{E}\max\{f(x,z), \mathbb{E}f(x,z)\} \end{split}$$

semideviation (for $0 \le \rho \le 1$):

$$\mathbb{E}f(x,z) + \rho \cdot \mathbb{E} \max \{ f(x,z) - \mathbb{E}f(x,z), 0 \}$$

$$= (1 - \rho)\mathbb{E}f(x,z) + \rho \mathbb{E} \max \{ f(x,z), \mathbb{E}f(x,z) \}$$

expected excess (for $\eta \in I\!\!R$ and $\rho \geq 0$):

$$I\!\!E f(x,z) + \rho \cdot I\!\!E \max\{f(x,z) - \eta, 0\}$$

conditional value-at-risk:

$$\mathcal{R}_{CVaR}f(x,z) = \min\left\{\eta + \frac{1}{1-\alpha}\mathbb{E}\max\left\{f(x,z) - \eta, 0\right\} : \eta \in \mathbb{R}\right\}$$

Minimizing a jointly convex function with respect to one variable gives a function that is convex in the other variable.

Analytical Properties - Lipschitz Continuity

Deterring Result:

Proposition:

Suppose that

- ullet q,q',W,W' all have rational entries,
- (A1)-(A3) hold,
- \bullet μ has a density,
- for any nonsingular linear transformation $B \in L(\mathbb{R}^s, \mathbb{R}^s)$ all one-dimensional marginal distributions of $\mu \circ B$ have bounded densities which, outside some bounded interval, are monotonically decreasing with growing absolute value of the argument.

Then $\mathbb{E} f(x,z)$ is Lipschitz continuous on bounded sets.

Remark:

Last assumption indispensable. Counterexamples exist.

Analytical Properties - Lower Semicontinuity

Typical Result:

Proposition:

Assume (A1)-(A3). Then $I\!\!E f(.,z) + \rho \cdot \mathcal{R}_{SD} f(.,z)$, with $0 \le \rho \le 1$, is lower semicontinuous on $I\!\!R^m$.

Remark:

Result invalid for \mathcal{R}_V (variance), leading to ill-posed mean-risk problems (infimum finite, but not attained).

Analytical Properties - Continuity

Typical Result:

Proposition:

Assume (A1)-(A3) and that $\mu(E(x)) = 0$ where

$$E(x) = \{z \in \mathbb{R}^s : \Phi \text{ is discontinuous at } z - Tx\}.$$

Then $I\!\!E f(.,z) + \rho \cdot \mathcal{R}_{SD} f(.,z)$, with $0 \le \rho \le 1$, is continuous at x.

Remark:

Discontinuities of Φ contained in countable union of hyperplanes. Result thus valid if μ has a density.

Analytical Properties - Joint Continuity and Stability

Parametric Optimization Problem:

$$P(\mu)$$
 min $\left\{ \mathbb{E}^{\mu} f(x,z) + \rho \cdot \mathcal{R}^{\mu} f(x,z) : x \in X \right\}$

Denote:

$$Q(x,\mu) := \mathbb{E}^{\mu} f(x,z) + \rho \cdot \mathcal{R}^{\mu} f(x,z)$$

Parameter Space:

 $\mathcal{P}(I\!\!R^s)$ - set of all Borel probability measures on $I\!\!R^s$, equipped with weak convergence of probability measures.

Strengthened (uniform) integrability:

$$\Delta_{p,K}(I\!\!R^s) := \{
u \in \mathcal{P}(I\!\!R^s) : \int_{I\!\!R^s} \|z\|^p \,
u(dz) \le K \}$$

where p > 1 and K > 0 are fixed constants.

Proposition:

Assume (A1), (A2). Let $\mu \in \Delta_{p,K}(I\!\!R^s)$ for some p>1 and K>0, and $\mu(E(x))=0$.

Then, with $\mathcal{R}:=\mathcal{R}_{SD}$, the function $Q:\mathbb{R}^m\times\Delta_{p,K}(\mathbb{R}^s)\longrightarrow\mathbb{R}$ is continuous at (x,μ) .

Remark:

This induces (Berge) stability of the parametric program $P(\mu)$ and, among others, justifies approximation of μ by simpler measures, e.g., discrete ones.

Algorithms

Non-convex global optimization problem:

$$\min \left\{ Q(x) := \mathbb{E}_z f(x,z) + \rho \cdot \mathcal{R}_z f(x,z) : x \in X \right\}$$

Assume that μ is discrete and finite!

Branch-and-Bound:

Upper Bounding:

- just function evaluation, although somehow "guided" by lower bounds,
- no descent part, yet.

Lower Bounding:

- ullet "expanded" problem formulation, with explicit y-variables,
- yields large-scale, block-structured MILP,
- depending on risk measure, block structure is decomposable or not,
- decomposable case: Lagrangean relaxation of nonanticipativity leads to single-scenario subproblems,
- non-decomposable case: identify decomposable bounds better than just $\mathbb{E}_z f(x,z)$.

Equivalent MILPs - Expectation Problem

 μ discrete with realizations z_j and probabilities $\pi_j, j=1,\dots,J$ $\min \left\{Q_{I\!\!E}(x,\mu) \ : \ x\in X\right\}$

$$= \min \left\{ \mathbb{E}_z[c^\top x + \Phi(z - Tx)] : x \in X \right\}$$

$$= \min \left\{ c^{\top} x + \mathbb{E}_z [\Phi(z - Tx)] : x \in X \right\}$$

$$= \min_{x} \left\{ c^{\top} x + \mathbb{E}_{z} [\min_{y} \{ q^{\top} y : Wy = z - Tx, y \in Y \}] : x \in X \right\}$$

$$= \min_{x} \left\{ c^{\top} x + I\!\!E_{z} [\min_{y} \{ q^{\top} y : Tx + Wy = z, y \in Y \}] : x \in X \right\}$$

$$= \min_{x,y_j} \{c^T x + \sum_{j=1}^J \pi_j q^T y_j : \\ Tx + Wy_j = z_j, \\ x \in X, \ y_j \in Y, \ j = 1, \dots, J\}$$

Equivalent MILPs - Expected Excess

$$egin{aligned} Q_{I\!\!E}(x,\mu) +
ho \cdot Q_{\mathcal{D}^\eta}(x,\mu) \ &= I\!\!E_z f(x,z) +
ho I\!\!E_z \max\{f(x,z) - \eta,\,0\} \ &= I\!\!E_z [c^ op x + \Phi(z-Tx)] \,+\,
ho I\!\!E_z \max\{c^ op x + \Phi(z-Tx) - \eta,\,0\} \end{aligned}$$

Equivalent minimization problem:

$$\min \left\{ c^{\top} x + \sum_{j=1}^{J} \pi_{j} q^{\top} y_{j} + \rho \cdot \sum_{j=1}^{J} \pi_{j} v_{j} : \right.$$

$$Tx + W y_{j} = z_{j},$$

$$c^{\top} x + q^{\top} y_{j} - \eta \leq v_{j},$$

$$x \in X, \ y_{j} \in Y, \ v_{j} \in IR_{+}, \ j = 1, \dots, J \right\}$$

Equivalent MILPs - Semideviation

$$\begin{split} Q_{E}(x,\mu) + \rho Q_{\mathcal{D}^{+}}(x,\mu) \\ &= E_{z}f(x,z) + \rho E_{z} \max \left\{ f(x,z) - E_{z}f(x,z), 0 \right\} \\ &= E_{z}f(x,z) + \rho \left(E_{z} \max \left\{ f(x,z), E_{z}f(x,z) \right\} - E_{z}f(x,z) \right) \\ &= (1 - \rho) E_{z}f(x,z) + \rho E_{z} \max \left\{ f(x,z), E_{z}f(x,z) \right\} \\ &= (1 - \rho) E_{z}[c^{\top}x + \Phi(z - Tx)] \\ &+ \rho E_{z} \max \left\{ c^{\top}x + \Phi(z - Tx), E_{z}[c^{\top}x + \Phi(z - Tx)] \right\} \end{split}$$

Equivalent minimization problem:

$$\min \left\{ (1 - \rho)c^{\top}x + (1 - \rho) \sum_{j=1}^{J} \pi_{j}q^{\top}y_{j} + \rho \cdot \sum_{j=1}^{J} \pi_{j}v_{j} : \\ Tx + Wy_{j} = z_{j}, \\ c^{\top}x + q^{\top}y_{j} \leq v_{j}, \\ c^{\top}x + \sum_{i=1}^{J} \pi_{i}q^{\top}y_{i} \leq v_{j}, \\ x \in X, \ y_{j} \in Y, \ v_{j} \in I\!\!R, \ j = 1, \dots, J \right\}$$

Lower Bounding I: Relaxation of Nonanticipativity for Expected-Excess Model

Problem reformulation with explicit nonanticipativity $(x_1 = \ldots = x_J)$

Lagrangian function and Lagrangian dual:

$$L(x,y,v,\lambda) \ := \ \sum_{j=1}^J L_j(x_j,y_j,v_j,\lambda)$$

with

$$L_j(x_j, y_j, v_j, \lambda) := \pi_j(c^{\top}x_j + q^{\top}y_j + \rho v_j) + \lambda^{\top}H_jx_j, \ \ j = 1, \dots, J,$$

and

$$\max\{\sum_{j=1}^J D_j(\lambda) : \lambda \in I\!\!R^l\}$$

with

$$D_{j}(\lambda) = \min\{L_{j}(x_{j}, y_{j}, v_{j}, \lambda) : Tx_{j} + Wy_{j} = z_{j},$$

$$c^{\top}x_{j} + q^{\top}y_{j} - \eta \leq v_{j},$$

$$x_{j} \in X, y_{j} \in Y, v_{j} \in \mathbb{R}_{+}\}.$$

Advantages:

- $D_i(\lambda)$ given by scenario-specific MILP \mapsto decomposition!
- powerful algorithms and codes for solving Lagrangian dual and scenario-specific MILPs (ILOG-CPLEX, CONIC BUNDLE)

Lower Bounding II:

Separable Minorants for Semideviation Model

Problem reformulation with explicit NA possible, but constraints

$$c^{\top}x_j + \sum_{i=1}^{J} \pi_i q^{\top}y_i \leq v_j, \ j = 1, \dots, J$$

prevent separability after relaxation of NA.

Question: Separable lower bounds for objectives?

Answers:

- trivial bound $Q_{I\!\!E}(x,\mu)$,
- improvement by next lemma:

Lemma:

Fix $x \in X$, let $\eta \leq Q_{I\!\!E}(x,\mu)$ and $0 \leq \alpha \leq 1$. Then

$$Q_{I\!\!E}(x,\mu) \le \left[(1-
ho)Q_{I\!\!E}(x,\mu) +
ho Q_{\mathcal{D}^{\eta}}(x,\mu) +
ho \eta \right]$$
 $< Q_{I\!\!E}(x,\mu) +
ho Q_{\mathcal{D}^{+}}(x,\mu).$

Remarks:

ullet Wait-and-see solution $I\!\!E \Phi_{WS}(z)$ with

$$\Phi_{WS}(z) \ := \ \min \left\{ c^\top x + q^\top y \ : \ Tx + Wy = z, \ x \in X, \ y \in Y \right\}$$
 provides feasible choice for $\underline{\eta}$ in the above lemma.

ullet Lower bound is strictly tighter than $Q_{I\!\!E}(x,\mu)$ if

$$\mu\left\{z\in I\!\!R^s: I\!\!E\Phi_{WS}(z)>f(x,z)\right\} > 0.$$

Computational impact of improved bound:

Semideviation extension of real-life expectation model from chemical engineering.

- first stage: m=24 variables, all integer or binary, together with 3 constraints,
- second stage: \bar{m} =108 integer or binary and m'=224 continuous variables, together with 311 constraints,
- J=10 scenarios,
- 4 hours of cpu time, Sun V880 with 880 MHz processor and 4 GB of main memory,
- gaps in %,
- <u>CPLEX</u>: direct application of ILOG-CPLEX 8.1 to full equivalent MILP,
- B&B/EXP: our branch-and-bound algorithm with lower bounds by $Q_{I\!\!E}$,
- B&B/ENH: our branch-and-bound algorithm with lower bounds enhanced by lemma.

Instance	CPLEX	B&B/ENH	B&B/EXP
1	86.40	3.01	5.05
2	94.30	16.16	47.41
3	57.80	4.02	6.94
4	10.99	4.31	4.43
5	89.26	7.49	20.86
6	8.73	4.46	7.54
7	6.06	3.62	7.41
8	5.31	5.34	8.64
9	5.34	1.18	5.45
10	97.03	3.87	6.79