The Spectral Bundle Method with Second Order Information

Franz Rendl
Institut für Mathematik
Universität Klagenfurt
A - 9020 Klagenfurt, Austria

franz.rendl@uni-klu.ac.at

Workshop Chemnitz, November 2004

Overview

- Eigenvalue Optimization and SDP
- Bundle Methods
- Second Order Models for Eigenvalue Optimization
- A practical version with Second order information

Eigenvalue optimization and SDP

Data:
$C, A_{i}, i=1, \ldots, m$ symmetric matrices of order n
$b \in \mathbb{R}^{m}, a \in \mathbb{R}$

$$
\min _{y} a \lambda_{\max }\left(C-A^{T}(y)\right)+b^{T} y
$$

If $b=0$, pure eigenvalue optimization.

Cullum et al (1975), Overton (1988), Oustry (2000)

Constant Trace SDP

(P) $\max \langle C, X\rangle$ such that $A(X)=b, X \succeq 0$.
(D) $\quad \min b^{T} y$ such that $A^{T}(y)-C=Z \succeq 0$.
A has constant trace property if I is in the range of A^{T}, equivalently
$\exists \eta$ such that $A^{T}(\eta)=I$

Constant Trace SDP (2)

The constant trace property implies:

$$
\begin{gathered}
A(X)=b, A^{T}(\eta)=I \text { then } \\
\operatorname{tr}(X)=\langle I, X\rangle=\left\langle\eta, A^{T}(X)\right\rangle=\eta^{T} b=: a
\end{gathered}
$$

Constant trace SDP are equivalent to

$$
(E) \quad \min _{y} a \lambda_{\max }\left(C-A^{T}(y)\right)+b^{T} y
$$

see for instance Helmberg, R. (2000)

Optimality conditions for (E)

f has subdifferential $\partial f(y)$ at y given by

$$
\begin{gathered}
\partial f(y)=\{b-A(a W): \\
\left.\left\langle W, C-A^{T}(y)\right\rangle=\lambda_{\max }\left(C-A^{T}(y)\right), \operatorname{tr}(W)=1, W \succeq 0\right\} .
\end{gathered}
$$

P, U provide optimality certificate for minimizer y iff

$$
\begin{gathered}
P^{T} P=I_{k}, P^{T}\left(C-A^{T}(y)\right) P=\lambda I_{k}, \lambda I \succeq C-A^{T}(y) \\
A\left(a P U P^{T}\right)=b, U \succeq 0, \operatorname{tr}(U)=1
\end{gathered}
$$

Overview

- Eigenvalue Optimization and SDP
- Bundle Methods
- Second Order Models for Eigenvalue Optimization
- A practical version with Second order information

Bundle Methods to solve (E)

For given P we define the following auxiliary function

$$
L_{P}(y, U):=a\left\langle C-A^{T}(y), P U P^{T}\right\rangle+b^{T} y
$$

Here P takes the role of the Bundle of 'good eigenvectors'.
The key step is to solve

$$
\begin{gathered}
\min _{y} \max _{U \succeq 0, \operatorname{tr} U=1} L_{P}(y, U)+\frac{t}{2}\|y-\hat{y}\|^{2}= \\
\quad \max L_{P}(y, U)+\frac{t}{2}\|y-\hat{y}\|^{2} \text { such that } \\
U \succeq 0, \operatorname{tr} U=1, y=\hat{y}+\frac{1}{t}\left[a A\left(P U P^{T}\right)-b\right] .
\end{gathered}
$$

Generic Bundle Algorithm to minimize f
Data: $C, A_{1}, \ldots, A_{m}, b, a$
Input: $y \in \mathbb{R}^{m}$, Output: $\hat{y} \in \mathbb{R}^{m}$
Start: evaluate f at y (to get $f(y)$ and eigenvector v)
Initialization: $\hat{y}=y, \hat{f}=f, P=v$, select $t>0$
while some stopping condition is not satisfied
(a) Solve

$$
\min _{y} \max _{U \succeq 0, \operatorname{tr} U=1} L_{P}(y, U)+\frac{t}{2}\|y-\hat{y}\|^{2} \text { giving } U, y
$$

(b) Evaluate f at new point y (returning $f(y)$ and eigenvector v)
(c) Update P and \hat{y} (serious or null step)
(d) Check the stopping condition
see e.g. Lemarechal, Kiwiel, Overton, Zowe, etc (1970-1990)

Bundle methods (2)

The difference between the standard bundle and spectral bundle lies in the definition of U.
(a) U diagonal leads to standard bundle need to solve convex quadratic in k variables
(b) U general symmetric gives spectral bundle need to solve quadratic SDP in matrix variable of order k
see Helmberg Habilitation thesis, and Helmberg, R. SIOPT (2000)

Overview

- Eigenvalue Optimization and SDP
- Bundle Methods
- Second Order Models for Eigenvalue Optimization
- A practical version with Second order information

Second order models

f is nonsmooth in general, but f is smooth on the submanifold, where the largest eigenvalue has constant multiplicity
(under some additional technical assumptions, which are not important)

Basic observation:
If y and $y+d$ have same multiplicity for $\lambda_{\text {max }}$ we get second order expansion as follows:
We assume P is eigenspace of $\lambda_{\max }$:

$$
P^{T}\left(C-A^{T}(y)\right) P=\lambda I_{k}
$$

Solve

$$
\min \left\|b-a A\left(P U P^{T}\right)\right\|^{2} \text { such that } U \succeq 0, \operatorname{tr}(U)=1
$$

Second order models (2)

U provides 'shortest' subgradient g at y :

$$
g=b-a A\left(P U P^{T}\right)
$$

(solve quadratic SDP of size k)
We also need full factorization of $C-A^{T}(y)$ given by P, Q Use U to form Hessian $\mathbf{H}(\mathbf{U})$,

$$
H(U):=2 A\left[\left(P U P^{T}\right) \otimes\left(Q \tilde{\Lambda}^{-1} Q^{T}\right)\right] A^{T}
$$

Computational effort to find H is nontrivial

Second order models (3)

Now use H to form prox term, before we had:

$$
\min _{y} \max _{U \succeq 0, \operatorname{tr} U=1} L_{P}(y, U)+\frac{t}{2}\|y-\hat{y}\|^{2}
$$

Now

$$
\begin{gathered}
\min _{y} \max _{U \succeq 0, \operatorname{tr} U=1} L_{P}(y, U)+\frac{1}{2}(y-\hat{y})^{T} H(y-\hat{y})= \\
\quad \max L_{P}(y, U)+\frac{1}{2}(y-\hat{y})^{T} H(y-\hat{y}) \text { such that } \\
U \succeq 0, \operatorname{tr} U=1, y=\hat{y}+H^{-1}\left[a A\left(P U P^{T}\right)-b\right] .
\end{gathered}
$$

Note that H^{-1} is used explicitly, therefore impractical.

Second order models (3)

Summary:

- Compute spectral decomposition of $C-A^{T}(\hat{y})$, (suppose $\lambda_{\max }$ has multiplicity k).
- Solve convex quadratic SDP in U of order k :
- Compute $H(U)$ using spectral decomposition
- Using $H(U)^{-1}$, solve another quadratic SDP in V or order k
- Compute new trial point

$$
y=\hat{y}+H^{-1}\left[a A\left(P V P^{T}\right)-b\right]
$$

Overview

- Eigenvalue Optimization and SDP
- Bundle Methods
- Second Order Models for Eigenvalue Optimization
- A practical version with Second order information

A Practical Variant

Avoid working with all of $H(U)$.
To avoid using inverse explicitly, take only diagonal of $H(U)$:
Still need factorization, but working with $G:=\operatorname{Diag}(H(U))$ simplifies the rest.

Amounts to diagonal scaling of update.
Most expensive steps per iteration, in addition to spectral bundle:

- full factorization
- Compute diagonal of H

Preliminary computational experiments are encouraging

