Workshop on Integer Programming and Continuous Optimization Chemnitz, November 2004

Integer Nonlinear Optimization

Sven Leyffer

leyffer@mcs.anl.gov

Mathematics and Computer Science Division, Argonne National Laboratory

Integer Nonlinear Optimization Sven Leyffer

- 1. Introduction & Applications
- 2. Classical MINLP Methods
- 3. Modern MINLP Methods
- 4. Conclusions & Future Work

Integer Nonlinear Optimization

Sven Leyffer

- 1. Introduction & Applications
- 2. Classical MINLP Methods
- 3. Modern MINLP Methods
- 4. Conclusions & Future Work

Do not trust this expert!

1. Introduction & Applications

Mixed Integer Nonlinear Programming (MINLP)

$$\begin{cases} & \underset{x,y}{\text{minimize}} & f(x, \textbf{\textit{y}}) \\ & \text{subject to} & c(x, \textbf{\textit{y}}) \leq 0 \\ & & x \in X, \ \textbf{\textit{y}} \in \textbf{\textit{Y}} \ \text{integer} \end{cases}$$

- f, c smooth (convex) functions
- X,Y polyhedral sets, e.g. $Y=\{0,1\}$
- $y \in Y$ integer \Rightarrow hard problem

1.1. Core Reload Operation [Quist:97]

 maximize reactor efficiency after reload subject to diffusion PDE & safety

approx. diffusion by nonlinear equation
 ⇒ integer & nonlinear model

avoid reactor becoming sub-critical

1.1. Core Reload Operation [Quist:97]

 maximize reactor efficiency after reload subject to diffusion PDE & safety

approx. diffusion by nonlinear equation
 ⇒ integer & nonlinear model

avoid reactor becoming overheated

1.1. Core Reload Operation [Quist:97]

- look for cycles for moving bundles: e.g. $4 \rightarrow 6 \rightarrow 8 \rightarrow 10$ means bundle moved from 4 to 6 to ...
- model with integer variables $x_{ilm} \in \{0, 1\}$ $x_{ilm} = 1$: node i has bundle l of cycle m

1.2. Other Applications

- Chemical Engineering Applications:
 - process synthesis [Kocis&Grossmann:88]
 - batch plant design [Grossmanno&Sargent:79]
 - cyclic scheduling [Jain&Grossmann:98]
 - o design of distillation columns [Viswanathan:93]
 - o pump configuration optimization [Westerlund:94]
- trimloss minimization in paper industry [Westerlund:98]
- topology optimization [Sigurd:00]
 - o finite element structural optimization
 - 0-1 to model presence/absence of material

2. Classical Methods for MINLP

Basic Methods:

- 1. Branch-and-Bound
- 2. Outer Approximation, Benders Decomposition et al.

Hybrid Methods:

- 3. LP/NLP Based Branch-and-Bound
- 4. Integrating SQP with Branch-and-Bound

2.1. Branch-and-Bound

Solve relaxed NLP $(0 \le y \le 1 \text{ continuous relaxation})$

- ullet Branch on y_i non-integral
- Solve NLPs & branch until . . .
 - 1. Node infeasible ... •
 - 2. Node integer feasible ... \square \rightarrow upper bound (U)
 - 3. Lower bound $\geq U \dots \bigotimes$

Search until no unexplored nodes left on tree

2.2. Outer Approximation [Duran & Grossmann]

Motivation: avoid *huge number* of NLPs

• Take advantage of MILP codes: decompose integer & nonlinear part

Key idea: reformulate MINLP as MILP (implicit)

Solve alternating sequence of MILP & NLP

NLP subproblem y^j fixed:

$$\mathsf{NLP}(\mathbf{y^j}) \left\{ \begin{array}{ll} \mathsf{minimize} & f(x, \mathbf{y^j}) \\ \mathsf{subject to} & c(x, \mathbf{y^j}) \leq 0 \\ & x \in X \end{array} \right.$$

Main Assumption: f, c are convex

2.2. Outer Approximation [Duran & Grossmann]

- let (x^j, y^j) solve $NLP(y^j)$
- linearize f, c about $(x^j, y^j) =: z^j$
- new objective variable $\eta \geq f(x,y)$
- MINLP $(P) \equiv \text{MILP } (M)$

$$(M) \begin{cases} & \underset{\boldsymbol{z}=(x,y),\eta}{\text{minimize}} & \eta \\ & \text{subject to} & \eta \geq f^j + \nabla f^{j^T}(\boldsymbol{z}-\boldsymbol{z}^j) & \forall y^j \in Y \\ & 0 \geq c^j + \nabla c^{j^T}(\boldsymbol{z}-\boldsymbol{z}^j) & \forall y^j \in Y \\ & x \in X, \ y \in Y \ \text{integer} \end{cases}$$
 G: need all $y^j \in Y$ linearizations

SNAG: need all $y^j \in Y$ linearizations

2.2. Outer Approximation [Duran & Grossmann]

 (M^k) : lower bound (underestimate convex f, c)

 $\mathsf{NLP}(y^j)$: upper bound U (fixed y^j)

 \Rightarrow stop, if lower bound \geq upper bound

2.2. OA & Benders Decomposition

Take OA master ... z := (x, y)

$$(M) \left\{ \begin{array}{ll} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \geq f^j + \nabla f^{j^T}(z-z^j) & \forall y^j \in Y \\ & 0 \geq c^j + \nabla c^{j^T}(z-z^j) & \forall y^j \in Y \\ & x \in X, \ y \in Y \ \text{integer} \end{array} \right.$$

sum constraints $0 \ge c^j$... weighted with multipliers $\lambda^j \ \forall j$

$$\Rightarrow \quad \eta \ge f^j + {\color{blue}\lambda^{j^T}} c^j + \left(\nabla f^j + \nabla c^j {\color{blue}\lambda^j}\right)^T \left(z - z^j\right) \qquad \forall y^j \in Y$$

... valid inequality.

2.2. OA & Benders Decomposition

Valid inequality from OA master; z = (x, y):

$$\eta \ge f^j + \lambda^{j^T} c^j + \left(\nabla f^j + \nabla c^j \lambda^j\right)^T \left(z - z^j\right)$$

use KKT conditions of $NLP(y^j)$...

$$\nabla_x f^j + \nabla_x c^j \lambda^j = 0$$

 \dots to eliminate x components from valid inequality

$$\Rightarrow \eta \ge f^j + \lambda^{j^T} c^j + \left(\nabla_y f^j + \nabla_y c^j \lambda^j \right)^T \left(y - y^j \right)$$

$$\Leftrightarrow \eta \ge \mathcal{L}^j + \left(\mu^j \right)^T \left(y - y^j \right)$$

where \mathcal{L}^{j} Lagrangian ...

...
$$\mu^j = \nabla_y f^j + \nabla_y c^j \lambda^j$$
 multiplier of $y = y^j$ in $NLP(y^j)$

2.2. OA & Benders Decomposition

 \Rightarrow remove x from master problem & obtain Benders master problem

$$(M_B) \begin{cases} \text{minimize} & \eta \\ \text{subject to} & \eta \ge \mathcal{L}^j + \left(\mu^j\right)^T \left(y - y^j\right) & \forall y^j \in Y \\ & y \in Y \text{ integer} \end{cases}$$

where \mathcal{L}^j Lagrangian & μ^j multiplier of $y=y^j$ in $\mathsf{NLP}(y^j)$

- (M_B) has less constraints & variables (no x!)
- (M_B) almost ILP (except for η)
- \bullet (M_B) weaker than OA (from derivation)

2.2. OA & Similar Methods

Extended Cutting Plane Method [Westerlund:95]:

- no $NLP(y^j)$ solves; Kelley's cutting plane method instead
- linearize about (\hat{x}^j, y^j) , solution of (M^k)
- ullet add most violated linearization to master (M^k)
 - \Rightarrow slow nonlinear convergence; > 1 evaluation per y

Drawbacks of OA, GBD & ECP:

- MILP tree-search can be bottle-neck
- potentially large number of iterations [FL:94]

Second order master (MIQP) [FL:94]:

- add Hessian term to MILP $(M) \Rightarrow MIQP$
 - solve MIQP by B&B; similar to MILP

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

AIM: avoid re-solving MILP master (M)Consider MILP branch-and-bound interrupt MILP, when new y^j found \rightarrow solve NLP (y^j) get x^j

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound interrupt MILP, when new y^j found

- \rightarrow solve $NLP(y^j)$ get x^j
- ightarrow linearize f, c about (x^j,y^j)
- → add linearization to MILP tree

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound interrupt MILP, when new y^j found

- \rightarrow solve NLP(y^j) get x^j ;
- \rightarrow linearize f, c about (x^j, y^j)
- → add linearization to MILP tree
- → continue MILP tree-search

... until lower bound \geq upper bound

- need access to MILP solver ... call back
 - exploit good MILP (branch-cut-price) solver
 - o [Akrotirianakis&Rustem:00] use Gomory cuts in tree-search
- no commercial implementation of this idea
- preliminary results: order of magnitude faster than OA
 - o same number of NLPs, but only one MILP
- similar ideas for Benders & Cutting Plane methods
- ... see [Quesada/Grossmann:92]

2.4. Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

- Sequential Quadratic Programming (SQP)
 - \rightarrow solve sequence (QP^k) at every node

$$(QP^k) \begin{cases} & \text{minimize} \quad f^k + \nabla f^{k^T} d + \frac{1}{2} d^T W^k d \\ & \text{subject to} \quad c^k + \nabla c^{k^T} d \leq 0 \\ & x^k + d_x \in X, \ y^k + d_y \in \hat{Y}. \end{cases}$$

- Early branching rule [Borchers & Mitchell:94]; after QP step:
 - \rightarrow choose non-integral y_i^{k+1} to branch on
 - → branch and continue SQP on branch

2.4. Integrating SQP & Branch-and-Bound

SNAG: (QP^k) not lower bound

 \Rightarrow no fathoming from upper bound \Rightarrow less efficient B&B

$$\begin{array}{ll} \text{minimize} & f^k + \nabla f^{k^T} d + \frac{1}{2} d^T W^k d \\ \\ \text{subject to} & c^k + \nabla c^{k^T} d \leq 0 \\ \\ & x^k + d_x \in X, \ y^k + d_y \in \hat{Y}. \end{array}$$

2.4. Integrating SQP & Branch-and-Bound

Snag: (QP^k) not lower bound

 \Rightarrow no fathoming from upper bound \Rightarrow less efficient B&B

$$\begin{aligned} & \underset{d}{\text{minimize}} & & f^k + \nabla f^{k^T} d + \frac{1}{2} d^T W^k d \\ & \text{subject to} & & c^k + \nabla c^{k^T} d \leq 0 \\ & & & x^k + d_x \in X, \ y^k + d_y \in \hat{Y}. \end{aligned}$$

Remedy: Exploit OA underestimating [L:01]:

- ullet add objective cut $f^k + \nabla f^{k^T} d \leq U \epsilon$ to (QP^k)
- ullet fathom node, if (QP^k) inconsistent
 - ⇒ convergence for *convex* MINLP

3. Modern Methods for MINLP

- 1. Branch-and-Cut
 - nonlinear cuts [Stubbs&Mehrotra:99]
 - o linear cuts from OA [Akrotirianakis&Rustem:00]

2. Disjunctive Programming [Lee&Grossmann:99]

3. Parallel Tree Search Strategies

Consider MINLP

$$\begin{cases} & \underset{x,y}{\text{minimize}} & f_x^T x + f_y^T y \\ & \text{subject to} & c(x,y) \leq 0 \\ & y \in \{0,1\}, \ 0 \leq x \leq U \end{cases}$$

Linear objective

- important to exploit convex hull of constraints
- reformulate nonlinear objectives ...

$$\min f(x,y) \qquad \Leftrightarrow \qquad \min \eta \text{ s.t. } \eta \geq f(x,y)$$

Continuous relaxation (z := (x, y)):

$$C := \{z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U\}$$

 $\mathcal{C} \ := \ \operatorname{conv}(C) \ \operatorname{convex} \ \operatorname{hull}$

Continuous relaxation (z := (x, y)):

$$C := \{z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U\}$$

 $\mathcal{C} \ := \ \operatorname{conv}(C) \ \operatorname{convex \ hull}$

Continuous relaxation (z := (x, y)):

$$C := \{z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U\}$$
 $C := \operatorname{conv}(C) \text{ convex hull}$
 $C_j^{0/1} := \{z \in C | y_j = 0/1\}$

$$\det \mathcal{M}_j(C) := \left\{ \begin{array}{l} z = \lambda_0 u_0 + \lambda_1 u_1 \\ \lambda_0 + \lambda_1 = 1, \ \lambda_0, \lambda_1 \geq 0 \\ u_0 \in C_j^0, \ u_1 \in C_j^1 \end{array} \right\} \quad \begin{array}{c} \text{integer feasible} \\ \text{set} \\ \end{array}$$

$$\Rightarrow \mathcal{P}_j(C) := \text{projection of } \mathcal{M}_j(C) \text{ onto } z$$

= $\text{conv}(C \cap y_j \in \{0,1\}) \text{ and } \mathcal{P}_{1...p}(C) = \mathcal{C}$

Given \hat{z} with $\hat{y}_i \not\in \{0,1\}$ find separating hyperplane

$$\Rightarrow \begin{cases} & \underset{z}{\text{minimize}} & \|z - \hat{z}\|_{\infty} \\ & \text{subject to} & z \in \mathcal{P}_{j}(C) \end{cases}$$

convex reformulation of $\mathcal{M}_j(C)$ with $\mathcal{M}_j(\tilde{C})$, where

$$\tilde{C} := \left\{ (z, \mu) \middle| \begin{array}{l} \mu c_i(z/\mu) \le 0 \\ 0 \le \mu \le 1 \\ 0 \le x \le \mu U, \ 0 \le y \le \mu \end{array} \right\}$$

where $c(0/0) = 0 \Rightarrow$ convex representation

 \Rightarrow separating hyperplane: $\psi^T(z-\hat{z})$, where $\psi \in \partial ||z-\hat{z}||_{\infty}$

- at each (?) node of Branch&Bound tree:
 - generate cutting planes

- generalize disjunctive approach from MILP
 - ⇒ solve one convex NLP per cut

- generalizes Sherali/Adams and Lovacz/Schrijver cuts
- tighten cuts by adding semi-definite constraint

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

$$\left\{ \begin{array}{ll} \displaystyle \underset{x,Y}{\text{minimize}} & \displaystyle \sum f_k \, + \, f(x) \\ \\ \displaystyle \text{subject to} & \left[\begin{array}{c} Y_i \\ \\ c_i(x) \leq 0 \\ \\ f_i = \gamma_i \end{array} \right] \bigvee \left[\begin{array}{c} \neg Y_i \\ \\ B_i x = 0 \\ \\ f_i = 0 \end{array} \right] \forall i \in I \\ \\ \displaystyle 0 \leq x \leq U, \; \Omega(Y) = \mathsf{true}, \; Y \in \{\mathsf{true}, \mathsf{false}\}^p \end{array} \right.$$

Application: porocess synthesis

- \bullet Y_i represents presence/absence of units
- $B_i x = 0$ eliminates variables if unit absent

Exploit disjunctive structure

• special branching ... OA/GBD algorithms

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

Big-M formulation (notoriously bad), M > 0:

$$c_i(x) \leq M(1-y_i)$$

$$-My_i \leq B_i x \leq My_i$$

$$f_i = y_i \gamma_i \qquad \Omega(Y) \text{ converted to linear inequalities}$$

3.2. Disjunctive Programming [Grossmann]

Consider disjunctive NLP

convex hull representation ...

$$x = v_{i1} + v_{i0}, \qquad \lambda_{i1} + \lambda_{i0} = 1$$

$$\lambda_{i1}c_i(v_{i1}/\lambda_{i1}) \le 0, \qquad B_i v_{i0} = 0$$

$$0 \le v_{ij} \le \lambda_{ij}U, \qquad 0 \le \lambda_{ij} \le 1, \qquad f_i = \lambda_{i1}\gamma_i$$

3.2. Disjunctive Programming: Example

$$\left[\begin{array}{c} Y_1 \\ x_1^2 + x_2^2 \le 1 \end{array}\right]$$

$$\vee \left[\begin{array}{c} Y_2 \\ (x_1 - 4)^2 + (x_2 - 1)^2 \le 1 \end{array} \right]$$

$$\bigvee \left[\begin{array}{c} Y_3 \\ (x_1 - 2)^2 + (x_2 - 4)^2 \le 1 \end{array} \right]$$

3.2. Disjunctive Programming & MPECs

Consider Fourier Transform Infrared (FTIR) Spectroscopy

Disjunction modeled with large P_{max} parameter

$$0 \le P \le Y P_{\text{max}} \quad Y \in \{0, 1\}^{M \times N}$$

Either $P_{i,j} = 0$, or "count" parameter in objective

$$f(P,Y) = \sum_{k} e_k^T R^{-1} e_k + 2 \sum_{k} Y_{i,j}$$

Alternative model avoids integrality of Y

$$1 \ge Y_{i,j} \quad \perp \quad P_{i,j} \ge 0$$

where \perp means orthogonality, i.e.

$$(1 - Y_{i,j})P_{i,j} \leq 0 \quad \forall (i,j)$$

⇒ nonlinear constraint ... use NLP solvers (SQP)

3.2. Disjunctive Programming & MPECs

Small FTIR example: initial MPEC solution f = 25.98

Progress of MINLP solver

upper	lower bound	NLPs
	8.4	1
	8.4	30
	9.9	75
	11.2	100
	12.3	155

⇒ MPECs give good upper bound on MINLPs!

 $0 \le y$ \perp $y \le 1$ **not** always good idea! \rightarrow need structure ...

meta-computing platforms:

- set of distributed heterogeneous computers, e.g.
 - pool of workstations
 - o group of supercomputers or anything
- ⇒ low quality with respect to bandwidth, latency, availability
 - low cost: it's free !!!
 - potentially huge amount of resources
- ... use *Condor* to "build" MetaComputer
- ... high-throughput computing

Master Worker Paradigm (MWdriver)

Object oriented C++ library

Runs on top of Condor-PVM

Fault tolerance via master check-pointing

First Strategy: 1 worker $\equiv 1$ NLP

 \Rightarrow grain-size too small

... NLPs solve in seconds

New Strategy:

1 worker \equiv 1 subtree (MINLP)

... "streamers" running down tree

Trimloss optimization with 56 general integers

- \Rightarrow solve 96,408 MINLPs on 62.7 workers
- \Rightarrow 600,518,018 NLPs

Wall clock time = 15.5 hours Cummulative worker CPU time = 752.7 hours $\simeq 31$ days

$$\frac{\text{efficiency} := \frac{\text{work-time}}{\text{work} \times \text{job-time}} \ = \ \frac{752.7}{62.7 \times 15.5} = 80.5 }$$

... proportion of time workers were busy

3.3. Parallel Branch-and-Bound: Results

4.1. Conclusions

- MINLP important modeling paradigm; many applications
 - MINLP most used solver on NEOS
- Outer Approximation et al.
 - rely heavily on convexity
 - o readily exploit MILP structure in branch-and-cut
- Branch-and-Bound
 - works OK'ish for nonconvex problems (e.g. reload operation)
 - harder to exploit branch-and-cut ideas

4.1. Challenges

- Global solution of nonconvex MINLP, see Mohit's talk
 - \circ automatic code generation for underestimators (\equiv AD)
- Connection to MPECs, recall Stefan's talk
 - o generate upper bounds along tree ...
 - o global solution of MPECs using branch-and-cut
- PDE constraints & surrogate models
 - o e.g. core reload operation
 - o multi-model ... trust-regions ...

