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Current solvers (CPLEX, XPRESS-MP) are rather efficient and

can solve many large size problems with thousands of variables.

However, the very small 5-variables knapsack problem

max 213x1 − 1928x2 − 11111x3 − 2345x4 + 9123x5

12223x1 + 12224x2 + 36674x3 + 61119x4 + 85569x5 = 89643482

x1, x2, x3, x4, x5 nonnegative integers

still resists all efficient solvers (takes HOURS on CPLEX 8.1

and XPRESS-MP !) Optimal solution x∗ = (7334,0,0,0,0) ...!

Any insight on integer problems is welcome ....
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The integer program

max{ c′x | Ax = b; x ∈ Nn}

with A = [A1, . . . , An] ∈ Zm×n, b ∈ Zm has a dual problem

min
f∈Γ
{ f(b) | f(Aj) ≥ cj, j = 1, . . . , n}

where Γ is the space of functions f : Rm → R that are super-

additive (f(a+ b) ≥ f(a) + f(b)), and with f(0) = 0. (Jeroslow,

Wolsey, etc ...)

Elegant but rather abstract and not very practical; however, used

to derive valid inequalities. Moreover, the celebrated Gomory

cuts used in Solvers (CPLEX, XPRESS-MP, ..) can be inter-

preted as such superadditive functions.
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CONTINUOUS OPTIM. DISCRETE OPTIM.
− | −

f(b, c) := max c′x

s.t.

[
Ax ≤ b
x ∈ Rn

+

←→

fd(b, c) := max c′x

s.t.

[
Ax ≤ b
x ∈ Nn

l − l
INTEGRATION SUMMATION

− | −
f̂(b, c) :=

∫
Ω

ec
′xdx

Ω :=

[
Ax ≤ b
x ∈ Rn

+

←→
f̂d(b, c) :=

∑
Ω

ec
′x

Ω :=

[
Ax ≤ b
x ∈ Nn
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ef(b,c) = lim
r→∞ f̂(b, rc)1/r; efd(b,c) = lim

r→∞ f̂d(b, rc)
1/r.

or, equivalently

f(b, c) = lim
r→∞

1

r
ln f̂(b, rc); fd(b, c) = lim

r→∞
1

r
ln f̂d(b, rc).

Note in passing that we have the mean-value theorem

f̂(b, c) = ec
′x∗ × λ(Ω) = ec

′x∗ × vol(Ω).

and a Maslov “max” mean-value theorem

f(b, c) = c′x∗ = c′x∗ × µmaslov(Ω) = c′x∗.

Maslov duality for “linear” functionals in the Max-Plus algebra
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f 7→ L(f) a “linear” functional in the “max +” algebra, i.e.,

L(f ∨ h) = L(f) ∨ L(h) ∀f, h⇒ L(f) =
∫
f dµmaslov.

with

µmaslov(A ∪B) = µmaslov(A) ∨ µmaslov(B) ∀A,B ∈ B.
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CONTINUOUS OPTIM. DISCRETE OPTIM.
− | −

Legendre-Fenchel
Duality ←→ ??

l − l

INTEGRATION SUMMATION
− | −

Laplace-Transform Z-Transform
Duality ←→ Duality
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Legendre-Fenchel duality : f : Rn → R convex; f∗ : Rn → R.

λ 7→ f∗(λ) = F(f)(λ) := sup
y
{λ′y − f(y)}.

(One-sided) Laplace-Transform: f : Rn
+ → R; F : Cn → C.

λ 7→ F (λ) = L(f)(λ) :=
∫
Rn

+

e−λ
′y f(y) dy.

(One-sided) Z-Transform: f : Zn+ → R; F : Cn → C.

λ 7→ F (z) = Z(f)(z) :=
∑

m∈Zn+

z−mf(m).
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Observe :

L(ef)(λ) =
∫
Rn

+

e−(λ′y−f(y)) dy

and

eF(f)(λ) =


e
sup
y

(λ′y − f(y))
= sup

y
{e(λ′y−f(y))}

∮
Maslov

e(λ′y−f(y)) dy

exponential (Fenchel (f)) = Laplace (exponential (f))

in “max ,× ” algebra
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with Ω := {x ∈ Rn | Ax ≤ b; x ≥ 0}

Fenchel-duality: Laplace-duality

f(b, c) := max
x∈Ω

c′x f̂(b, c) :=
∫

Ω
ec
′x dx

f∗(λ, c) := min
y
{λ′y − f(y, c)} F̂ (λ, c) :=

∫
e−λy f̂(y, c) dy

=
∫
x≥0

ec
′x
[∫
Ax≤y

e−λy dy

]
dx

=
1∏m

j=1 λj
∏n
k=1(A′λ− c)k

with : A′λ− c ≥ 0; λ ≥ 0 with : <(A′λ− c) > 0; <(λ) > 0
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Fenchel-duality: Laplace-duality

f(b, c) = min
λ
{λ′b− f∗(λ, c)} f̂(b, c) = 1

(2iπ)m

∫
Γ

eλ
′bF̂ (λ, c) dλ

= min
λ
{b′λ |A′λ ≥ c; λ ≥ 0} =

∫
Γ

(2iπ)−meλ
′b∏m

j=1 λj
∏n
k=1(A′λ− c)k

dλ

where Γ ⊂ Cm

and
∫

Γ
=

∫ u1+i∞

u1−i∞
· · ·

∫ um+i∞

um−i∞
with u ∈ Rm; A′u > c; u > 0.

Polytope volume:− > Brion, Brion and Vergnes, Barvinok and

Pommersheim, Lasserre and Zeron, ...

Multidimensional integration over a simplex, ellipsoid − >

Lasserre and Zeron.
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Remark:

Logarithmic Barrier function of min{λ′b |A′λ− c) ≥ 0; λ ≥ 0}

λ 7→ ϕ(r, λ) := rλ′b−
n∑

k=1

ln (A′λ− c)k −
m∑
j=1

ln(λj).

f̂(b, rc) =
1

rn
f̂(rb, c) =

1

rn(2iπ)m

∫
Γ

erλ
′b∏m

j=1 λj
∏n
k=1(A′λ− c)k

dλ

=
1

rn(2iπ)m

∫
Γ

eϕ(r,λ) dλ

Hence,

lim
r→∞ e minλ ϕ(r,λ) = lim

r→∞min
λ

e ϕ(r,λ) = lim
r→∞

1

rn(2iπ)m

∫
Γ

eϕ(r,λ) dλ
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Fenchel-duality: Laplace-duality

f(b, c) = min
λ
{λ′b− f∗(λ, c)} f̂(b, c) = 1

(2iπ)m

∫
Γ

eλ
′bF̂ (λ, c) dλ

= min
λ
{b′λ |A′λ ≥ c; λ ≥ 0} =

∫
Γ

(2iπ)−meλ
′b∏m

j=1 λj
∏n
k=1(A′λ−c)k

dλ

where
∫

Γ
=

∫ u1+i∞

u1−i∞
· · ·

∫ um+i∞

um−i∞
with u ∈ Rm; A′u > c; u > 0.

Simplex Algorithm Cauchy ’s Residue Technique
Vertices of the polyhedron Poles of the function

{Ax ≤ b; x ≥ 0}
1∏m

j=1 λj
∏n
k=1(A′λ− c)k

THE SAME!
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Laplace-Duality algorithm: Cauchy ’s Residue Technique

f̂(b, c) =
1

(2iπ)m

∫
Γ

eλ
′b∏m

j=1 λj
∏n
k=1(A′λ− c)k

dλ.

Integration w.r.t. λ1, λ2, . . . , λm (one variable at a time) by
repeated application of Cauchy ’s residue theorem.

Yields a tree of depth m whose level k is integration w.r.t. λk on
the integration path {uk− i∞, uk + i∞} while the other variables
λk+1, λk+2, . . . , λm are fixed, on their respective integration path
{uj − i∞, uj + i∞}. Application of Cauchy ’s Residue Theorem
yields a rational fraction in the variables λk+1, . . . , λm, and so
on, until level m− 1 where one obtains a rational fraction in the
single variable λm.
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Brion and Vergne ’s continuous formula

Terminology of LP in standard form:

Let Aσ := [Aσ1| . . . |Aσm] be a basis of max{c′x|Ax = b;x ≥ 0},
with x(σ) the corresponding vertex, πσ := c′σA

−1
σ the associated

dual variable and the reduced cost vector ck − πσAk, k 6∈ σ.

Then :

f̂(b, c) =
∑

x(σ): vertex of Ω(b)

ec
′x(σ)

det(Aσ)
∏
k 6∈σ(−ck + πσAk)

from which it easily follows that

log
[

lim
r→∞ f̂(b, rc)r

]1/r
= max

vertex of Ω(b)
c′x(σ).
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Let Ω(y) := {x ∈ Rn | Ax = y; x ≥ 0}.

Continuous Laplace-duality Discrete Z-duality

f̂(y, c) :=
∫

Ω(y)
ec
′x dµ f̂d(y, c) :=

∑
x∈Ω(y)∩Zn

ec
′x

F̂ (λ, c) :=
∫
Rm

+

e−λy f̂(y, c) dy F̂d(z, c) :=
∑
y∈Zm

z−y f̂d(y, c)

=
1∏n

k=1(A′λ− c)k
=

n∏
k=1

1

1− eckz
−A1k
1 · · · z−Amkm

with <((A′λ)k) > ck ∀k with |zA1k
1 · · · zAmkm | > eck ∀k
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Continuous Laplace-duality Discrete Z-duality

I. F̂ (λ, c) −→ f(b, c) I. F̂d(z, c) −→ fd(b, c)

by Inverse Laplace Transform by Inverse Z-Transform
and Cauchy ’s Residue Th. and Cauchy ’s Residue Th.

II. Data appear as II. Data appear as

COEFFICIENTS EXPONENTS !
of dual variables λ in F̂ (λ, c) of dual variables z in F̂d(z, c).

III. The poles of F̂ (λ, c) are III. The poles of F̂d(z, c) are

REAL COMPLEX
and much more numerous !
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Let σ := [Aσ1| · · · |Aσm] be a feasible basis of {Ax = b, x ≥ 0},
with µ(σ) := det(Aσ), and “dual” variable πσAσ = cσ.

Continuous Laplace-duality Discrete Z-duality

basis σ → poles :A′σ λ = cσ basis σ → poles : zAσ = ecσ

a single real pole λ in Rm µ(σ) complex poles z = eλ in Cm

λ = πσ λ = πσ + i2π v
µ(σ); v ∈ Vσ ⊂ Zm

Vσ = {v ∈ Zm | v′Aσ = 0 mod µ(σ)}
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So both f̂d(b, c) and f̂(b, c) are computed with the same Cauchy’s

residue technique but the resulting contribution of each vertex

for f̂d(b, c) is more complicated to evaluate because of the

additional complex zeros.
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Brion and Vergne ’s discrete formula

Let σ := [Aσ1| · · · |Aσm] be a feasible basis of {Ax = b, x ≥ 0},
with µ(σ) := det(Aσ), and µ(σ) “dual” variables z = eλe2iπv/µ(σ) ∈
Cm with

λ = πσ + i2π
v

µ(σ)
; v ∈ Vσ := {v ∈ Zm| v′Aσ = 0 mod µ(σ)}.

Re-interpreted with these data, Brion and Vergne ’s original
discrete formula reads (Lasserre)

f̂d(b, c) =
∑

x(σ): vertex of Ω(b)

ec
′x(σ) ×

1

µ(σ)

 ∑
v∈Vσ

e2iπv′b/µ(σ)∏
k 6∈σ(1− e−(2iπv′Ak/µ(σ)) e(ck−πσAk)
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Back to optimization : fd(b, c) = max{c′x |Ax = b; x ∈ Nn}.

Theorem (Lasserre).Assume that

max
σ

ec
′x(σ) × lim

r→∞


∑
v∈Vσ

e2iπv′b/µ(σ)∏
k 6∈σ

(1− e−(2iπv′Ak/µ(σ)) er(ck−π
σAk))

}


1/r

is attained at a unique basis σ∗. Then :

fd(b, c) = c′x(σ∗) +
∑
k 6∈σ∗

(ck − πσ
∗
Ak)x∗k =

∑
j

cj x
∗
j .

σ∗ is an optimal basis of the linear program, and

x(σ∗) (resp. x∗) is an optimal solution of the linear (resp. inte-

ger) program.
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In this case :

fd(b, c) = c′x(σ∗) +



max
∑
k 6∈σ∗

(ck − πσ
∗
Ak)xk

Aσ∗ u +
∑
k 6∈σ∗

Ak xk = b

u ∈ Zm; xk ∈ N ∀k 6∈ σ∗

fd(b, c) = c′x(σ∗) + opt. value of GOMORY relaxation!
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As a consequence,

Corollary For t ∈ N sufficiently large, the gap f(tb, c) − fd(tb, c)
between the continuous and discrete optimal values is a (con-

stant) periodic function with period µ(σ∗) = det(Aσ∗), where σ∗

is the optimal basis of the continous LP.

The periodicity is due to the complex poles z = eλ
∗

with

λ∗ = πσ
∗

+ i2π
v

µ(σ∗)
, v ∈ Vσ∗ ⊂ Zm; v′Aσ∗ = 0 mod µ(σ∗).
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KNAPSACK REVISITED

Let a ∈ Nn+1, 0 ≤ c ∈ Rn+1, b ∈ N, and s :=
∑
i ai.

fd(b, c) = max
x∈Nn

{c′x | a′x = b}; f̂d(b, c) =
∑
x∈Nn

{ec
′x | a′x = b}.

F̂d(z, c) =
zs∏n

j=1(zaj − ecj)
; f̂d(b, c) =

1

2iπ

∫
|z|=γ

zb−1F̂d(z, c) dz

with γ ∈ R+ and ln γ > maxni=1 ci/ai.

The poles {zjk} of F̂ satisfy :

ln zjk = cj/aj + 2iπk/aj ; k = 1, . . . , aj; j = 1, . . . , n
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Poles of F(z)

| z | = c_1/a_1

| z | = c_2/a_2

| z | =c_3/a_3

| z | = c_4/a_4

Integration path

| z | = r

0
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When the ratios {ck/ak} are close to each other, the integration

of zb−1F̂d(z) on the circle |z| = γ becomes more difficult because

nearly all the poles of F̂d(z, c) contribute.

Similarly, it is also known that the corresponding knapsack prob-

lems are difficult to solve ...
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Let r ∈ N, c1/a1 < c2/a2 < · · · < cn/an and cj ∈ N for all j.

F̂d(z, rc)

z
=

zs−1∏n
j=1(zaj − ercj)

=
n∑

j=1

Qj(z)

(zaj − ercj)
,

for some polynomials

z 7→ Qj(z) :=

aj−1∑
k=0

Qjkz
k =

aj−1∑
k=0

[
Mjk(er)

Rjk(er)

]
zk,

for some polynomials {Mjk, Rjk} of the variable y := er.

In principle they can be obtained by symbolic calculation. There-
fore, with b = sj mod aj, for all j = 1, . . . , n,

f̂(b, rc) =
n∑

j=1

Qj(aj−sj−1)y

(b−sj)cj
aj =

n∑
j=1

Mj(aj−sj−1)(y)

Rj(aj−sj−1)(y)
y

(b−sj)cj
aj
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Hence

efd(b,c) = lim
r→∞ f̂d(b, rc)

1/r

= lim
r→∞

 n∑
j=1

Mj(aj−sj−1)(er)

Rj(aj−sj−1)(er)
er

(b−sj)cj
aj

1/r

Thus, for sufficiently large b,

efd(b,c) = max
j=1,...,n

lim
r→∞

Mj(aj−sj−1)(er)

Rj(aj−sj−1)(er)
er

(b−sj)cj
aj

1/r

fd(b, c) =
c1b

a1
−
c1s1

a1
+ degM1(a1−s1−1)(y)− degR1(a1−s1−1)(y)
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Example : Consider the problem

f̂(b, c) := max
x∈N2

{3x1 + 5x2 |2x1 + 3x2 ≤ b}.

Let y = er. We obtain

F (z)

z
=

z5

(z − 1)(z2 − y3)(z3 − y5)

=
(y9 + y7 + y6) + z (y7 + y6 + y4) + z2(y6 + y4 + y2)

(y5 − 1)(y − 1)(z3 − y5)

−
(y5 + y3) + z (y3 + y2)

(y3 − 1)(y − 1)(z2 − y3)
+

1

(y5 − 1)(y3 − 1)(z − 1)

Hence, f̂d(b, c) = f(b, c) if b = 0 mod 3 and for large b,

f̂d(b, c) = fd(b, c)− 5/3 + 1 whenever b = 1 mod 3

f̂d(b, c) = fd(b, c)− 10/3 + 3 whenever b = 2 mod 3
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A Discrete Farkas Lemma

Let A ∈ Nm×n, b ∈ Nm and consider the problem deciding whether

or not Ax = b has a solution x ∈ Nn.

Theorem: (i) Ax = b has a solution x ∈ Nn if and only if the

polynomial b 7→ zb − 1 in R[z1, . . . , zm] can be written

z
b1
1 · · · z

bm
m −1 =

n∑
j=1

Qj(z)(zAj −1) =
n∑

j=1

Qj(z)(z
A1j
1 · · · zAmjm −1)

for some polynomials Qj(z), all with nonnegative coefficients.

(ii) The degree of the Qj’s is bounded by b∗ :=
m∑
j=1

bj −max
k

m∑
j=1

Ajk.
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A single LP to solve with n×
(
b∗+m
b∗

)
variables,

(
b∗+m
m

)
constraints

and a (sparse) matrix of coefficients in {0,±1}

One also retrieves the classical Farkas Lemma in Rn, that is,

{x ∈ Rn |Ax = b; x ≥ 0} 6= ∅ ⇔ A′u ≥ 0 ⇒ b′u ≥ 0.

Indeed, if Ax = b has a solution x ∈ Nn, then with u = ln z,

eb
′u − 1 =

n∑
j=1

Qj(e
u1, . . . , eum)(e(A′u)j − 1).

Therefore,

A′u ≥ 0 ⇒ e(A′u)j − 1 ≥ 0 ⇒ eb
′u − 1 ≥ 0 ⇒ b′u ≥ 0,

and one retrieves (*), i.e., Ax = b has a solution x ∈ Rn.
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The general case A ∈ Zm×n, b ∈ Zm.

Let Ω := {x ∈ Rn|Ax = b; x ≥ 0} be a polytope.

Let α ∈ Nn be such that for every column Aj of A,

Akj+αj≥ 0 ∀ k = 1, . . . ,m; let N 3 β ≥ ρ(α) := max{α′x |x ∈ Ω}.

Theorem: (i) Ax = b has a solution x ∈ Nn if and only if the
polynomial z 7→ zb(zy)β − 1 in R[z1, . . . , zm] can be written

zb(zy)β − 1 = Q0(z, y)(zy − 1) +
n∑

j=1

Qj(z, y)(zAj(zy)αj − 1),

for some polynomials Qj(z), all with nonnegative coefficients.

(ii) The degree of the Qj’s is bounded by b∗ := (m+1)β+
m∑
j=1

bj.
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Back to standard Farkas lemma

{x ∈ Rn | Ax = b, x ≥ 0} 6= ∅ ⇔
[
A′λ ≥ 0

]
⇒ b′λ ≥ 0.

But, equivalently {x ∈ Rn | Ax = b, x ≥ 0} 6= ∅ if and only if
the polynomial λ 7→ b′λ can be written

b′λ =
n∑

j=1

Qj(λ)(A′λ)j,

for some polynomials {Qj} ⊂ R[λ1, . . . , λm], all with nonnegative
coefficients.

In this case, each Qj is necessarily a constant, that is, Qj ≡
Qj(0) = xj ≥ 0, and Ax = b!
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P = {x ∈ Rn |Ax = b, x ≥ 0} P ∩ Zn

x ∈ P x ∈ integer hull (P)
⇔ x = Q(0, . . . ,0) with ⇔ x = Q(1, . . . ,1) with

Q ∈ R[λ1, . . . , λm] Q ∈ R[eλ1, . . . , eλm]

b′λ = 〈Q,A′λ〉 eb
′λ − 1 = 〈Q, eA′λ − 1n〉

Q � 0 Q � 0

Comparing continuous and discrete Farkas lemma



An equivalent Linear program

Let 0 ≤ q = {qjα} ∈ Rns be the coefficients of the Qj’s in

zb − 1 =
n∑

j=1

Qj(z)(zAj − 1)

They are solutions of a linear system

M q = r, q ≥ 0

for some matrix M and vector r, both with 0,±1 coefficients.

** M and r are easily obtained from A, b with no computation

Write q = (q1, q2, . . . , qn) with each qj = {qjα} ∈ Rs, and let

ĉjα := cj for all α
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Theorem : Let A ∈ Nm×n, b ∈ Nm, c ∈ Rn.

(i) The integer program P → max{c′x|Ax = b, x ∈ Nn} has same

value as the linear program

Q→ max{
n∑

j=1

ĉ′j qj | M q = r; q ≥ 0}.

(ii) Let q∗ be an optimal vertex, and let

x∗j :=
∑
α
q∗jα j = 1, . . . , n.

Then x∗ ∈ Nn and x∗ is an optimal solution of P.
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The link with superadditive functions

The LP-dual Q∗ of the linear program Q reads

Q∗ → min
π
{π′r | M′ π ≥ ĉ}.

More precisely, with D :=
∏n
j=1{0,1, . . . , bj} ⊂ Nm,

Q∗ →


min
π

π(b)− π(0)

s.t. π(α+Aj)− π(α) ≥ cj, α ∈ D, j = 1, . . . , n

Let Π := {π : Nm → R∪{+∞} | π(x) =∞ if and only if x 6∈ D}.

For every π ∈ Π, let fπ : Nm → R ∪ {+∞} be the function

fπ(x) := inf
α∈D

π(α+ x)− π(α), x ∈ Nm
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For every π ∈ Π, the function fπ is superadditive and fπ(0) = 0.

The LP dual Q∗ reads

Q∗ →


min
π∈Π

fπ(b)

s.t. fπ(Aj) ≥ cj, j = 1, . . . , n.

Thus, Q∗ is a simplified and explicit form of the abstract dual of
Jeroslow, Wolsey, stated in terms of superadditive functions.

→ In the abstract dual one may restrict to the subclass of su-
peradditive functions derived from the representation

zb − 1 =
n∑

j=1

Qj(z
Aj − 1).
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And, with P = {x ∈ Rn
+ |Ax = b} the integer hull co(P∩Zn) reads

co(P ∩ Zn) = {x ∈ Rn |
n∑

j=1

fπ(Aj)xj ≤ fπ(b)},

for finitely many π, generators of the convex cone

(π, λ) : π(α+Aj)− π(α) + λj ≥ 0, α+Aj ∈ D, j = 1, . . . n
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CONCLUSION

Generating functions permit to exhibit a natural duality for

integer programming, an IP-analogue of LP duality.

This duality also shows which kind of superadditive functions

are useful in the abstract dual of Jeroslow, Wolsey.

This might help providing efficient Gomory cuts in MIP solvers

like CPLEX, or XPRESS-MP.
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Another dual problem

Let A ∈ Zm×n, b ∈ Zm, c ∈ Rn. Let y 7→ f(y, c) = max{c′x |Ax =
y; x ≥ 0}. The Fenchel transform of the convex function −f(., c)
is the convex function

λ 7→ (−f)∗(λ, c) = sup
y∈Rm

λ′y + f(y, c).

The dual problem of the linear program is obtained from Fenchel
duality as

f(b, c) = inf
λ∈Rm

b′λ+ (−f)∗(−λ, c)

= inf
λ∈Rm

b′λ+ sup
x∈Rm

(c−A′λ)′x = min {b′λ |A′λ ≥ c}

Equivalently

ef(b,c) = inf
λ∈Rm

sup
x∈Rm

e(b−Ax)′λec
′x
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Define

ρ∗ := inf
z∈Cm

sup
x∈Nn

<
(
zb−Ax ec

′x
)

= inf
z∈Cm

f∗d(z, c).

Hence,

f∗d(z, c) = <

zb n∏
j=1

(z−Ajecj)xj

 < ∞ if |zAj | ≥ ecj ∀j

(that is, A′ ln |z| ≥ c). Next, (writing z ∈ C as eλeiθ)

ρ∗ ≤ inf
z∈Rm

sup
x∈Rn

<
(
zb−Ax ec

′x
)

= inf
λ∈Rm

sup
x∈Rn

e(b−Ax)′λ ec
′x = ef(b,c)

Finally, with z ∈ Cm arbitrary fixed

sup
x∈Nn

<
(
zb−Ax ec

′x
)
≥ ec

′x∗ = efd(b,c)

Hence fd(b, c) ≤ ln ρ∗ ≤ f(b, c).
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Let σ∗ be an optimal basis of the linear program. Under unique-

ness of the “maxσ” in Brion and Vergne ’s formula, and an

additional technical condition

efd(b,c) = ρ∗ = max
x∈Nn

<
(
ẑb−Axec

′x
)

= f∗d(ẑ, c)

where ẑAj = γ ecj ∀j ∈ σ∗ for some real γ > 1.

ẑ is an optimal solution of the dual problem

inf
z∈Cm

f∗d(z, c)
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