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Overview

• Eigenvalue Optimization and SDP

• Bundle Methods

• Second Order Models for Eigenvalue Optimization

• A practical version with Second order information
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Eigenvalue optimization and SDP

Data:
C, Ai, i = 1, . . . ,m symmetric matrices of ordern
b ∈ IRm, a ∈ IR

min
y

aλmax(C − AT (y)) + bTy

If b = 0, pure eigenvalue optimization.

Cullum et al (1975), Overton (1988), Oustry (2000)
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Constant Trace SDP

(P ) max〈C, X〉 such thatA(X) = b, X � 0.

(D) min bTy such thatAT (y) − C = Z � 0.

A hasconstant trace propertyif I is in the range ofAT ,
equivalently

∃η such thatAT (η) = I
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Constant Trace SDP (2)

The constant trace property implies:

A(X) = b, AT (η) = I then

tr(X) = 〈I, X〉 = 〈η, AT (X)〉 = ηT b =: a

Constant trace SDP are equivalent to

(E) min
y

aλmax(C − AT (y)) + bTy

see for instance Helmberg, R. (2000)
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Optimality conditions for (E)

f has subdifferential∂f (y) aty given by

∂f (y) = {b− A(aW ) :

〈W, C − AT (y)〉 = λmax(C − AT (y)), tr(W ) = 1, W � 0}.

P, U provide optimality certificate for minimizery iff

PTP = Ik, PT (C − AT (y))P = λIk, λI � C − AT (y),

A(aPUPT ) = b, U � 0, tr(U) = 1.
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Bundle Methods to solve (E)

For givenP we define the following auxiliary function

LP (y, U) := a〈C − AT (y), PUPT 〉 + bTy

HereP takes the role of theBundleof ’good eigenvectors’.

The key step is to solve

min
y

max
U�0, trU=1

LP (y, U) +
t

2
‖y − ŷ‖2 =

max LP (y, U) +
t

2
‖y − ŷ‖2 such that

U � 0, trU = 1, y = ŷ +
1

t
[aA(PUPT ) − b].
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Generic Bundle Algorithm to minimizef
Data: C, A1, . . . , Am, b, a
Input: y ∈ IRm, Output: ŷ ∈ IRm

Start: evaluatef aty (to getf (y) and eigenvectorv)
Initialization: ŷ = y, f̂ = f, P = v, selectt > 0
while some stopping condition is not satisfied

(a) Solve

min
y

max
U�0, trU=1

LP (y, U) +
t

2
‖y − ŷ‖2 giving U, y

(b) Evaluatef at new pointy (returningf (y) and eigenvectorv)
(c) UpdateP andŷ (serious or null step)
(d) Check the stopping condition

see e.g. Lemarechal, Kiwiel, Overton, Zowe, etc (1970-1990)
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Bundle methods (2)

The difference between thestandard bundleandspectral bundle
lies in the definition ofU .

(a)U diagonal leads to standard bundle
need to solve convex quadratic ink variables

(b) U general symmetric gives spectral bundle
need to solve quadratic SDP in matrix variable of orderk

see Helmberg Habilitation thesis, and Helmberg, R. SIOPT (2000)
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Second order models

f is nonsmooth in general,but f is smooth on the submanifold,
where the largest eigenvalue has constant multiplicity

(under some additional technical assumptions, which are not im-
portant)

Basic observation:
If y andy + d have same multiplicity forλmax we get second order
expansion as follows:

We assumeP is eigenspace ofλmax:

PT (C − AT (y))P = λIk

Solve

min ‖b− aA(PUPT )‖2 such thatU � 0, tr(U) = 1
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Second order models (2)

U provides ’shortest’ subgradientg aty:

g = b− aA(PUPT )

(solve quadratic SDP of sizek)
We also need full factorization ofC − AT (y) given byP, Q
UseU to form HessianH(U),

H(U) := 2A[(PUPT ) ⊗ (QΛ̃−1QT )]AT

Computational effort to findH is nontrivial

see for instance Overton, Womersley 1993
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Second order models (3)

Now useH to form prox term, before we had:

min
y

max
U�0, trU=1

LP (y, U) +
t

2
‖y − ŷ‖2

Now

min
y

max
U�0, trU=1

LP (y, U) +
1

2
(y − ŷ)TH(y − ŷ) =

max LP (y, U) +
1

2
(y − ŷ)TH(y − ŷ) such that

U � 0, trU = 1, y = ŷ + H−1[aA(PUPT ) − b].

Note thatH−1 is usedexplicitly, therefore impractical.
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Second order models (3)

Summary:
• Computespectral decompositionof C − AT (ŷ),

(supposeλmax has multiplicityk).

• Solve convex quadratic SDP inU of orderk:

• ComputeH(U) using spectral decomposition

• UsingH(U)−1, solve another quadratic SDP inV or orderk

• Compute new trial point

y = ŷ + H−1[aA(PV PT ) − b]
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A Practical Variant

Avoid working with all ofH(U).

To avoid using inverse explicitly, take only diagonal ofH(U):

Still need factorization, but working withG := Diag(H(U)) simpli-
fies the rest.

Amounts todiagonal scalingof update.

Most expensive steps per iteration, in addition to spectral bundle:

• full factorization

• Compute diagonal ofH

Preliminary computational experiments are encouraging
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