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IBM T.J. Watson Research Center �
Information

“Chance and chance alone has a message for us.
Everything that occurs out of necessity, everything
expected, repeated day in and day out, is mute. Only
chance can speak to us. We read its message much as
gypsies read the images made by coffee grounds at the
bottom of a cup.”
- Milan Kundera (The Unbearable Lightness of Being)

2 Workshop on IP and Continuous Opt — Chemnitz University of Technology 9 November 2004



IBM T.J. Watson Research Center �
Entropy

“I propose to name the magnitude S the entropy of the
body from the Greek word ητρoπὴ, a transformation. I
have intentionally formed the word entropy so as to be as
similar as possible to the word energy, since both these
quantities, which are to be known by these names, as so
nearly related to each other in their physical significance
that a certain similarity in their names seemed to me
advantageous ...”
— R. Clausius (1865)
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IBM T.J. Watson Research Center �
Entropy more recently...
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IBM T.J. Watson Research Center �
and more...
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IBM T.J. Watson Research Center �
Maximum-Entropy Sampling

N = {1, 2, . . . , n}
Random YN = {Yj : j ∈ N} with continuous denstity gN

Goal: Choose S ⊂ N , with |S| = s, to maximize the
“information” obtained about YN .
Entropy: h(S) := −E[ln gS(YS)] .

R. Clausius (1865) — “entropy” (also Carnot and
Kelvin in their versions of the 2nd law of
thermodynamics).

L. Boltzmann (1877) — statistical mechanics.

C. Shannon (1948) — information theory.

D. Blackwell (1951) — statistics.
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IBM T.J. Watson Research Center �
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IBM T.J. Watson Research Center �
Motivation: Environmental Monitoring
Sites of emission =⇒ Causes

Sites of deposition =⇒ Effects∗

∗ U.S. Clean Air Act of 1990 and its revisions mandate
effects monitoring

National Acidic Deposition Program/
National Trends Network
nadp.sws.uiuc.edu

1978 - 22 stations. 2004 - > 220 stations.

Precipitation collected weekly; analyzed for: Hydrogen

(acidity as pH — ‘acid rain’), Sulfate, Nitrate, Ammonia,

Chloride, Calcium, Magnesium, Potassium, Sodium
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IBM T.J. Watson Research Center �
Wet vs. Dry
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IBM T.J. Watson Research Center �
NADP Networks

NADP/NTN: National Trends Network

NADP/AIRMoN: Atmospheric Integrated Research
Monitoring Network

Designed to provide data with greater temporal
resolution
Daily and event-based samples
9 sites in the Eastern U.S. (including Ithaca N.Y.!)

NADP/MDN: Mercury Deposition Network
Weekly samples
∼ 70 sites
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Typical Monitoring Site
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IBM T.J. Watson Research Center �
ADS (N-CON Systems) $4.6K. . .
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IBM T.J. Watson Research Center �
. . . and 4 workers

14 Workshop on IP and Continuous Opt — Chemnitz University of Technology 9 November 2004



IBM T.J. Watson Research Center �
MDN (N-CON Systems)
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IBM T.J. Watson Research Center �
TPC 3000 (Yankee Environ. Sys.)
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IBM T.J. Watson Research Center �
US Federal $

YES has US federal funding of $300K to develop a
new prototype over 2 years

$3.5M federal funding for NTN (’99)

∼ $150M total US federal funding for environmental
monitoring (’99)

much other monitoring focused on CO, NO
2
, SO

2

and small particulate matter
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IBM T.J. Watson Research Center �
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IBM T.J. Watson Research Center �
Data for Computational Experiments
Environmental monitoring data: Courtesy of

Jim Zidek and
co-workers at UBC — Monthly (logged) sulfate
concentrations collected (weekly, over a 4-year
period) at stations centered on the Ohio Valley
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IBM T.J. Watson Research Center �
Nice Properties of Entropy

The Gaussian distribution maximizes the entropy
for a given covariance matrix C

Gaussian case: h(S) = ks + k ln det C[S, S]

Conditional Additivity:

h(N) =

max
︷︸︸︷

h(S)
⇔

+

min
︷ ︸︸ ︷

h(N \ S|S)

Change coordinate systems: Entropy difference is

log(Jacobian of transformation)

Submodularity: h(S ∪ T ) + h(S ∩ T ) ≤ h(S) + h(T )

Complementation:
ln det C[S, S] = ln det C + ln det C−1[N − S,N − S]
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IBM T.J. Watson Research Center �
Not-So-Nice Property

Proposition [KLQ ’95]. The maximum-entropy sampling
problem is NP-Hard (even for the Gaussian
diagonally-dominant case)
Proof:

INDEPENDENT SET: Does a simple undirected graph G
on n vertices have an independent set of vertices of
cardinality s ?

Let C := A(G) + 3nI
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IBM T.J. Watson Research Center �
(KLQ ’95) Branch . . .

Fixing j out of S:
⇒ Strike out row and column j : C[N,N ]→

C[N − j,N − j]

Fixing j in S:

⇒ Schur complement of C[j, j]: C[N,N ]→

C[N−j,N−j]−C[N−j, j]C−1[j, j]C[j,N−j]

(and solution/bounds are shifted by ln C[j, j] ).
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IBM T.J. Watson Research Center �
. . . and Bound

Lower bounds: Greedy, local-search rounding
heuristics based on ....

Upper bounds:
Spectral based bounds

KLQ ’95 (original B&B and spectral bound)
Lee ’98 (extension to side constraints)
Hoffman, Lee & Williams ’01 (spectral partition
bounds)
LW ’03 (tightening HLW via ILP and matching)
Anstreicher, Lee ’04 (generalization of HLW)

NLP relaxation
Anstreicher, Fampa, Lee & Williams ’96
(continuous NLP relaxation and parallel B&B)
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IBM T.J. Watson Research Center �
Complementary Bounds (AFLW ’96)

ln det C[S, S] = ln det C + ln det C−1[N − S,N − S]

So a maximum entropy s-subset of N with respect to
C is the complement of a maximum entropy
(n− s)-subset of N with respect to C−1

So a bound on the complementary problem plus the
entropy of the entire system is a bound on the
original problem

These complementary bounds can be quite effective
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IBM T.J. Watson Research Center �
NLP Bound (AFLW ’96)

max f(x) := ln det

(

Diag(x
pj

j ) C Diag(x
pj

j ) + Diag(d
xj

j − djx
pj

j )

)

subject to
∑

j∈N

aijxj ≤ bi,∀i; ⇐= CONSTRAINTS

∑

j∈N

xj = s;

0 ≤ xj ≤ 1,∀j,

where the constants dj > 0 and pj ≥ 1 satisfy

dj ≤ exp(pj −√pj), and Diag(dj)− C[N,N ] � 0.
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IBM T.J. Watson Research Center �
NLP Bound, cont’d

For (

S
︷ ︸︸ ︷

1, 1, . . . , 1,

N\S
︷ ︸︸ ︷

0, 0, . . . , 0)

Diag(d
xj

j − djx
pj

j ) = Diag(

S
︷ ︸︸ ︷

0, 0, . . . , 0,

N\S
︷ ︸︸ ︷

1, 1, . . . , 1) .

Diag(x
pj

j ) C Diag(x
pj

j ) =

(

C[S, S] 0

0 0

)
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IBM T.J. Watson Research Center �
NLP Bound: Properties

Assume D � C, pj ≥ 1, 0 < dj ≤ exp(pj −√pj). Then
f is concave for 0 < x ≤ e

Assume that p and d satisfy the above, and p′ ≥ p.
Let f ′ be defined as above, but using p′ for p. Then
f ′(x) ≥ f(x) ∀ 0 < x ≤ e

Scaling C by γ adds s ln(γ) to the obj. Let

fγ(x) := ln det
(

γXp/2(C −D)Xp/2 + (γD)x
)

− s ln(γ)

Assume I � D � C, p = e. Then fγ(x) ≥ f(x) ∀
0 ≤ x ≤ e, eT x = s and 0 < γ ≤ 1

Assume D � C, D � I. Then fγ(x) ≥ f(x) ∀
0 < x ≤ e, eT x = s and γ ≥ 1, where p is chosen as
above
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IBM T.J. Watson Research Center �
NLP Bound: Fix and Re-Bound

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s

G
ap

, e
n

tr
o

p
y

Original

Fixing

32 Workshop on IP and Continuous Opt — Chemnitz University of Technology 9 November 2004



IBM T.J. Watson Research Center �
NLP Bound: Parallel Experiments
Number of Number of processors
constraints 1 2 4 8

(seconds) (speed-up factor)
0 62615 1.99 4.04 6.97
2 34619 2.03 4.10 8.04
5 5551 2.02 4.00 7.56

10 14815 1.95 4.00 7.15
15 12153 1.97 3.97 7.81

(n = 63, s = 31; Circa ’97, Convex Exemplar, Lexington)
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IBM T.J. Watson Research Center �
Diagonal Bound (HLW ’01)

z ≤
s∑

l=1

ln diag[l](C)

Entropy of any set is bounded by the sum of the
entropies of n independent random variables having
the same variances

Very cheap to compute
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IBM T.J. Watson Research Center �
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IBM T.J. Watson Research Center �
Spectral Bound (KLQ ’95)

z ≤
s∑

l=1

ln λl(C)

Determinant = product of eigenvalues.

Eigenvalue interlacing.













λ1 ≥ λ′
1

λ2 ≥ λ′
2

λ3 ≥ λ′
3

...
λs ≥ λ′

s
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IBM T.J. Watson Research Center �
Problem #;
n/n−f/s−f

Initial absolute
entropy gap

UB
calls

Max # active
subproblems

Wall
Seconds

1; 52/16/8 0.18149914 31 1 2

2; 63/27/13 0.56583546 323 15 7

(Circa ’92, MacFORTRAN, Mac IIci, Louvain-la-Neuve)
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IBM T.J. Watson Research Center �
Lagrangian Spectral Bound (L ’98)

min
π∈R

m
+

v(π)

where

v(π) :=

{
s∑

l=1

ln λl (D
π C Dπ) +

∑

i∈M

πibi

}

,

and Dπ is the diagonal matrix having

Dπ
jj := exp

{

−1

2

∑

i∈M

πiaij

}
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IBM T.J. Watson Research Center �
Optimizing the Lagrangian Spectral Bound

vπ is convex (in π)

vπ is analytic when λs (Dπ C Dπ) > λs+1 (Dπ C Dπ)

v(  )

0.005 0.01 0.015 0.02 0.025 0.03

26

26.2

26.4

26.6

π

π
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IBM T.J. Watson Research Center �
Optimizing the Bound, cont’d

Let xl be the eigenvector (of unit Euclidean norm)
associated with λl.

Define the continuous solution x̃ ∈ R
N by

x̃j :=
∑s

l=1

(

xl
j

)2
, for j ∈ N .

Define γ ∈ R
M by γi := bi −

∑

j∈N aij x̃j.

If λs > λs+1, then γ is the gradient of f at π.

Can incorporate this in a Quasi-Newton (or, with an
expression for the Hessian, a Newton) method for
finding the minimum.
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IBM T.J. Watson Research Center �
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IBM T.J. Watson Research Center �
Spectral Partition Bound (HLW ’00)

Let N = {N1, N2, ..., Nn} denote a partition of N . Let
C ′ = 0 except for C ′[Nk, Nk] = C[Nk, Nk].

z ≤
s∑

l=1

ln λl(C
′)

Based on “Fischer’s Inequality”

For N = {{1}, {2}, . . . , {n}} we have the diagonal
bound

For N = {N, ∅, ∅, . . . , ∅} we have the ordinary spectral
bound

As we partition N , the optimal value with respect to
C ′ can not decrease but the bound can decrease
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IBM T.J. Watson Research Center �
Sufficient Optimality Criterion

Let S be a subset of N , with |S| = s. If

λs(C[S, S]) ≥ max{Cjj : j ∈ N \ S},

then S is optimal

Proof. ForN = {S, {s + 1}, {s + 2}, ..., {n}}, the bound gives
ln det C[S, S]
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IBM T.J. Watson Research Center �
Sufficient Optimality Criterion: Example

For S := {1, 2, . . . , n/2}, let C =

S :

N \ S :

(

nI + E 0

0
(

3n
4

)
I + E

)

,

and let s := n/2. Then

Λ(S) = {3n/2, n, n, . . . , n};
Λ(N − S) = {5n/4, 3n/4, 3n/4, ..., 3n/4}.
spectral bound is ln (3n/2)(5n/4)nn/2−2;

“diagonal” bound is ln (n + 1)n/2;

For N = {S, {n/2 + 1}, {n/2 + 2}, ..., {n}} the spectral
partition bound gives ln (3n/2)nn/2−1 = ln det C[S, S] .
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IBM T.J. Watson Research Center �
Finding a Good Partition

1a. Let N = {S, {j1}, {j2}, ..., {jn−s}}, where S has
high entropy.

1b. Or let N = {N, ∅, ∅, . . . , ∅} (spectral bound).

1c. Or letN = {{1}, {2}, . . . ,{n}} (“diagonal” bound).

2. Use local search on the space of partitions.
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IBM T.J. Watson Research Center �
Finding a Good Partition, cont’d

2a. (single-element move) j ∈ Nk, l 6= k: Nk ← Nk−j
, Nl ← Nl + j .

2b. (two-element switch) j ∈ Nk, i ∈ Nl, l 6= k: Nk ←
Nk − j + i, Nl ← Nl − i + j .

2c. (one new two-block or two new one-blocks) j ∈
Nk, i ∈ Nl, i 6= j, Nh = ∅, Ng = ∅: Nk ← Nk − j,
Nl ← Nl − i, Nh ← Nh + i, Ng ← Ng + j .

2d. (merge two blocks) k 6= l: Nk ← Nk ∪Nl, Nl ← ∅ .
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IBM T.J. Watson Research Center �
Experiments

original complementary
1a 1b 1c 1a 1b 1c

1 5.5121 5.7070 7.9250 3.3524 5.7070 3.2524

2a 4.5767 4.5793 5.0606 2.6555 2.6077 2.6294

2a–d 4.5767 4.5793 4.5774 2.6302 2.5211 2.6273

Entropy gaps (Ohio Valley sulfate data: n = 63, s = 31).
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IBM T.J. Watson Research Center �
Observations

Can get substantial improvement over starting
partitions

Complementation is valuable

Swapping is valuable

Sophisticated swaps sometimes help

Robust across starting partition

Expensive to compute
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IBM T.J. Watson Research Center �
ILP Bound (LW ’00)

gs(N ) := max

p
∑

i=1

|Ni|∑

k=1

fk(Ni)xk(i)

s.t.
|Ni|∑

k=1

xk(i) ≤ 1, for i = 1, 2, . . . , p;

p
∑

i=1

|Ni|∑

k=1

kxk(i) = s

xk(i) ∈ {0, 1}, for i = 1, 2, . . . , p,

k = 1, 2, . . . , |Ni|.
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IBM T.J. Watson Research Center �
ILP Bound, cont’d

Refines the spectral partition bound.

Calculate via dynamic programming
(assuming |Ni| is bounded):

Boundary conditions:
vt(j) := −∞ when

∑j
i=1 |Ni| < t ≤ s;

v0(0) := 0.

vt(j) = max
0≤k≤min{|Nj |,t}

{fk(Nj) + vt−k(j − 1)} .

Then vs(p) = gs(N )

Calculate via Edmonds’ min-weight matching
algorithm when |Ni| ≤ 2.
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IBM T.J. Watson Research Center �
|Ni| ≤ 2: Min-weight b-matching

w(iT ) := f2(Ni)− f1(Ni)

(0,1)(0,1)(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)
(0,1) (0,1)

(0,1)(0,1)

1 2 i p

T

Z

(s-p,s-p)

(−∞, +∞)

(0,0)

w(iZ) := −f1(Ni)

Bound := MinMatching +
∑p

i=1 f1(Ni)
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IBM T.J. Watson Research Center �
Experiments, cont’d

INITIAL PARTITION (DIAG): 7.924975 3.252440

LOCAL SEARCH (2A): ∆ gs ḡs

0 5.060646 2.629423

1 3.705539 1.600504

2 2.790565 1.235069

3 1.961030 1.235069

Only calculated the fk(Ni) exactly for k ≤ ∆ and
k ≥ n−∆

For ∆ < k < n−∆, we replaced fk(Ni) with the
spectral upper bound

∑k
l=1 ln λl(Ni)
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IBM T.J. Watson Research Center �
Masked Spectral Bound (AL ’04)

A mask is a (symmetric) X � 0 having diag(X) = e. The
associated masked spectral bound is

ξC,s(X) :=
∑s

l=1 ln (λl (C ◦X))

Special combinatorial cases:

Spectral bound X := E

Diagonal bound X := I

Spectral partition bound X := Diagi(Ei)
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IBM T.J. Watson Research Center �
Validity

Based on

det A =
∏

l λl(A)

“Oppenheim’s Inequality”

det A ≤ det A ◦B/
∏n

j=1 Bjj ,

where A � 0 and B � 0

the eigenvalue inequalities λl(A) ≥ λl(B), where
A � 0, and B is a principal submatrix of A
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56 Workshop on IP and Continuous Opt — Chemnitz University of Technology 9 November 2004



IBM T.J. Watson Research Center �
Optimizing the Mask

Set of masks is a convex set

ξC,s(X) is not generally a convex function, so we
seek a good local minimizer

For X̃ � 0, let ul(C ◦ X̃) be an eigenvector, of
Euclidean norm 1, associated with λl(C ◦ X̃). Then,
as long as λs(C ◦ X̃) > λs+1(C ◦ X̃), the gradient of
ξC,s(·) at X̃ is the matrix

∇XξC,s(X̃) = C ◦∑s
l=1 λl(C ◦ X̃)ul(C ◦ X̃)ul(C ◦ X̃)′

When λs(C ◦ X̃) = λs+1(C ◦ X̃), ξC,s(·) is not
differentiable at X̃. Optimal mask problem
corresponds to minimizing a nondifferentiable,
nonconvex function with a �-constraint
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IBM T.J. Watson Research Center �
Affine Scaling Heuristic

For a given X̃ ≻ 0 with diag(X̃) = e, let
G = ∇XξC,s(X̃), and consider the linear SDP

min {G •X : diag(X) = e, X � 0}
(where “•” is inner product)

The affine scaling direction D at X̃ is given by

D := X̃
(
G−Diag(u)

)
X̃,

where u = (X̃ ◦ X̃)−1 diag(X̃GX̃)

Given the direction D and 0 < β < 1, we consider a
step of the form

X := X̃ − αβkD
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IBM T.J. Watson Research Center �
Affine Scaling Heuristic, cont’d.

The initial step parameter α corresponds to a fixed
fraction of either a “short step" or a “long step"

The short step is based on the limit of the Dikin
ellipsoid that is used to define D

The long step is based on the feasible region X � 0

We attempt a step with k = 0, and we accept the
resulting X if ξC,s(X) < ξC,s(X̃)

If not, we retract by incrementing k a limited number
of times in an attempt to decrease ξC,s(·)
For the highest allowed k, we accept X even if
ξC,s(X) > ξC,s(X̃)
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IBM T.J. Watson Research Center �
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IBM T.J. Watson Research Center �
Computational Experiments

Implemented in MATLAB

Used both original and complementary bounds
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Decrease in bound: n = 63, s = 31
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IBM T.J. Watson Research Center �
Comparison of bounds: n = 63

0

1

2

3

4

5

6

7

8

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

s

G
ap

, e
n

tr
o

p
y Eig

Diag
OneBig
MS_Eig
MS_OB

63 Workshop on IP and Continuous Opt — Chemnitz University of Technology 9 November 2004



IBM T.J. Watson Research Center �
Comparison of bounds: n = 124
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IBM T.J. Watson Research Center �
Variations on the Theme

Applying Oppenheim’s inequality slightly differently, we
obtain the different bounds:

u := min
{
∏s

l=1 λl(C ◦X)/
∏s

l=1 diag[l](X) : X � 0
}

,

where diag[l](X) = l-th least component of diag(X)

v := min
{∏s

l=1 λl(C ◦X) : X � 0, diag(X) = e
}

w := min

{
∏s

l=1 λl(C ◦ X̂) : X � 0, X̂ij := Xij√
XiiXjj

}

Proposition u ≤ v = w
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