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General B&B Framework (1)

Problem: max f(x)
s.t. x ∈M.

Step 0. Compute a compact set X ⊃ M of simple structure.
Compute an upper bound u(X) ≥ maxx∈M f(x), as well as a
lower bound `(X) ≤ maxx∈M f(x).
Let L be an empty list, and set k := 1.

Step 1. Partition X into ν compact subsets X1, . . . , Xν, and add
them to the list L.

Step 2. Calculate upper bounds u(Xi) ≥ maxx∈Xi∩M f(x) and
lower bounds `(Xi) ≤ maxx∈Xi∩M f(x) for all new sets Xi.



General B&B Framework (2)

Step 3. Update the current best upper and lower bounds: Put

uk := max
X∈L

u(X) and `k := max
X∈L

`(X).

Step 4. Discard elements from L which can not contain a global

optimizer, i.e. discard all elements X with the property

(i) X ∩M = ∅, or (ii) u(X) < `k.

Step 5. Select a new X ∈ L which is to be subdivided in

the next iteration, and remove it from L.

Step 6. While stopping criteria are not fulfilled, increment

k := k + 1, and go to Step 1.



Possible Selection Rules (1)

Traditional Rule:

Select the dominating set X

(i.e. the set with the highest

upper bound u(X)).

Convergence: guaranteed.
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Possible Selection Rules (2)

Stix’ Rule:

Select all sets whose upper

bound exceeds a certain

target value: u(X) ≥ τ .

Convergence: guaranteed.

Performance: improved.
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Possible Selection Rules (3)

Csendes’ Rule:

Select the set for which

I(X) =
u(X)−maxx∈M f(x)

u(X)− `(X)

is maximized.

Convergence:

not guaranteed.

Performance: very good.
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Idea: Probabilistic Selection Rule
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Some sets “more likely” to contain global solution than others.

Therefore: select according to a probability distribution!

P k(Xi is selected in iteration k) ∝
u(Xi)− `k

uk − `k
.



Some Definitions

Definition 1:

A partitioning procedure is called exhaustive, if every nested se-

quence {Xi}i∈IN of partition sets eventually shrinks to a singleton:⋂
i∈IN

Xi = {x∗}.

Definition 2:

We say that a bounding procedure has the zero convergence

property, if for every exhaustive sequence {Xi}i∈IN of subsets of

X0 we have

lim
i→∞

u(Xi) = lim
i→∞

`(Xi).



Convergence of B&B

Proposition:

Assume that in a Branch–and–Bound procedure

(a) a selection rule is used which ensures that the dominating

set is chosen infinitely often,

(b) an exhaustive partitioning procedure is used, and

(c) the bounding procedure has the zero convergence property.

Then the B&B procedure is convergent, i.e.

lim
k→∞

uk = lim
k→∞

`k.



Convergence of B&B with Probabilistic
Selection Rule

Theorem:

Assume that in a Branch–and–Bound procedure

(a) a probabilistic selection rule is used which fulfills

∞∑
k=0

P k(Xk is selected in iteration k) = +∞,

(b) an exhaustive partitioning procedure is used, and

(c) the bounding procedure has the zero convergence property.

Then the B&B procedure converges with probability 1.



Which probabilistic selection rules fulfill
convergence conditions? (1)

P k(Xi is selected in iteration k) =
u(Xi)− `k∑

X∈Lk

(u(X)− `k)
.

The dominating set is assigned the highest probability among all

X ∈ Lk, and |Lk| ≤ kν.

P k(Xk is selected in iteration k) ≥
1

kν
.

Therefore:
∞∑

k=0

P k(Xk is selected in iteration k) ≥
1

ν

∞∑
k=0

1

k
= +∞.



Which probabilistic selection rules fulfill
convergence conditions? (2)

Theorem:

Assume that in a Branch–and–Bound procedure

(a) a selection rule is used which ensures that in each itera-

tion the dominating set is assigned the highest probability

among all elements of the list,

(b) the number of elements in the list increases at most linearly

in the iterations,

(c) an exhaustive partitioning procedure is used, and

(d) the bounding procedure has the zero convergence property.

Then the B&B procedure is convergent with probability 1.



Which probabilistic selection rules fulfill
convergence conditions? (3)

Other possibility:

P ′
k(Xi is selected in iteration k) =

F

(
u(Xi)−`k

uk−`k

)
∑

X∈Lk

F

(
u(X)−`k

uk−`k

),

where F is any probability distribution function on [0,1].

Order of probabilities of the sets does not change:

P k(Xi) ≤ P k(Xj) ⇐⇒ P ′
k(Xi) ≤ P ′

k(Xj).

⇒ Convergence conditions fulfilled.



Special Instances of F (1)

Uniform distribution:

yields our original probability

measure:
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P k(Xi is selected in iteration k) =
u(Xi)− `k∑

X∈Lk

(u(X)− `k)
.



Special Instances of F (2)

Distribution F 2:

F2(x) =

{
0 . . . 0 ≤ x < 1
1 . . . x = 1
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yields the purely deterministic selection rule:

Always select the set with the highest upper bound.



Special Instances of F (3)

Distribution F 3:

F3(x) = 1 for 0 ≤ x ≤ 1.
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yields the purely random selection rule:

P 3
k(Xi is selected in iteration k) =

1∑
X∈L

1
=

1

|L|
,



Numerical Tests on Maximum Clique
Problem

Reformulation:

maxxTAGx

s.t. x ∈ ∆
(?)

where: AG is regularization of adjacency matrix – indefinite!!
∆ is the standard simplex.

Theorem (I.M.Bomze):

There is a one to one correspondance between:

1.) local solutions of (?) and maximal cliques,

2.) global solutions of (?) and maximum cliques.

We used DIMACS benchmark graphs as testproblems.



Performance: san200 0.9 1



Performance: san200 0.9 3



Performance: san200 0.9 2



Experiments on DIMACS Graphs:

name dimension random best performance
min. avg. max. bound

brock200 1 200 1497 1935.45 2103 2802 69%
brock400 1 400 25 72.85 102 105 69%
brock400 2 400 17 67.20 107 90 71%
brock400 3 400 41 163.45 259 99 165%
brock400 4 400 8 254.45 560 330 77%
MANN a27 378 9 16.25 30 123 13%
p hat300-2 300 2833 4603.75 5079 3628 127%
p hat300-3 300 53 145.10 288 156 93%
san200 0.9 2 200 136 253.90 348 243 104%
san200 0.9 3 200 92 853.2 1732 885 96%
san400 0.7 1 400 23 142.30 207 88 162%
san400 0.7 2 400 688 1046.60 1865 2777 38%
san400 0.7 3 400 38 833.70 1291 462 181%
san400 0.9 1 400 18 192.10 511 272 71%
sanr200 0.7 200 12 77.25 132 144 53%
sanr200 0.9 200 694 3468.05 8613 3512 98%
sanr400 0.7 400 44 216.90 372 257 84%


