Probabilistic Subproblem Selection in

 Branch-and-Bound Algorithms

 Branch-and-Bound Algorithms}

Mirjam Dür

Volker Stix

WIRTSCHAFTS
UNIVERSITÄT

General B\&B Framework (1)

Problem:

$$
\begin{gathered}
\max f(x) \\
\text { s.t. } \quad x \in \mathcal{M}
\end{gathered}
$$

Step 0. Compute a compact set $X \supset \mathcal{M}$ of simple structure. Compute an upper bound $u(X) \geq \max _{x \in \mathcal{M}} f(x)$, as well as a lower bound $\ell(X) \leq \max _{x \in \mathcal{M}} f(x)$.
Let \mathcal{L} be an empty list, and set $k:=1$.

Step 1. Partition X into ν compact subsets X_{1}, \ldots, X_{ν}, and add them to the list \mathcal{L}.

Step 2. Calculate upper bounds $u\left(X_{i}\right) \geq \max _{x \in X_{i} \cap \mathcal{M}} f(x)$ and lower bounds $\ell\left(X_{i}\right) \leq \max _{x \in X_{i} \cap \mathcal{M}} f(x)$ for all new sets X_{i}.

General B\&B Framework (2)

Step 3. Update the current best upper and lower bounds: Put

$$
u_{k}:=\max _{X \in \mathcal{L}} u(X) \quad \text { and } \quad \ell_{k}:=\max _{X \in \mathcal{L}} \ell(X)
$$

Step 4. Discard elements from \mathcal{L} which can not contain a global optimizer, i.e. discard all elements X with the property (i) $X \cap \mathcal{M}=\emptyset$, or (ii) $u(X)<\ell_{k}$.

Step 5. Select a new $X \in \mathcal{L}$ which is to be subdivided in the next iteration, and remove it from \mathcal{L}.

Step 6. While stopping criteria are not fulfilled, increment $k:=k+1$, and go to Step 1.

Possible Selection Rules (1)

Traditional Rule:

Select the dominating set \bar{X} (i.e. the set with the highest upper bound $u(X)$).

Convergence: guaranteed.

Possible Selection Rules (2)

Stix' Rule:

Select all sets whose upper bound exceeds a certain target value: $u(X) \geq \tau$.

Convergence: guaranteed.

Performance: improved.

Possible Selection Rules (3)

Csendes' Rule:

Select the set for which

$$
I(X)=\frac{u(X)-\max _{x \in \mathcal{M}} f(x)}{u(X)-\ell(X)}
$$

is maximized.

Convergence:
not guaranteed.

Performance: very good.

Idea: Probabilistic Selection Rule

Some sets "more likely" to contain global solution than others.
Therefore: select according to a probability distribution!

$$
\boldsymbol{P}_{k}\left(X_{i} \text { is selected in iteration } k\right) \propto \frac{u\left(X_{i}\right)-\ell_{k}}{u_{k}-\ell_{k}}
$$

Some Definitions

Definition 1:

A partitioning procedure is called exhaustive, if every nested sequence $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ of partition sets eventually shrinks to a singleton:

$$
\bigcap_{i \in \mathbb{N}} X_{i}=\left\{x^{*}\right\}
$$

Definition 2:

We say that a bounding procedure has the zero convergence property, if for every exhaustive sequence $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ of subsets of X_{0} we have

$$
\lim _{i \rightarrow \infty} u\left(X_{i}\right)=\lim _{i \rightarrow \infty} \ell\left(X_{i}\right)
$$

Convergence of B\&B

Proposition:

Assume that in a Branch-and-Bound procedure
(a) a selection rule is used which ensures that the dominating set is chosen infinitely often,
(b) an exhaustive partitioning procedure is used, and
(c) the bounding procedure has the zero convergence property.

Then the $B \& B$ procedure is convergent, i.e.

$$
\lim _{k \rightarrow \infty} u_{k}=\lim _{k \rightarrow \infty} \ell_{k}
$$

Convergence of B\&B with Probabilistic Selection Rule

Theorem:

Assume that in a Branch-and-Bound procedure
(a) a probabilistic selection rule is used which fulfills

$$
\sum_{k=0}^{\infty} \boldsymbol{P}_{k}\left(\bar{X}_{k} \text { is selected in iteration } k\right)=+\infty
$$

(b) an exhaustive partitioning procedure is used, and
(c) the bounding procedure has the zero convergence property.

Then the B\&B procedure converges with probability 1.

Which probabilistic selection rules fulfill convergence conditions? (1)

$$
\boldsymbol{P}_{k}\left(X_{i} \text { is selected in iteration } k\right)=\frac{u\left(X_{i}\right)-\ell_{k}}{\sum_{X \in \mathcal{L}_{k}}\left(u(X)-\ell_{k}\right)} .
$$

The dominating set is assigned the highest probability among all $X \in \mathcal{L}_{k}$, and $\left|\mathcal{L}_{k}\right| \leq k \nu$.

$$
\boldsymbol{P}_{k}\left(\bar{X}_{k} \text { is selected in iteration } k\right) \geq \frac{1}{k \nu} .
$$

Therefore:

$$
\sum_{k=0}^{\infty} \boldsymbol{P}_{k}\left(\bar{X}_{k} \text { is selected in iteration } k\right) \geq \frac{1}{\nu} \sum_{k=0}^{\infty} \frac{1}{k}=+\infty
$$

Which probabilistic selection rules fulfill convergence conditions? (2)

Theorem:

Assume that in a Branch-and-Bound procedure
(a) a selection rule is used which ensures that in each iteration the dominating set is assigned the highest probability among all elements of the list,
(b) the number of elements in the list increases at most linearly in the iterations,
(c) an exhaustive partitioning procedure is used, and
(d) the bounding procedure has the zero convergence property.

Then the $B \& B$ procedure is convergent with probability 1.

Which probabilistic selection rules fulfill convergence conditions? (3)

Other possibility:

$$
\boldsymbol{P}_{k}^{\prime}\left(X_{i} \text { is selected in iteration } k\right)=\frac{F\left(\frac{u\left(X_{i}\right)-\ell_{k}}{u_{k}-\ell_{k}}\right)}{\sum_{X \in \mathcal{L}_{k}} F\left(\frac{u(X)-\ell_{k}}{u_{k}-\ell_{k}}\right)},
$$

where F is any probability distribution function on $[0,1]$.
Order of probabilities of the sets does not change:

$$
\boldsymbol{P}_{k}\left(X_{i}\right) \leq \boldsymbol{P}_{k}\left(X_{j}\right) \quad \Longleftrightarrow \quad \boldsymbol{P}_{k}^{\prime}\left(X_{i}\right) \leq \boldsymbol{P}_{k}^{\prime}\left(X_{j}\right)
$$

\Rightarrow Convergence conditions fulfilled.

Special Instances of F (1)

Uniform distribution:

yields our original probability measure:

$$
\boldsymbol{P}_{k}\left(X_{i} \text { is selected in iteration } k\right)=\frac{u\left(X_{i}\right)-\ell_{k}}{\sum_{X \in \mathcal{L}_{k}}\left(u(X)-\ell_{k}\right)}
$$

Special Instances of F (2)

Distribution \boldsymbol{F}^{2} :

$$
F^{2}(x)=\left\{\begin{array}{lll}
0 & \ldots & 0 \leq x<1 \\
1 & \ldots & x=1
\end{array}\right.
$$

yields the purely deterministic selection rule:

Always select the set with the highest upper bound.

Special Instances of \boldsymbol{F} (3)

Distribution \boldsymbol{F}^{3} :

$$
F^{3}(x)=1 \quad \text { for } \quad 0 \leq x \leq 1
$$

yields the purely random selection rule:

$$
\boldsymbol{P}_{k}^{3}\left(X_{i} \text { is selected in iteration } k\right)=\frac{1}{\sum_{X \in \mathcal{L}} 1}=\frac{1}{|\mathcal{L}|}
$$

Numerical Tests on Maximum Clique Problem

Reformulation:

$$
\begin{gather*}
\max x^{T} A_{\mathcal{G}} x \\
\text { s.t. } x \in \Delta
\end{gather*}
$$

where: $\quad A_{\mathcal{G}}$ is regularization of adjacency matrix - indefinite!! Δ is the standard simplex.

Theorem (I.M.Bomze):
There is a one to one correspondance between:
1.) local solutions of (\star) and maximal cliques,
2.) global solutions of (\star) and maximum cliques.

We used DIMACS benchmark graphs as testproblems.

Performance: san200_0.9_1

Performance: san200_0.9_3

Performance: san200_0.9_2

Experiments on DIMACS Graphs:

name	dimension	random avg.				max. bound
brock200_1	200	$\mathbf{1 4 9 7}$	$\mathbf{1 9 3 5 . 4 5}$	$\mathbf{2 1 0 3}$	2802	performance
brock400_1	400	25	$\mathbf{7 2 . 8 5}$	$\mathbf{1 0 2}$	105	69%
brock400_2	400	$\mathbf{1 7}$	$\mathbf{6 7 . 2 0}$	107	90	69%
brock400_3	400	$\mathbf{4 1}$	163.45	259	99	71%
brock400_4	400	$\mathbf{8}$	$\mathbf{2 5 4 . 4 5}$	560	330	165%
MANN_a27	378	$\mathbf{9}$	$\mathbf{1 6 . 2 5}$	30	123	77%
p_hat300-2	300	2833	4603.75	5079	3628	13%
p_hat300-3	300	53	$\mathbf{1 4 5 . 1 0}$	288	156	127%
san200_0.9_2	200	$\mathbf{1 3 6}$	253.90	348	243	93%
san200_0.9_3	200	$\mathbf{9 2}$	853.2	1732	885	104%
san400_0.7_1	400	23	142.30	207	88	96%
san400_0.7_2	400	$\mathbf{6 8 8}$	$\mathbf{1 0 4 6 . 6 0}$	$\mathbf{1 8 6 5}$	2777	162%
san400_0.7_3	400	38	833.70	1291	462	38%
san400_0.9_1	400	$\mathbf{1 8}$	$\mathbf{1 9 2 . 1 0}$	511	272	181%
sanr200_0.7	200	$\mathbf{1 2}$	$\mathbf{7 7 . 2 5}$	$\mathbf{1 3 2}$	144	71%
sanr200_0.9	200	$\mathbf{6 9 4}$	$\mathbf{3 4 6 8 . 0 5}$	8613	3512	53%
sanr400_0.7	400	$\mathbf{4 4}$	$\mathbf{2 1 6 . 9 0}$	372	257	98%

