LABORATOIRE d'ANALYSE et d'ARCHITECTURE des SYSTEMES

DUALITY AND INTEGER PROGRAMMING

Jean B. LASSERRE

Current solvers (CPLEX, XPRESS-MP) are rather efficient and can solve many large size problems with thousands of variables. However, the very small 5-variables knapsack problem
$\max 213 x_{1}-1928 x_{2}-11111 x_{3}-2345 x_{4}+9123 x_{5}$
$12223 x_{1}+12224 x_{2}+36674 x_{3}+61119 x_{4}+85569 x_{5}=89643482$
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ nonnegative integers
still resists all efficient solvers (takes HOURS on CPLEX 8.1 and XPRESS-MP !) Optimal solution $x^{*}=(7334,0,0,0,0) \ldots$!

Any insight on integer problems is welcome

The integer program

$$
\max \left\{c^{\prime} x \mid \quad A x=b ; \quad x \in \mathbf{N}^{n}\right\}
$$

with $A=\left[A_{1}, \ldots, A_{n}\right] \in \mathbf{Z}^{m \times n}, b \in \mathbf{Z}^{m}$ has a dual problem

$$
\min _{f \in \Gamma}\left\{f(b) \mid \quad f\left(A_{j}\right) \geq c_{j}, \quad j=1, \ldots, n\right\}
$$

where Γ is the space of functions $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ that are superadditive $(f(a+b) \geq f(a)+f(b))$, and with $f(0)=0$. (Jeroslow, Wolsey, etc ...)

Elegant but rather abstract and not very practical; however, used to derive valid inequalities. Moreover, the celebrated Gomory cuts used in Solvers (CPLEX, XPRESS-MP, ..) can be interpreted as such superadditive functions.

CONTINUOUS OPTIM.

$$
f(b, c):=\max c^{\prime} x
$$

s.t. $\left[\begin{array}{rll}A x & \leq & b \\ x & \in \mathbf{R}_{+}^{n}\end{array}\right.$

INTEGRATION
$\widehat{f}(b, c):=\int_{\Omega} \mathrm{e}^{c^{\prime} x} d x$
$\Omega:=\left[\begin{array}{rll}A x & \leq & b \\ x & \in & \mathbf{R}_{+}^{n}\end{array}\right.$

DISCRETE OPTIM.

$$
\begin{aligned}
& f_{d}(b, c):=\max c^{\prime} x \\
& \text { s.t. }\left[\begin{array}{rl}
A x & \leq b \\
x & \in \mathbf{N}^{n}
\end{array}\right. \\
& \text { SUMMATION }
\end{aligned}
$$

$$
\begin{align*}
& \widehat{f}_{d}(b, c):=\sum_{\Omega} \mathrm{e}^{c^{\prime} x} \\
& \Omega:=\left[\begin{array}{rl}
A x & \leq b \\
x & \in \mathbf{N}^{n}
\end{array}\right.
\end{align*}
$$

$$
\mathrm{e}^{f(b, c)}=\lim _{r \rightarrow \infty} \widehat{f}(b, r c)^{1 / r} ; \quad \mathrm{e}^{f_{d}(b, c)}=\lim _{r \rightarrow \infty} \widehat{f}_{d}(b, r c)^{1 / r}
$$

or, equivalently

$$
f(b, c)=\lim _{r \rightarrow \infty} \frac{1}{r} \ln \widehat{f}(b, r c) ; \quad f_{d}(b, c)=\lim _{r \rightarrow \infty} \frac{1}{r} \ln \widehat{f}_{d}(b, r c)
$$

Note in passing that we have the mean-value theorem

$$
\widehat{f}(b, c)=\mathrm{e}^{c^{\prime} x^{*}} \times \lambda(\Omega)=\mathrm{e}^{c^{\prime} x^{*}} \times \operatorname{vol}(\Omega)
$$

and a Maslov "max" mean-value theorem

$$
f(b, c)=c^{\prime} x^{*}=c^{\prime} x^{*} \times \mu_{\text {maslov }}(\Omega)=c^{\prime} x^{*}
$$

Maslov duality for "linear" functionals in the Max-Plus algebra
$f \mapsto L(f)$ a "linear" functional in the "max +" algebra, i.e.,

$$
L(f \vee h)=L(f) \vee L(h) \quad \forall f, h \Rightarrow L(f)=\int f d \mu_{\text {maslov }} .
$$

with

$$
\mu_{\text {maslov }}(A \cup B)=\mu_{\text {maslov }}(A) \vee \mu_{\text {maslov }}(B) \quad \forall A, B \in \mathcal{B} .
$$

CONTINUOUS OPTIM.
$\stackrel{-}{\text { Legendre-Fenchel }}$ Duality
\uparrow
INTEGRATION
Laplace-Transform
Duality

DISCRETE OPTIM.
-
$\longleftrightarrow \quad ? ?$
$-\quad \uparrow$

SUMMATION

Z-Transform
Duality

Legendre-Fenchel duality : $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex; $f^{*}: \mathbf{R}^{n} \rightarrow \mathbf{R}$.

$$
\lambda \mapsto f^{*}(\lambda)=\mathcal{F}(f)(\lambda):=\sup _{y}\left\{\lambda^{\prime} y-f(y)\right\} .
$$

(One-sided) Laplace-Transform: $f: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R} ; F: \mathbf{C}^{n} \rightarrow \mathbf{C}$.

$$
\lambda \mapsto F(\lambda)=\mathcal{L}(f)(\lambda):=\int_{\mathbf{R}_{+}^{n}} \mathrm{e}^{-\lambda^{\prime} y} f(y) d y
$$

(One-sided) Z-Transform: $f: \mathbf{Z}_{+}^{n} \rightarrow \mathbf{R} ; F: \mathbf{C}^{n} \rightarrow \mathbf{C}$.

$$
\lambda \mapsto F(z)=\mathcal{Z}(f)(z):=\sum_{m \in \mathbf{Z}_{+}^{n}} z^{-m} f(m) .
$$

Observe :

$$
\mathcal{L}\left(\mathrm{e}^{f}\right)(\lambda)=\int_{\mathbf{R}_{+}^{n}} \mathrm{e}^{-\left(\lambda^{\prime} y-f(y)\right)} d y
$$

and

$$
\mathrm{e}^{\mathcal{F}(f)(\lambda)}=\left\{\begin{array}{c}
\mathrm{e}^{\sup _{y}\left(\lambda^{\prime} y-f(y)\right)}=\sup _{y}\left\{\mathrm{e}^{\left(\lambda^{\prime} y-f(y)\right)}\right\} \\
\oint_{\text {Maslov }} \mathrm{e}^{\left(\lambda^{\prime} y-f(y)\right)} d y
\end{array}\right.
$$

$$
\text { exponential (Fenchel (f)) }=\text { Laplace (exponential (f)) }
$$

in "max ,x" algebra
with $\Omega:=\left\{x \in \mathbf{R}^{n} \mid \quad A x \leq b ; \quad x \geq 0\right\}$

Fenchel-duality:
 Laplace-duality

$$
\begin{array}{ll}
f(b, c):=\max _{x \in \Omega} c^{\prime} x & \widehat{f}(b, c):=\int_{\Omega} \mathrm{e}^{c^{\prime} x} d x \\
f^{*}(\lambda, c):=\min _{y}\left\{\lambda^{\prime} y-f(y, c)\right\} & \widehat{F}(\lambda, c):=\int \mathrm{e}^{-\lambda y} \widehat{f}(y, c) d y \\
& =\int_{x \geq 0} \mathrm{e}^{c^{\prime} x}\left[\int_{A x \leq y} \mathrm{e}^{-\lambda y} d y\right] d x \\
& =\frac{1}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}}
\end{array}
$$

with : $A^{\prime} \lambda-c \geq 0 ; \lambda \geq 0$
with: $\Re\left(A^{\prime} \lambda-c\right)>0 ; \Re(\lambda)>0$

Fenchel-duality:

$$
\begin{array}{ll}
f(b, c)=\min _{\lambda}\left\{\lambda^{\prime} b-f^{*}(\lambda, c)\right\} & \widehat{f}(b, c)=\frac{1}{(2 i \pi)^{m}} \int_{\Gamma} \mathrm{e}^{\lambda^{\prime} b} \widehat{F}(\lambda, c) d \lambda \\
=\min _{\lambda}\left\{b^{\prime} \lambda \mid A^{\prime} \lambda \geq c ; \lambda \geq 0\right\} & =\int_{\Gamma} \frac{(2 i \pi)^{-m} \mathrm{e}^{\lambda^{\prime} b}}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda
\end{array}
$$

$$
\text { where }\left\ulcorner\subset \mathbf{C}^{m}\right.
$$

$$
\text { and } \int_{\Gamma}=\int_{u_{1}-i \infty}^{u_{1}+i \infty} \cdots \int_{u_{m}-i \infty}^{u_{m}+i \infty}
$$

$$
\text { with } u \in \mathbf{R}^{m} ; \quad A^{\prime} u>c ; u>0
$$

Polytope volume: - > Brion, Brion and Vergnes, Barvinok and Pommersheim, Lasserre and Zeron, ...
Multidimensional integration over a simplex, ellipsoid $->$ Lasserre and Zeron.

Remark:

Logarithmic Barrier function of $\left.\min \left\{\lambda^{\prime} b \mid A^{\prime} \lambda-c\right) \geq 0 ; \lambda \geq 0\right\}$

$$
\lambda \mapsto \varphi(r, \lambda):=r \lambda^{\prime} b-\sum_{k=1}^{n} \ln \left(A^{\prime} \lambda-c\right)_{k}-\sum_{j=1}^{m} \ln \left(\lambda_{j}\right) .
$$

$$
\begin{aligned}
\widehat{f}(b, r c)=\frac{1}{r^{n}} \widehat{f}(r b, c) & =\frac{1}{r^{n}(2 i \pi)^{m}} \int_{\Gamma} \frac{\mathrm{e}^{r \lambda^{\prime} b}}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda \\
& =\frac{1}{r^{n}(2 i \pi)^{m}} \int_{\Gamma} \mathrm{e}^{\varphi(r, \lambda)} d \lambda
\end{aligned}
$$

Hence,

$$
\lim _{r \rightarrow \infty} \mathrm{e}^{\min _{\lambda} \varphi(r, \lambda)}=\lim _{r \rightarrow \infty} \min _{\lambda} \mathrm{e}^{\varphi(r, \lambda)}=\lim _{r \rightarrow \infty} \frac{1}{r^{n}(2 i \pi)^{m}} \int_{\Gamma} \mathrm{e}^{\varphi(r, \lambda)} d \lambda
$$

Fenchel-duality:
$f(b, c)=\min _{\lambda}\left\{\lambda^{\prime} b-f^{*}(\lambda, c)\right\} \quad \widehat{f}(b, c)=\frac{1}{(2 i \pi)^{m}} \int_{\Gamma} \mathrm{e}^{\lambda^{\prime} b} \widehat{F}(\lambda, c) d \lambda$
$=\min _{\lambda}\left\{b^{\prime} \lambda \mid A^{\prime} \lambda \geq c ; \lambda \geq 0\right\} \quad=\int_{\Gamma} \frac{(2 i \pi)^{-m} \lambda^{\lambda^{\prime} b}}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda$

Simplex Algorithm
Vertices of the polyhedron
$\{A x \leq b ; x \geq 0\}$

Laplace-duality

$$
\begin{aligned}
& \widehat{f}(b, c)=\frac{1}{(2 i \pi)^{m}} \int_{\Gamma} \mathrm{e}^{\lambda^{\prime} b} \widehat{F}(\lambda, c) d \lambda \\
& =\int_{\Gamma} \frac{(2 i \pi)^{-m} \mathrm{~T}_{j=1}^{m} \lambda_{j}^{\prime} b}{\prod_{k=1}^{u}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda \\
& \text { where } \int_{\Gamma}=\int_{u_{1}-i \infty}^{u_{1}+i \infty} \cdots \int_{u_{m}-i \infty}^{u_{m}+i \infty} \\
& \text { with } u \in \mathbf{R}^{m} ; A^{\prime} u>c ; u>0 .
\end{aligned}
$$

Cauchy 's Residue Technique Poles of the function
$\frac{1}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}}$

THE SAME!

Laplace-Duality algorithm: Cauchy 's Residue Technique

$$
\widehat{f}(b, c)=\frac{1}{(2 i \pi)^{m}} \int_{\Gamma} \frac{\mathrm{e}^{\lambda^{\prime} b}}{\prod_{j=1}^{m} \lambda_{j} \prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda
$$

Integration w.r.t. $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ (one variable at a time) by repeated application of Cauchy 's residue theorem.

Yields a tree of depth m whose level k is integration w.r.t. λ_{k} on the integration path $\left\{u_{k}-i \infty, u_{k}+i \infty\right\}$ while the other variables $\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_{m}$ are fixed, on their respective integration path $\left\{u_{j}-i \infty, u_{j}+i \infty\right\}$. Application of Cauchy 's Residue Theorem yields a rational fraction in the variables $\lambda_{k+1}, \ldots, \lambda_{m}$, and so on, until level $m-1$ where one obtains a rational fraction in the single variable λ_{m}.

Brion and Vergne 's continuous formula

Terminology of LP in standard form:

Let $A_{\sigma}:=\left[A_{\sigma_{1}}|\ldots| A_{\sigma_{m}}\right]$ be a basis of $\max \left\{c^{\prime} x \mid A x=b ; x \geq 0\right\}$, with $x(\sigma)$ the corresponding vertex, $\pi^{\sigma}:=c_{\sigma}^{\prime} A_{\sigma}^{-1}$ the associated dual variable and the reduced cost vector $c_{k}-\pi^{\sigma} A_{k}, k \notin \sigma$. Then :

$$
\widehat{f}(b, c)=\sum_{x(\sigma): \text { vertex of } \Omega(b)} \frac{\mathrm{e}^{c^{\prime} x(\sigma)}}{\operatorname{det}\left(A_{\sigma}\right) \prod_{k \notin \sigma}\left(-c_{k}+\pi_{\sigma} A_{k}\right)}
$$

from which it easily follows that

$$
\log \left[\lim _{r \rightarrow \infty} \widehat{f}(b, r c)^{r}\right]^{1 / r}=\max _{\text {vertex of } \Omega(b)} c^{\prime} x(\sigma)
$$

Let $\Omega(y):=\left\{x \in \mathbf{R}^{n} \mid \quad A x=y ; \quad x \geq 0\right\}$.

Continuous Laplace-duality Discrete Z-duality

$$
\begin{array}{ll}
\widehat{f}(y, c):=\int_{\Omega(y)} \mathrm{e}^{c^{\prime} x} d \mu & \widehat{f}_{d}(y, c):=\sum_{x \in \Omega(y) \cap \mathrm{Z}^{n}} \mathrm{e}^{c^{\prime} x} \\
\widehat{F}(\lambda, c):=\int_{\mathbf{R}_{+}^{m}} \mathrm{e}^{-\lambda y} \widehat{f}(y, c) d y & \widehat{F}_{d}(z, c):=\sum_{y \in \mathbf{Z}^{m}} z^{-y} \widehat{f}_{d}(y, c) \\
=\frac{1}{\prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} & =\prod_{k=1}^{n} \frac{1}{1-\mathrm{e}^{c_{k}} z_{1}^{-A_{1 k}} \ldots z_{m}^{-A_{m k}}} \\
\text { with } \Re\left(\left(A^{\prime} \lambda\right)_{k}\right)>c_{k} & \forall k
\end{array} \quad \text { with } \mid z_{1}^{A_{1 k} \ldots z_{m}^{A_{m k}} \mid>\mathrm{e}^{c_{k}} \quad \forall k}
$$

Continuous Laplace-duality Discrete Z-duality
I. $\widehat{F}(\lambda, c) \longrightarrow f(b, c)$
by Inverse Laplace Transform and Cauchy 's Residue Th.
II. Data appear as

COEFFICIENTS
of dual variables λ in $\widehat{F}(\lambda, c)$
III. The poles of $\widehat{F}(\lambda, c)$ are

REAL
I. $\widehat{F}_{d}(z, c) \longrightarrow f_{d}(b, c)$
by Inverse Z-Transform and Cauchy 's Residue Th.
II. Data appear as

EXPONENTS!
of dual variables z in $\widehat{F}_{d}(z, c)$.
III. The poles of $\widehat{F}_{d}(z, c)$ are

COMPLEX
and much more numerous !

Let $\sigma:=\left[A_{\sigma_{1}}|\cdots| A_{\sigma_{m}}\right]$ be a feasible basis of $\{A x=b, x \geq 0\}$, with $\mu(\sigma):=\operatorname{det}\left(A_{\sigma}\right)$, and "dual" variable $\pi^{\sigma} A_{\sigma}=c_{\sigma}$.

Continuous Laplace-duality Discrete Z-duality
basis $\sigma \rightarrow$ poles: $A_{\sigma}^{\prime} \lambda=c_{\sigma} \quad$ basis $\sigma \rightarrow$ poles: $z^{A_{\sigma}}=\mathrm{e}^{c_{\sigma}}$
a single real pole λ in \mathbf{R}^{m}
$\mu(\sigma)$ complex poles $z=\mathrm{e}^{\lambda}$ in \mathbf{C}^{m}
$\lambda=\pi^{\sigma}$

$$
\begin{aligned}
& \lambda=\pi^{\sigma}+i 2 \pi \frac{v}{\mu(\sigma)} ; v \in V_{\sigma} \subset \mathbf{Z}^{m} \\
& V_{\sigma}=\left\{v \in \mathbf{Z}^{m} \mid v^{\prime} A_{\sigma}=0 \bmod \mu(\sigma)\right\}
\end{aligned}
$$

So both $\widehat{f_{d}}(b, c)$ and $\widehat{f}(b, c)$ are computed with the same Cauchy's residue technique but the resulting contribution of each vertex for $\widehat{f}_{d}(b, c)$ is more complicated to evaluate because of the additional complex zeros.

Brion and Vergne 's discrete formula

Let $\sigma:=\left[A_{\sigma_{1}}|\cdots| A_{\sigma_{m}}\right]$ be a feasible basis of $\{A x=b, x \geq 0\}$, with $\mu(\sigma):=\operatorname{det}\left(A_{\sigma}\right)$, and $\mu(\sigma)$ "dual" variables $z=\mathrm{e}^{\lambda} \mathrm{e}^{2 i \pi v / \mu(\sigma)} \in$ C^{m} with

$$
\lambda=\pi^{\sigma}+i 2 \pi \frac{v}{\mu(\sigma)} ; \quad v \in V_{\sigma}:=\left\{v \in \mathbf{Z}^{m} \mid \quad v^{\prime} A_{\sigma}=0 \bmod \mu(\sigma)\right\}
$$

Re-interpreted with these data, Brion and Vergne 's original discrete formula reads (Lasserre)

$$
\begin{aligned}
\widehat{f}_{d}(b, c)= & \sum_{x(\sigma): \text { vertex of } \Omega(b)} \mathrm{e}^{c^{\prime} x(\sigma)} \times \\
& \frac{1}{\mu(\sigma)}\left[\sum_{v \in V_{\sigma}} \frac{\mathrm{e}^{2 i \pi v^{\prime} b / \mu(\sigma)}}{\prod_{k \notin \sigma}\left(1-\mathrm{e}^{-\left(2 i \pi v^{\prime} A_{k} / \mu(\sigma)\right)} \mathrm{e}^{\left(c_{k}-\pi^{\sigma} A_{k}\right)}\right.}\right]
\end{aligned}
$$

Back to optimization : $f_{d}(b, c)=\max \left\{c^{\prime} x \mid A x=b ; \quad x \in \mathbf{N}^{n}\right\}$.
Theorem (Lasserre).Assume that
$\left.\max _{\sigma} \mathrm{e}^{c^{\prime} x(\sigma)} \times \lim _{r \rightarrow \infty}\left[\sum_{v \in V_{\sigma}} \frac{\mathrm{e}^{2 i \pi v^{\prime} b / \mu(\sigma)}}{\prod_{k \notin \sigma}\left(1-\mathrm{e}^{-\left(2 i \pi v^{\prime} A_{k} / \mu(\sigma)\right)} \mathrm{e}^{r\left(c_{k}-\pi^{\sigma} A_{k}\right)}\right)}\right\}\right]^{1 / r}$
is attained at a unique basis σ^{*}. Then :

$$
f_{d}(b, c)=c^{\prime} x\left(\sigma^{*}\right)+\sum_{k \notin \sigma^{*}}\left(c_{k}-\pi^{\sigma^{*}} A_{k}\right) x_{k}^{*}=\sum_{j} c_{j} x_{j}^{*}
$$

σ^{*} is an optimal basis of the linear program, and
$x\left(\sigma^{*}\right)$ (resp. x^{*}) is an optimal solution of the linear (resp. integer) program.

In this case :

$$
f_{d}(b, c)=c^{\prime} x\left(\sigma^{*}\right)+\left\{\begin{array}{lll}
\max & & \sum_{k \notin \sigma^{*}}\left(c_{k}-\pi^{\sigma^{*}} A_{k}\right) x_{k} \\
& A_{\sigma^{*} u} & +\sum_{k \notin \sigma^{*}} A_{k} x_{k} \quad \\
\\
& u \in \mathbf{Z}^{m} ; & x_{k} \in \mathbf{N} \quad \forall k \notin \sigma^{*}
\end{array}\right.
$$

$$
f_{d}(b, c)=c^{\prime} x\left(\sigma^{*}\right)+\text { opt. value of GOMORY relaxation! }
$$

As a consequence,

Corollary For $t \in \mathbf{N}$ sufficiently large, the gap $f(t b, c)-f_{d}(t b, c)$ between the continuous and discrete optimal values is a (constant) periodic function with period $\mu\left(\sigma^{*}\right)=\operatorname{det}\left(A_{\sigma^{*}}\right)$, where σ^{*} is the optimal basis of the continous LP.

The periodicity is due to the complex poles $z=\mathrm{e}^{\lambda^{*}}$ with

$$
\lambda^{*}=\pi^{\sigma^{*}}+i 2 \pi \frac{v}{\mu\left(\sigma^{*}\right)}, \quad v \in V_{\sigma^{*}} \subset \mathbf{Z}^{m} ; v^{\prime} A_{\sigma^{*}}=0 \bmod \mu\left(\sigma^{*}\right)
$$

KNAPSACK REVISITED

Let $a \in \mathbf{N}^{n+1}, 0 \leq c \in \mathbf{R}^{n+1}, b \in \mathbf{N}$, and $s:=\sum_{i} a_{i}$.

$$
\begin{gathered}
f_{d}(b, c)=\max _{x \in \mathrm{~N}^{n}}\left\{c^{\prime} x \mid a^{\prime} x=b\right\} ; \quad \widehat{f}_{d}(b, c)=\sum_{x \in \mathbf{N}^{n}}\left\{\mathrm{e}^{c^{\prime} x} \mid a^{\prime} x=b\right\} . \\
\widehat{F}_{d}(z, c)=\frac{z^{s}}{\prod_{j=1}^{n}\left(z^{a_{j}}-\mathrm{e}^{c_{j}}\right)} ; \quad \widehat{f}_{d}(b, c)=\frac{1}{2 i \pi} \int_{|z|=\gamma} z^{b-1} \widehat{F}_{d}(z, c) d z
\end{gathered}
$$

with $\gamma \in \mathbf{R}^{+}$and $\ln \gamma>\max _{i=1}^{n} c_{i} / a_{i}$.
The poles $\left\{z_{j k}\right\}$ of \hat{F} satisfy :

$$
\ln z_{j k}=c_{j} / a_{j}+2 i \pi k / a_{j} ; \quad k=1, \ldots, a_{j} ; j=1, \ldots, n
$$

When the ratios $\left\{c_{k} / a_{k}\right\}$ are close to each other, the integration of $z^{b-1} \widehat{F}_{d}(z)$ on the circle $|z|=\gamma$ becomes more difficult because nearly all the poles of $\widehat{F}_{d}(z, c)$ contribute.

Similarly, it is also known that the corresponding knapsack problems are difficult to solve ...

Let $r \in \mathbf{N}, c_{1} / a_{1}<c_{2} / a_{2}<\cdots<c_{n} / a_{n}$ and $c_{j} \in \mathbf{N}$ for all j.

$$
\frac{\widehat{F}_{d}(z, r c)}{z}=\frac{z^{s-1}}{\prod_{j=1}^{n}\left(z^{a_{j}}-\mathrm{e}^{r c_{j}}\right)}=\sum_{j=1}^{n} \frac{Q_{j}(z)}{\left(z^{a_{j}}-\mathrm{e}^{r c_{j}}\right)}
$$

for some polynomials

$$
z \mapsto Q_{j}(z):=\sum_{k=0}^{a_{j}-1} Q_{j k} z^{k}=\sum_{k=0}^{a_{j}-1}\left[\frac{M_{j k}\left(\mathrm{e}^{r}\right)}{R_{j k}\left(\mathrm{e}^{r}\right)}\right] z^{k}
$$

for some polynomials $\left\{M_{j k}, R_{j k}\right\}$ of the variable $y:=\mathrm{e}^{r}$.
In principle they can be obtained by symbolic calculation. Therefore, with $b=s_{j} \bmod a_{j}$, for all $j=1, \ldots, n$,

$$
\widehat{f}(b, r c)=\sum_{j=1}^{n} Q_{j\left(a_{j}-s_{j}-1\right)} y^{\frac{\left(b-s_{j}\right) c_{j}}{a_{j}}}=\sum_{j=1}^{n} \frac{M_{j\left(a_{j}-s_{j}-1\right)}(y)}{R_{j\left(a_{j}-s_{j}-1\right)}(y)} y^{\frac{\left(b-s_{j}\right) c_{j}}{a_{j}}}
$$

Hence

$$
\begin{aligned}
\mathrm{e}^{f_{d}(b, c)} & =\lim _{r \rightarrow \infty} \widehat{f}_{d}(b, r c)^{1 / r} \\
& =\lim _{r \rightarrow \infty}\left[\sum_{j=1}^{n} \frac{M_{j\left(a_{j}-s_{j}-1\right)}\left(\mathrm{e}^{r}\right)}{R_{j\left(a_{j}-s_{j}-1\right)}\left(\mathrm{e}^{r}\right)} \mathrm{e}^{r \frac{\left(b-s_{j}\right) c_{j}}{a_{j}}}\right]^{1 / r}
\end{aligned}
$$

Thus, for sufficiently large b,

$$
\begin{gathered}
\mathrm{e}^{f_{d}(b, c)}=\max _{j=1, \ldots, n} \lim _{r \rightarrow \infty}\left[\frac{M_{j\left(a_{j}-s_{j}-1\right)}\left(\mathrm{e}^{r}\right)}{R_{j\left(a_{j}-s_{j}-1\right)}\left(\mathrm{e}^{r}\right)} \mathrm{e}^{r \frac{\left(b-s_{j}\right) c_{j}}{a_{j}}}\right]^{1 / r} \\
f_{d}(b, c)=\frac{c_{1} b}{a_{1}}-\frac{c_{1} s_{1}}{a_{1}}+\operatorname{deg} M_{1\left(a_{1}-s_{1}-1\right)}(y)-\operatorname{deg} R_{1\left(a_{1}-s_{1}-1\right)}(y)
\end{gathered}
$$

Example : Consider the problem

$$
\widehat{f}(b, c):=\max _{x \in \mathbf{N}^{2}}\left\{3 x_{1}+5 x_{2} \mid 2 x_{1}+3 x_{2} \leq b\right\}
$$

Let $y=\mathrm{e}^{r}$. We obtain

$$
\begin{aligned}
\frac{F(z)}{z} & =\frac{z^{5}}{(z-1)\left(z^{2}-y^{3}\right)\left(z^{3}-y^{5}\right)} \\
& =\frac{\left(y^{9}+y^{7}+y^{6}\right)+z\left(y^{7}+y^{6}+y^{4}\right)+z^{2}\left(y^{6}+y^{4}+y^{2}\right)}{\left(y^{5}-1\right)(y-1)\left(z^{3}-y^{5}\right)} \\
& -\frac{\left(y^{5}+y^{3}\right)+z\left(y^{3}+y^{2}\right)}{\left(y^{3}-1\right)(y-1)\left(z^{2}-y^{3}\right)}+\frac{1}{\left(y^{5}-1\right)\left(y^{3}-1\right)(z-1)}
\end{aligned}
$$

Hence, $\widehat{f}_{d}(b, c)=f(b, c)$ if $b=0 \bmod 3$ and for large b,

$$
\begin{aligned}
& \widehat{f}_{d}(b, c)=f_{d}(b, c)-5 / 3+1 \quad \text { whenever } b=1 \bmod 3 \\
& \widehat{f}_{d}(b, c)=f_{d}(b, c)-10 / 3+3 \quad \text { whenever } b=2 \bmod 3
\end{aligned}
$$

A Discrete Farkas Lemma

Let $A \in \mathbf{N}^{m \times n}, b \in \mathbf{N}^{m}$ and consider the problem deciding whether or not $A x=b$ has a solution $x \in \mathbf{N}^{n}$.

Theorem: (i) $A x=b$ has a solution $x \in \mathbf{N}^{n}$ if and only if the polynomial $b \mapsto z^{b}-1$ in $\mathbf{R}\left[z_{1}, \ldots, z_{m}\right]$ can be written
$z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}-1=\sum_{j=1}^{n} Q_{j}(z)\left(z^{A_{j}}-1\right)=\sum_{j=1}^{n} Q_{j}(z)\left(z_{1}^{A_{1 j}} \cdots z_{m}^{A_{m j}}-1\right)$
for some polynomials $Q_{j}(z)$, all with nonnegative coefficients.
(ii) The degree of the Q_{j} 's is bounded by $b^{*}:=\sum_{j=1}^{m} b_{j}-\max _{k} \sum_{j=1}^{m} A_{j k}$.

A single LP to solve with $n \times\binom{ b^{*}+m}{b^{*}}$ variables, $\binom{b^{*}+m}{m}$ constraints and a (sparse) matrix of coefficients in $\{0, \pm 1\}$

One also retrieves the classical Farkas Lemma in \mathbf{R}^{n}, that is, $\left\{x \in \mathbf{R}^{n} \mid A x=b ; x \geq 0\right\} \neq \emptyset \quad \Leftrightarrow \quad A^{\prime} u \geq 0 \Rightarrow \quad b^{\prime} u \geq 0$.
Indeed, if $A x=b$ has a solution $x \in \mathbf{N}^{n}$, then with $u=\ln z$,

$$
\mathrm{e}^{b^{\prime} u}-1=\sum_{j=1}^{n} Q_{j}\left(e^{u_{1}}, \ldots, e^{u_{m}}\right)\left(\mathrm{e}^{\left(A^{\prime} u\right)_{j}}-1\right)
$$

Therefore,

$$
A^{\prime} u \geq 0 \Rightarrow \mathrm{e}^{\left(A^{\prime} u\right)_{j}}-1 \geq 0 \Rightarrow \mathrm{e}^{b^{\prime} u}-1 \geq 0 \Rightarrow b^{\prime} u \geq 0
$$

and one retrieves $(*)$, i.e., $A x=b$ has a solution $x \in \mathbf{R}^{n}$.

The general case $A \in \mathbf{Z}^{m \times n}, b \in \mathbf{Z}^{m}$.
Let $\Omega:=\left\{x \in \mathbf{R}^{n} \mid A x=b ; \quad x \geq 0\right\}$ be a polytope.
Let $\alpha \in \mathbf{N}^{n}$ be such that for every column A_{j} of A,

$$
A_{k j}+\alpha_{j} \geq 0 \forall k=1, \ldots, m \text {; let } \mathrm{N} \ni \beta \geq \rho(\alpha):=\max \left\{\alpha^{\prime} x \mid x \in \Omega\right\}
$$

Theorem: (i) $A x=b$ has a solution $x \in \mathbf{N}^{n}$ if and only if the polynomial $z \mapsto z^{b}(z y)^{\beta}-1$ in $\mathbf{R}\left[z_{1}, \ldots, z_{m}\right]$ can be written

$$
z^{b}(z y)^{\beta}-1=Q_{0}(z, y)(z y-1)+\sum_{j=1}^{n} Q_{j}(z, y)\left(z^{A_{j}}(z y)^{\alpha_{j}}-1\right)
$$

for some polynomials $Q_{j}(z)$, all with nonnegative coefficients.
(ii) The degree of the Q_{j} 's is bounded by $b^{*}:=(m+1) \beta+\sum_{j=1}^{m} b_{j}$.

Back to standard Farkas lemma

$$
\left\{x \in \mathbf{R}^{n} \mid \quad A x=b, x \geq 0\right\} \neq \emptyset \quad \Leftrightarrow \quad\left[A^{\prime} \lambda \geq 0\right] \Rightarrow b^{\prime} \lambda \geq 0 .
$$

But, equivalently $\left\{x \in \mathbf{R}^{n} \mid A x=b, x \geq 0\right\} \neq \emptyset$ if and only if the polynomial $\lambda \mapsto b^{\prime} \lambda$ can be written

$$
b^{\prime} \lambda=\sum_{j=1}^{n} Q_{j}(\lambda)\left(A^{\prime} \lambda\right)_{j},
$$

for some polynomials $\left\{Q_{j}\right\} \subset \mathbf{R}\left[\lambda_{1}, \ldots, \lambda_{m}\right]$, all with nonnegative coefficients.

In this case, each Q_{j} is necessarily a constant, that is, $Q_{j} \equiv$ $Q_{j}(0)=x_{j} \geq 0$, and $A x=b!$

$\mathrm{P}=\left\{x \in \mathbf{R}^{n} \mid A x=b, x \geq 0\right\}$	$\mathrm{P} \cap \mathbf{Z}^{n}$
$x \in \mathrm{P}$	$x \in$ integer hull (P)
$\Leftrightarrow x=Q(0, \ldots, 0)$ with	$\Leftrightarrow x=Q(1, \ldots, 1)$ with
$Q \in \mathbf{R}\left[\lambda_{1}, \ldots, \lambda_{m}\right]$	$Q \in \mathbf{R}\left[\mathrm{e}^{\lambda_{1}}, \ldots, \mathrm{e}^{\lambda_{m}}\right]$
$b^{\prime} \lambda=\left\langle Q, A^{\prime} \lambda\right\rangle$	$\mathrm{e}^{b^{\prime} \lambda}-1=\left\langle Q, \mathrm{e}^{A^{\prime} \lambda}-1_{n}\right\rangle$
$Q \succeq 0$	$Q \succeq 0$

Comparing continuous and discrete Farkas lemma

An equivalent Linear program

Let $0 \leq q=\left\{q_{j \alpha}\right\} \in \mathbf{R}^{n s}$ be the coefficients of the Q_{j} 's in

$$
z^{b}-1=\sum_{j=1}^{n} Q_{j}(z)\left(z^{A_{j}}-1\right)
$$

They are solutions of a linear system

$$
\mathrm{M} q=r, \quad q \geq 0
$$

for some matrix M and vector r, both with $0, \pm 1$ coefficients.
** M and r are easily obtained from A, b with no computation

Write $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ with each $q_{j}=\left\{q_{j \alpha}\right\} \in \mathbf{R}^{s}$, and let $\widehat{c}_{j \alpha}:=c_{j}$ for all α

Theorem : Let $A \in \mathbf{N}^{m \times n}, b \in \mathbf{N}^{m}, c \in \mathbf{R}^{n}$.
(i) The integer program $\mathrm{P} \rightarrow \max \left\{c^{\prime} x \mid A x=b, x \in \mathbf{N}^{n}\right\}$ has same value as the linear program

$$
\mathrm{Q} \rightarrow \max \left\{\sum_{j=1}^{n} \hat{c}_{j}^{\prime} q_{j} \mid \quad \mathrm{M} q=r ; \quad q \geq 0\right\}
$$

(ii) Let q^{*} be an optimal vertex, and let

$$
x_{j}^{*}:=\sum_{\alpha} q_{j \alpha}^{*} \quad j=1, \ldots, n .
$$

Then $x^{*} \in \mathbf{N}^{n}$ and x^{*} is an optimal solution of P .

The link with superadditive functions
The LP-dual Q^{*} of the linear program Q reads

$$
\mathrm{Q}^{*} \rightarrow \min _{\pi}\left\{\pi^{\prime} r \mid \quad \mathrm{M}^{\prime} \pi \geq \widehat{c}\right\} .
$$

More precisely, with $\mathcal{D}:=\prod_{j=1}^{n}\left\{0,1, \ldots, b_{j}\right\} \subset \mathbf{N}^{m}$,

$$
\begin{aligned}
& \qquad \mathbf{Q}^{*} \rightarrow\left\{\begin{aligned}
& \quad \min _{\pi} \pi(b)-\pi(0) \\
& \text { s.t. } \pi\left(\alpha+A_{j}\right)-\pi(\alpha) \geq c_{j}, \quad \alpha \in \mathcal{D}, j=1, \ldots, n
\end{aligned}\right. \\
& \text { Let } \Pi
\end{aligned}:=\left\{\pi: \mathbf{N}^{m} \rightarrow \mathbf{R} \cup\{+\infty\} \mid \quad \pi(x)=\infty \text { if and only if } x \notin \mathcal{D}\right\} . . ~ \$
$$

For every $\pi \in \Pi$, let $f_{\pi}: \mathbf{N}^{m} \rightarrow \mathbf{R} \cup\{+\infty\}$ be the function

$$
f_{\pi}(x):=\inf _{\alpha \in \mathcal{D}} \pi(\alpha+x)-\pi(\alpha), \quad x \in \mathbf{N}^{m}
$$

For every $\pi \in \Pi$, the function f_{π} is superadditive and $f_{\pi}(0)=0$.
The LP dual Q^{*} reads

$$
\mathrm{Q}^{*} \rightarrow\left\{\begin{array}{l}
\min _{\pi \in \Pi} f_{\pi}(b) \\
\text { s.t. } \quad f_{\pi}\left(A_{j}\right) \quad \geq c_{j}, \quad j=1, \ldots, n .
\end{array}\right.
$$

Thus, Q^{*} is a simplified and explicit form of the abstract dual of Jeroslow, Wolsey, stated in terms of superadditive functions.
\rightarrow In the abstract dual one may restrict to the subclass of superadditive functions derived from the representation

$$
z^{b}-1=\sum_{j=1}^{n} Q_{j}\left(z^{A_{j}}-1\right) .
$$

And, with $\mathrm{P}=\left\{x \in \mathbf{R}_{+}^{n} \mid A x=b\right\}$ the integer hull $\mathrm{co}\left(\mathrm{P} \cap \mathbf{Z}^{n}\right)$ reads

$$
\operatorname{co}\left(\mathrm{P} \cap \mathbf{Z}^{n}\right)=\left\{x \in \mathbf{R}^{n} \mid \quad \sum_{j=1}^{n} f_{\pi}\left(A_{j}\right) x_{j} \leq f_{\pi}(b)\right\}
$$

for finitely many π, generators of the convex cone

$$
(\pi, \lambda): \quad \pi\left(\alpha+A_{j}\right)-\pi(\alpha)+\lambda_{j} \geq 0, \quad \alpha+A_{j} \in \mathcal{D}, j=1, \ldots n
$$

CONCLUSION

Generating functions permit to exhibit a natural duality for integer programming, an IP-analogue of LP duality.

This duality also shows which kind of superadditive functions are useful in the abstract dual of Jeroslow, Wolsey.

This might help providing efficient Gomory cuts in MIP solvers like CPLEX, or XPRESS-MP.

Another dual problem

Let $A \in \mathbf{Z}^{m \times n}, b \in \mathbf{Z}^{m}, c \in \mathbf{R}^{n}$. Let $y \mapsto f(y, c)=\max \left\{c^{\prime} x \mid A x=\right.$ $y ; x \geq 0\}$. The Fenchel transform of the convex function $-f(., c)$ is the convex function

$$
\lambda \mapsto \quad(-f)^{*}(\lambda, c)=\sup _{y \in \mathbf{R}^{m}} \lambda^{\prime} y+f(y, c) .
$$

The dual problem of the linear program is obtained from Fenchel duality as

$$
\begin{aligned}
f(b, c) & =\inf _{\lambda \in \mathbf{R}^{m}} b^{\prime} \lambda+(-f)^{*}(-\lambda, c) \\
& =\inf _{\lambda \in \mathbf{R}^{m}} b^{\prime} \lambda+\sup _{x \in \mathbf{R}^{m}}\left(c-A^{\prime} \lambda\right)^{\prime} x=\min \left\{b^{\prime} \lambda \mid A^{\prime} \lambda \geq c\right\}
\end{aligned}
$$

Equivalently

$$
\mathrm{e}^{f(b, c)}=\inf _{\lambda \in \mathbf{R}^{m}} \sup _{x \in \mathbf{R}^{m}} \mathrm{e}^{(b-A x)^{\prime} \lambda} \mathrm{e}^{c^{\prime} x}
$$

Define

$$
\rho^{*}:=\inf _{z \in \mathbf{C}^{m}} \sup _{x \in \mathbf{N}^{n}} \Re\left(z^{b-A x} \mathrm{e}^{c^{\prime} x}\right)=\inf _{z \in \mathbf{C}^{m}} f_{d}^{*}(z, c)
$$

Hence,

$$
f_{d}^{*}(z, c)=\Re\left(z^{b} \prod_{j=1}^{n}\left(z^{-A_{j}} \mathrm{e}^{c_{j}}\right)^{x_{j}}\right)<\infty \quad \text { if }\left|z^{A_{j}}\right| \geq \mathrm{e}^{c_{j}} \quad \forall j
$$

(that is, $\left.A^{\prime} \ln |z| \geq c\right)$. Next, (writing $z \in \mathbf{C}$ as $\mathrm{e}^{\lambda} \mathrm{e}^{i \theta}$)
$\rho^{*} \leq \inf _{z \in \mathbf{R}^{m}} \sup _{x \in \mathbf{R}^{n}} \Re\left(z^{b-A x} \mathrm{e}^{c^{\prime} x}\right)=\inf _{\lambda \in \mathbf{R}^{m}} \sup _{x \in \mathbf{R}^{n}} \mathrm{e}^{(b-A x)^{\prime} \lambda} \mathrm{e}^{c^{\prime} x}=\mathrm{e}^{f(b, c)}$
Finally, with $z \in \mathbf{C}^{m}$ arbitrary fixed

$$
\sup _{x \in \mathbf{N}^{n}} \Re\left(z^{b-A x} \mathrm{e}^{c^{\prime} x}\right) \geq \mathrm{e}^{c^{\prime} x^{*}}=\mathrm{e}^{f_{d}(b, c)}
$$

Hence $\mathrm{f}_{\mathrm{d}}(\mathrm{b}, \mathrm{c}) \leq \ln \rho^{*} \leq \mathrm{f}(\mathrm{b}, \mathrm{c})$.

Let σ^{*} be an optimal basis of the linear program. Under uniqueness of the "max ${ }_{\sigma}$ " in Brion and Vergne 's formula, and an additional technical condition

$$
\mathrm{e}^{f_{d}(b, c)}=\rho^{*}=\max _{x \in \mathrm{~N}^{n}} \Re\left(\widehat{z}^{b-A x} \mathrm{e}^{c^{\prime} x}\right)=f_{d}^{*}(\widehat{z}, c)
$$

where $\widehat{z}^{A_{j}}=\gamma \mathrm{e}^{c_{j}} \quad \forall j \in \sigma^{*}$ for some real $\gamma>1$.
\widehat{z} is an optimal solution of the dual problem

$$
\inf _{z \in \mathbf{C}^{m}} f_{d}^{*}(z, c)
$$

