Workshop on Integer Programming and Continuous Optimization

Chemnitz, November 2004

Integer Nonlinear Optimization
Sven Leyffer
leyffer@mcs.anl.gov

Mathematics and Computer Science Division, Argonne National Laboratory

leyffer@mcs.anl.gov

Integer Nonlinear Optimization

Sven Leyffer

1. Introduction & Applications
2. Classical MINLP Methods
3. Modern MINLP Methods
4. Conclusions & Future Work

Integer Nonlinear Optimization

Sven Leyffer

1. Introduction & Applications
2. Classical MINLP Methods
3. Modern MINLP Methods
4. Conclusions & Future Work

on

X\

Do not trust this expert!

1. Introduction & Applications

Mixed Integer Nonlinear Programming (MINLP)

(
minimize f(z,y)
z,y

_/\

subject to ¢(x,y) <0

x € X, y €Y integer

e f,c smooth (convex) functions
e X.Y polyhedral sets, e.g. Y ={0,1}
e y € Y integer = hard problem

1.1. Core Reload Operation [Quist:97]

e maximize reactor efficiency after reload [] freshbundee Bl 2 veer olabundie

subject to diffusion PDE & safety L] Weam'db“"d Il 3 vea oidbundie

e approx. diffusion by nonlinear equation
= integer & nonlinear model

e avoid reactor becoming sub-critical

1.1. Core Reload Operation [Quist:97]

e maximize reactor efficiency after reload [] freshoundie Bl 2o o bundie
subject to diffusion PDE & safety [l 7 yearold bundie Il :vear old bundie

e approx. diffusion by nonlinear equation

= integer & nonlinear model

e avoid reactor becoming overheated

1.1. Core Reload Operation [Quist:97]

L |00k fOI’ CyC|eS fOI’ mOVing bund|eSZ D fresh bundle . 2 year old bundle
e g 4 — 6 — 8 — 10 D 1 year old bundle . 3 year old bundle

means bundle moved from 4 to 6 to ...
e model with integer variables z;;.,, € {0,1}

Zim = 1: node ¢ has bundle [of cycle m

11|12]13
14

1.2. Other Applications

e Chemical Engineering Applications:
o process synthesis [Kocis& Grossmann:88]
o batch plant design [Grossmanno&Sargent:79]
o cyclic scheduling [Jain&Grossmann:98]
o design of distillation columns [Viswanathan:93]
o pump configuration optimization [Westerlund:94]

e trimloss minimization in paper industry [Westerlund:98]
e topology optimization [Sigurd:00]

o finite element structural optimization
o 0-1 to model presence/absence of material

2. Classical Methods for MINLP

Basic Methods:
1. Branch-and-Bound
2. Outer Approximation, Benders Decomposition et al.

Hybrid Methods:
3. LP/NLP Based Branch-and-Bound
4. Integrating SQP with Branch-and-Bound

2.1. Branch-and-Bound

Solve relaxed NLP (0 <y < 1 continuous relaxation)

integer feasible
L1

e Branch on y; non-integral
e Solve NLPs & branch until ...
1. Node infeasible ... o
2. Node integer feasible ... [
— upper bound (U)
3. Lower bound > U ... K

T elc.

dominated
by upper bound

infeasible

Search until no unexplored nodes left on tree

2.2. Outer Approximation [Duran & Grossmann]

Motivation: avoid huge number of NLPs

e Take advantage of MILP codes: decompose integer & nonlinear part

Key idea: reformulate MINLP as MILP (implicit)

e Solve alternating sequence of MILP & NLP

NLP subproblem 7/ fixed: ¢
P !/ MILP
[minimize f(z,y7)
NLP(y”) ¢ subject to c(z,y7) < 0 +
j
\ e X NLP(y?)

Main Assumption: f, c are convex

2.2. Outer Approximation [Duran & Grossmann]

e let (x7,77) solve NLP(y?)
e linearize f, c about (27,vy’) =: 2/
e new objective variable n > f(z,y)
o MINLP (P) = MILP (M)

(minimize 7

Z:(fE,y)ﬂ?

subjectto n> fI4+Vfi (z—29) Wy ey
0> ¢ —i—chT(z —) Yy ey

x € X,y €Y integer

(M) <

\

SNAG: need all 4/ €Y linearizations

2.2. Outer Approximation [Duran & Grossmann]

(MP*): lower bound (underestimate convex f, c)
NLP(y’): upper bound U (fixed y)

NLP(y) subproblem =— NLP glves

i linearization
MILP master program nM;‘I;”P f)|)nds
MILP infeasible®?
es
STOP

= stop, if lower bound > upper bound

2.2. OA & Benders Decomposition

Take OA master ... z := (x,y)
(
minimize 7
z=(z,y),m
subject to 1 > fJ + ijT(z —) Yy ey
0> +Vd (z—2) VyleY

xr € X,y €Y integer

/N
N——"
A

\

sum constraints 0 > ¢... weighted with multipliers \/ V;
= >N T+ (VPF+VIN) (z-2) W ey

.. valid inequality.

2.2. OA & Benders Decomposition

Valid inequality from OA master; z = (x,y):
N> 4N G+ (VI +VIN) (2 - 2)
use KKT conditions of NLP(y7) ...
Vaof?! + Vi N =0
... to eliminate x components from valid ineqaulity
= > 4N I+ (VI + VM) (y—f)
& =L+ () (y—y)

where £7 Lagrangian ...
o ! =V, f7 + V¢ N multiplier of y = 37 in NLP(y’)

2.2. OA & Benders Decomposition

= remove x from master problem & obtain Benders master problem

)
minimize 7
Yi1

(Mp) subject to n > L7 + (,uj)T (y — yj) Vyl €Y

'\

\ y € Y Integer

where £7 Lagrangian & p/ multiplier of y = 37 in NLP(y’)

e (Mp) has less constraints & variables (no x!)
e (Mp) almost ILP (except for n)
e (Mp) weaker than OA (from derivation)

2.2. OA & Similar Methods

Extended Cutting Plane Method [Westerlund:95]:
e no NLP(37) solves; Kelley's cutting plane method instead

e linearize about (#7,y7), solution of (M*)
e add most violated linearization to master (M*)

= slow nonlinear convergence; > 1 evaluation per y

Drawbacks of OA, GBD & ECP:
e MILP tree-search can be bottle-neck

e potentially large number of iterations [FL:94]

Second order master (MIQP) [FL:94]:
e add Hessian term to MILP (M) = MIQP
o solve MIQP by B&B; similar to MILP

2.3. LP/NLP Based Branch-and-Bound [Quesada & Grossmann]

AIM: avoid re-solving MILP master (M)
Consider MILP branch-and-bound

2.3. LP/NLP Based Branch-and-Bound [Quesada & Grossmann]

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when new 1’ found integer

— solve NLP(yJ) get ZU‘? feasible

2.3. LP/NLP Based Branch-and-Bound [Quesada & Grossmann]

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound
interrupt MILP, when new v’ found

— solve NLP(y/) get 27 a

— linearize f, ¢ about (27,%7)
— add linearization to MILP tree

2.3. LP/NLP Based Branch-and-Bound [Quesada & Grossmann]

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound
interrupt MILP, when new v’ found

— solve NLP(y7) get 27; -

— linearize f, ¢ about (27,%7)
— add linearization to MILP tree
— continue MILP tree-search

. until lower bound > upper bound

2.3. LP/NLP Based Branch-and-Bound [Quesada & Grossmann]

e need access to MILP solver ... call back
o exploit good MILP (branch-cut-price) solver
o [Akrotirianakis& Rustem:00] use Gomory cuts in tree-search

e no commercial implementation of this idea

e preliminary results: order of magnitude faster than OA
o same number of NLPs, but only one MILP

e similar ideas for Benders & Cutting Plane methods

. see [Quesada/Grossmann:92]

2.4. Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

e Sequential Quadratic Programming (SQP)
— solve sequence (QP") at every node

y

minicgnize F+ kaTd + %dTWkd
(QP") subject to c¥ + Vb d <0
2k 4d, € X, yF+d, €Y.

\

e Early branching rule [Borchers & Mitchell:94]; after QP step:

— choose non-integral ¢~

2~ to branch on

— branch and continue SQP on branch

2.4. Integrating SQP & Branch-and-Bound

SNAG: (QP*) not lower bound
= no fathoming from upper bound = less efficient B&B

mini(gnize F+ kaTd + %dTWkd
subject to ck + Vb d <0
* +d, e X, yF+d, €Y.

44444
o= .

2.4. Integrating SQP & Branch-and-Bound

Snag: (QP¥) not lower bound
= no fathoming from upper bound = less efficient B&B

mini(gnize il +kaTd+ %dTWkd

subject to cF + Vb d <0
2F +dy € X, yF +d, € Y. ot i

Remedy: Exploit OA underestimating [L:01]:
e add objective cut f* + Vf’“Td < U — € to (QPF)
e fathom node, if (QP*) inconsistent

= convergence for convex MINLP

3. Modern Methods for MINLP

1. Branch-and-Cut
o nonlinear cuts [Stubbs&Mehrotra:99]
o linear cuts from OA [Akrotirianakis&Rustem:00]

2. Disjunctive Programming [Lee& Grossmann:99]

3. Parallel Tree Search Strategies

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

Consider MINLP

)
minimize fxT:IH—fgy
.y

subject to c¢(z,y) <0
ye{0,1}, 0<z<U

_/\

Linear objective
e important to exploit convex hull of constraints
e reformulate nonlinear objectives ...

min f(x,y) & min n s.t. 0> f(x,y)

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

Continuous relaxation (z := (x,y)):

C = {zle(2) <0, 0<y<1, 0<x<U}
C := conv(C) convex hull
b x
continuous
relaxation

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

Continuous relaxation (z := (x,y)):

C
C

{zlc(2) <0, 0<y <1, 0<x < U}
conv(C') convex hull

convex
hull

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

Continuous relaxation (z := (x,y)):

C = {z2lc(») <0,0<y<1,0<2<U}
C := conv(C) convex hull
o)t = {zeCly; =0/1}

()
& =)\0’&0 +)\1’LL1

Iet/\/lj(C’)::<)\0—|—)\1:1,)\0,)\120 >

0 1

= P,(C) := projection of M;(C) onto 2
= conv (C'Ny; € {0,1}) and Py ,(C) =C

integer

feasible

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

Given 2 with g; € {0, 1} find separating hyperplane

minimize ||z — 2|~
z
subject to z € P;(C)

~

convex reformulation of M;(C) with M, (C), where

()
pei(z/p) <0
C:i=q(zpm)] 0<pu<1 >
\ O<z<pl,0<y=<p |

where ¢(0/0) = 0 = convex representation

= separating hyperplane: 1 (2 — 2), where ¢ € 9|z — 2|

3.1. Nonlinear Branch-and-Cut [Mehrotra:99]

e at each (7) node of Branch&Bound tree:
o generate cutting planes

e generalize disjunctive approach from MILP
= solve one convex NLP per cut

e generalizes Sherali/Adams and Lovacz/Schrijver cuts
e tighten cuts by adding semi-definite constraint

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

(mir;irlr)ize Y fie + f(x)
{ subject to ci(x) <0 |V | Bix=0 |Viel
- Ji=vo | | fi=0
\ 0<z<U, QYY) =true, Y € {true, false}?

Application: porocess synthesis
e Y; represents presence/absence of units
e B;x = 0 eliminates variables if unit absent

Exploit disjunctive structure
e special branching ... OA/GBD algorithms

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

’

\

minimize
z,Y

subject to

> fr + f(z)

Y;
ci(x) <0

fi ="

V

i
Ji=0

Viel

0<z<U, Q) =true, Y € {true,false}?

Big-M formulation (notoriously bad), M > 0:

ci(x) < M(1—y,)
—My; < Bix < My;

fi = vivi

Q(Y) converted to linear inequalities

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

’

\

minimize
z,Y

subject to

> fr + f(z)

Y;
ci(x) <0

fi ="

V

i
Ji=0

Viel

0<z<U, Q) =true, Y € {true,false}?

convex hull representation ...

T = U;1 1+ V0,

Aitci(vin /A1) <0,

0 < wi; < AU,

Ait + Ao =1
Bivio =0
0 <\ <1,

fi = Ni1vi

3.2. Disjunctive Programming: Example

big—M
%

convex hull

3.2. Disjunctive Programming & MPECs

Consider Fourier Transform Infrared (FTIR) Spectroscopy

Disjunction modeled with large P, parameter
0<P<YPn. Ye{01}M¥N
Either P; ; = 0, or “count” parameter in objective
FPY)=> efRe,+2) Vi,
Alternative model avoids integrality of Y
1>Y;,, L PF;>0
where | means orthogonality, i.e.
(1=Yi;)Pi; <0 V(i j)

= nonlinear constraint ... use NLP solvers (SQP)

3.2. Disjunctive Programming & MPECs

Small FTIR example: initial MPEC solution f = 25.98

Progress of MINLP solver
NLPs lower bound upper bound

1 3.4 o0
30 8.4 250.0
75 9.9 99.2

100 11.2 26.8
155 12.3 14.0

= MPECs give good upper bound on MINLPs!

0<wy L y <1notalways good idea!l — need structure ...

3.3. Parallel Branch-and-Bound

meta-computing platforms:

e set of distributed heterogeneous computers, e.g.
o pool of workstations
o group of supercomputers or anything

= o low quality with respect to bandwidth, latency, availability
e low cost: it's free !l
e potentially huge amount of resources

. use Condor to “build” MetaComputer
. high-throughput computing

3.3. Parallel Branch-and-Bound

Master Worker Paradigm (MWdriver)

Object oriented C++ library
Runs on top of Condor-PVM

Condor-PVM
Universe

Master

GLOBAL
DATA

@ /f PYM \\
© = ©

Condor—-Workers

Fault tolerance via master check-pointing

3.3. Parallel Branch-and-Bound

First Strategy: 1 worker = 1 NLP
= grain-size too small
... NLPs solve in seconds

New Strategy:
1 worker = 1 subtree (MINLP)
. "streamers” running down tree

3.3. Parallel Branch-and-Bound

Trimloss optimization with 56 general integers
= solve 96,408 MINLPs on 62.7 workers
= 600,518,018 NLPs

Wall clock time = 15.5 hours
Cummulative worker CPU time = 752.7 hours ~ 31 days

i work-time 752.7 805
erriciency .= — = .
Y Work x job-time 62.7 x 15.5

... proportion of time workers were busy

3.3. Parallel Branch-and-Bound: Results

100

g0

2500

2000

1500}

1000

SO0

number of workers

1] 5 10 15
elagaad time [h]
numnber of problems on stack
1] = 10 15

elapsad time [h]

-y
“Z

lower & upper bounds

! | d
0 3 10 13
elapsad tme [h]
w10t humber of MLFs per task
1] 3 10 =

elapsed time [h]

« Aot

« ARG,
o0 " ARa0y,

-~
4
Go

%4

4.1. Conclusions

e MINLP important modeling paradigm; many applications
o MINLP most used solver on NEOS

e Outer Approximation et al.
o rely heavily on convexity
o readily exploit MILP structure in branch-and-cut

e Branch-and-Bound
o works OK'ish for nonconvex problems (e.g. reload operation)
o harder to exploit branch-and-cut ideas

4.1. Challenges

e Global solution of nonconvex MINLP, see Mohit’s talk
o automatic code generation for underestimators (= AD)

e Connection to MPECs, recall Stefan's talk
o generate upper bounds along tree ...
o global solution of MPECs using branch-and-cut

e PDE constraints & surrogate models
o e.g. core reload operation
o multi-model ... trust-regions ...

