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What are mixed 0-1 conic programs?

I Mixed 0-1 conic programs (MCP)

min cTx,
s.t. Ax �K b

xi ∈ {0, 1}, i = 1, . . . , p.

I �K: partial order w.r.t. a cone K = K1 ×K2 × . . .×Kr

I Each Kj is one of the following
I Linear cone (LP): K = {y : yi ≥ 0, ∀i}
I Second-order cone (SOCP): K = {y = (y0; ȳ) : y0 ≥ ‖ȳ‖}
I Semidefinite cone (SDP): K = {Y : Y sym. pos. semidef.}.

I Each Kj = K∗j is self-dual: K = K∗ is self-dual
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Why bother with mixed 0-1 conic programs?
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Why bother with mixed 0-1 conic programs?

I Compact formulation: TSP, Scheduling

min Tr(CX),
s. t.

(

2 cos(2π/n)
)

I + 2
n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0
X1 = XT1 = 1 diag(X) = 0
Xij ∈ {0, 1} ∀i, j
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I Tighter formulations of mixed 0-1 LPs:
I Sherali-Adams lifting
I Lovasz-Schrijver lifting
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Why bother with mixed 0-1 conic programs?

I Compact formulation: TSP, Scheduling

min Tr(CX),
s. t.

(

2 cos(2π/n)
)

I + 2
n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0
X1 = XT1 = 1 diag(X) = 0
Xij ∈ {0, 1} ∀i, j

I Tighter formulations of mixed 0-1 LPs:
I Sherali-Adams lifting
I Lovasz-Schrijver lifting

I Naturally arise in many applications:
I Robust counterparts of uncertain mixed 0-1 LPs
I Hybrid control
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Solution technique for mixed 0-1 conic programs

Conic cuts



Conic IPs Are conic IPs useful? Solution techniques Gomory cuts “Lifting” cuts Computational results Conclusion

Solution technique for mixed 0-1 conic programs

I Relax into a conic LP and “round”: e.g. max-cut
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Gomory cuts for pure integer conic programs

I Pure integer conic program

min cT x,
s.t. Ax �K b

x ∈ Zn
+
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Gomory cuts for pure integer conic programs

I Pure integer conic program

min cT x,
s.t. Ax �K b

x ∈ Zn
+

I Conic duality: y ∈ K iff uTy ≥ 0 for all u ∈ K∗(= K)

I Chvátal-Gomory (C-G) procedure:
I u �K 0: uT Ax =

∑n

j=1(a
T
j u)xj ≥ uT b
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Gomory cuts for pure integer conic programs

I Pure integer conic program

min cT x,
s.t. Ax �K b

x ∈ Zn
+

I Conic duality: y ∈ K iff uTy ≥ 0 for all u ∈ K∗(= K)

I Chvátal-Gomory (C-G) procedure:
I u �K 0: uT Ax =

∑n

j=1(a
T
j u)xj ≥ uT b

I x ≥ 0:
∑n

j=1da
T
j uexj ≥ uT b.

I x ∈ Zn
+:

∑n

j=1da
T
j uexj ≥ du

T be.

I Identical to the C-G procedure for integer programs.

Conic cuts



Conic IPs Are conic IPs useful? Solution techniques Gomory cuts “Lifting” cuts Computational results Conclusion

Gomory cuts: relate LP and SDP relaxations

Conic cuts



Conic IPs Are conic IPs useful? Solution techniques Gomory cuts “Lifting” cuts Computational results Conclusion

Gomory cuts: relate LP and SDP relaxations

I Mixed 0-1 SDP formulation of TSP

(

2 cos(2π/n)
)

I +
2

n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0

Conic cuts



Conic IPs Are conic IPs useful? Solution techniques Gomory cuts “Lifting” cuts Computational results Conclusion
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I Choose W ⊆ {1, . . . , n} and set U = 1
21W1T
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Gomory cuts: relate LP and SDP relaxations

I Mixed 0-1 SDP formulation of TSP

(

2 cos(2π/n)
)

I +
2

n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0

I Choose W ⊆ {1, . . . , n} and set U = 1
21W1T

W

I Gomory cut:
∑

i,j∈W Xij ≤ |W | − 1
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Gomory cuts: relate LP and SDP relaxations

I Mixed 0-1 SDP formulation of TSP

(

2 cos(2π/n)
)

I +
2

n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0

I Choose W ⊆ {1, . . . , n} and set U = 1
21W1T

W

I Gomory cut:
∑

i,j∈W Xij ≤ |W | − 1

Theorem
Sub-tour elimination inequalities for TSP are rank-1 C-G cuts.
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Gomory cuts: relate LP and SDP relaxations

I Mixed 0-1 SDP formulation of TSP

(

2 cos(2π/n)
)

I +
2

n

(

1− cos(2π/n)
)

11T − (X + XT ) � 0

I Choose W ⊆ {1, . . . , n} and set U = 1
21W1T

W

I Gomory cut:
∑

i,j∈W Xij ≤ |W | − 1

Theorem
Sub-tour elimination inequalities for TSP are rank-1 C-G cuts.

Theorem
Triangle inequalities for max-cut are rank-1 C-G cuts.
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Subadditive functions and duality

I f K-non-decreasing: y �K z implies f(y) ≥ f(z)
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Subadditive functions and duality

I f K-non-decreasing: y �K z implies f(y) ≥ f(z)

I F : set of subadditive, K-non-decreasing functions

I Duality:

min cT x,
s.t. Ax �K b

x ∈ Zn
+

max f(b),
s.t. f(ai) ≤ ci,∀i

f ∈ F

I Duality useless: F very large!

I Lasserre: A much smaller set suffices for integer programs

I Extends to a special class of integer SDPs
I SDP constraint:

∑

i xiAi � A0

I Each Ai non-negative integer matrices
I Simple extension of Lasserre’s ideas
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Cuts from hierarchies of tighter relaxation

I MCP: C◦ = conv (x : Ax �K b, xi ∈ {0, 1}, 1 ≤ i ≤ p)
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Cuts from hierarchies of tighter relaxation

I MCP: C◦ = conv (x : Ax �K b, xi ∈ {0, 1}, 1 ≤ i ≤ p)

I Initial relaxation: C = {x : Ax �K b}

I Basic idea:

I x(t) ← argmax{cT x : x ∈ C(t)}

I Construct a tighter relaxation C̄ with x(t) 6∈ C◦

I Compute a valid inequality f(x) ≤ 0 for C̄ that “cuts” x(t)

I New relaxation: C(t+1) ← C(t) ∩ {x : f(x) ≤ 0}
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Cuts from hierarchies of tighter relaxation

I MCP: C◦ = conv (x : Ax �K b, xi ∈ {0, 1}, 1 ≤ i ≤ p)

I Initial relaxation: C = {x : Ax �K b}

I Basic idea:

I x(t) ← argmax{cT x : x ∈ C(t)}

I Construct a tighter relaxation C̄ with x(t) 6∈ C◦

I Compute a valid inequality f(x) ≤ 0 for C̄ that “cuts” x(t)

I New relaxation: C(t+1) ← C(t) ∩ {x : f(x) ≤ 0}

I Hierarchies for MLPs extend to MCPs
I Lovász-Schrijver (LS) and Balas-Ceria-Cornuéjols (BCC)

hierarchies
I Sherali-Adams (SA) and Lasserre hierarchies

I Introduce new vars and connect using conic constraints
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Convex cuts from LS/BCC hierarchy

I Choose B ⊆ {1, . . . , p} (w.l.o.g. B = {1, . . . , l})
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Convex cuts from LS/BCC hierarchy

I Choose B ⊆ {1, . . . , p} (w.l.o.g. B = {1, . . . , l})

I “Lifted” set M+
B(C): (x,Y0,Y1) ∈MB(C) iff

y0
k + y1

k = [1;x] y0
kk = 0 y1

kk = y1
0k

∑n
i=1 y0

ikai �K y0
0kb

∑n
i=1 y1

ikai �K y1
0kb

Y1
B = (Y1

B)T � 0

Y1 = [y1
1, . . . ,y

1
l ] Y0 = [y0

1, . . . ,y
0
l ]
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I Choose B ⊆ {1, . . . , p} (w.l.o.g. B = {1, . . . , l})

I “Lifted” set M+
B(C): (x,Y0,Y1) ∈MB(C) iff

y0
k + y1

k = [1;x] y0
kk = 0 y1

kk = y1
0k

∑n
i=1 y0

ikai �K y0
0kb

∑n
i=1 y1

ikai �K y1
0kb

Y1
B = (Y1

B)T � 0

Y1 = [y1
1, . . . ,y

1
l ] Y0 = [y0

1, . . . ,y
0
l ]

I Conic duality yields necessary and sufficient conditions
I α

T x + β ≥ 0 for all x ∈ MB(C)
I Tr(QYB) + α

T x + β ≥ 0 for all (x,YB) ∈MB(C)
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Convex cuts from LS/BCC hierarchy

I Choose B ⊆ {1, . . . , p} (w.l.o.g. B = {1, . . . , l})

I “Lifted” set M+
B(C): (x,Y0,Y1) ∈MB(C) iff

y0
k + y1

k = [1;x] y0
kk = 0 y1

kk = y1
0k

∑n
i=1 y0

ikai �K y0
0kb

∑n
i=1 y1

ikai �K y1
0kb

Y1
B = (Y1

B)T � 0

Y1 = [y1
1, . . . ,y

1
l ] Y0 = [y0

1, . . . ,y
0
l ]

I Conic duality yields necessary and sufficient conditions
I α

T x + β ≥ 0 for all x ∈ MB(C)
I Tr(QYB) + α

T x + β ≥ 0 for all (x,YB) ∈MB(C)

I −Q � 0: xT
BQxB + α

Tx + β ≥ 0 valid convex inequality
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Traveling salesman problem: Random instance

% closed % closed
instance gap (%) 25 cuts 50 cuts B-and-B B-and-C

Random n = 16 11.27 31.25 31.25 95.07 100.00

n = 16 3.11 50.00 100.00 92.23 100.00

n = 16 1.33 100.00 100.00 100.00 100.00

Random n = 20 6.84 38.46 46.15 93.16 94.22

n = 20 6.70 42.86 42.86 81.34 93.30

n = 20 6.77 44.45 55.56 93.23 94.74

Random n = 25 3.39 50.00 66.67 83.05 100.00

n = 25 4.24 60.00 80.00 79.05 100.00

n = 25 3.39 80.00 90.00 95.25 97.97

Random n = 30 0.69 100.00 100.00 97.24 100.00

n = 30 0.86 100.00 100.00 97.41 100.00

n = 30 0.77 50.00 100.00 96.93 100.00

Random n = 35 1.04 100.00 100.00 92.19 100.00

n = 35 0.51 100.00 100.00 96.46 100.00

n = 35 1.39 75.00 100.00 78.47 100.00
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Traveling salesman problem: TSPLIB problems

% closed % closed
instance gap (%) 25 cuts 50 cuts B-and-B B-and-C

burma14 4.45 20.3 25.0 100.00 100.00

ulysses16 7.30 5.7 6.3 97.08 98.58

gr17 13.2 12.0 13.8 90.12 90.94

ulysses22 9.78 7.70 7.85 92.73 100.00

gr24 3.30 19.05 21.43 76.58 92.80

fri26 5.12 5.26 7.02 82.29 97.55

bayg29 3.54 12.50 13.89 95.47 95.47

bays29 3.56 12.50 13.89 82.98 90.40

I Small size !

I No warm start or dual simplex-like method.

Conic cuts



Conic IPs Are conic IPs useful? Solution techniques Gomory cuts “Lifting” cuts Computational results Conclusion

MLPs: Comparison of linear/SDP cuts

I Question: Are cuts from SDP relaxations superior?

I Control the complexity of SDP cut generation
I At each iteration, project LP into the space of fractional

variables
I Construct an SDP lifting with |B| ≤ 10
I Generate disjunctive cut for each index in the set B
I “Lift” cut to the space of all variables

I One linear cut for each fractional variable: no cut lifting
I L1 normalization: cut generation is an LP
I L2 normalization: cut generation is an SOCP

I Did not focus on time. Why not? No dual simplex.

Conic cuts
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Pure 0-1 LPs

problem semidefinite linear: L2 linear : L1

cuts iter % cuts iter % cuts iter %

LSB 120 32 100 182 35 100 477 45 100

LSC 520 50 94 627 50 90 767 50 89

PE4 104 25 100 175 31 100 265 42 100

PE5 250 40 100 305 45 100 348 50 98

PE6 342 42 100 442 50 97 540 50 89

PE7 470 50 100 576 50 91 688 50 78

Stein27 430 50 92 546 50 82 646 50 72

Stein45 467 50 84 620 50 73 890 50 57
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Mixed 0-1 LPs

problem semidefinite linear: L2 linear: L1

cuts iter % cuts iter % cuts iter %

CTN1 212 24 100 254 28 100 540 32 100

CTN2 289 32 100 378 42 100 613 50 95

CTN3 264 36 100 476 45 100 765 50 96

Danoint∗ 445 50 91 647 50 66 876 50 54

I SDP cuts are superior: Reduce both iters and cuts

I p small: L2 normalization close to SDP cuts

I SDP cuts are not likely to be facet defining

I Effective because initial relaxation is bad?
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Conclusion

I Mixed 0-1 conic programs are interesting!

I All techniques known for mixed 0-1 LPs extend readily

I “Quality” of conic relaxation is quite good

I But ... computational techniques are lacking

Conic cuts
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