Probabilistic Subproblem Selection in Branch–and–Bound Algorithms

Mirjam Dür

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Volker Stix

General B&B Framework (1)

Problem:

 $\max f(x)$
s.t. $x \in \mathcal{M}$.

Step 0. Compute a compact set $X \supset \mathcal{M}$ of simple structure. Compute an upper bound $u(X) \ge \max_{x \in \mathcal{M}} f(x)$, as well as a lower bound $\ell(X) \le \max_{x \in \mathcal{M}} f(x)$. Let \mathcal{L} be an empty list, and set k := 1.

Step 1. Partition X into ν compact subsets X_1, \ldots, X_{ν} , and add them to the list \mathcal{L} .

Step 2. Calculate upper bounds $u(X_i) \ge \max_{x \in X_i \cap \mathcal{M}} f(x)$ and lower bounds $\ell(X_i) \le \max_{x \in X_i \cap \mathcal{M}} f(x)$ for all new sets X_i .

General B&B Framework (2)

Step 3. Update the current best upper and lower bounds: Put

$$u_k := \max_{X \in \mathcal{L}} u(X)$$
 and $\ell_k := \max_{X \in \mathcal{L}} \ell(X).$

Step 4. Discard elements from \mathcal{L} which can not contain a global optimizer, i.e. discard all elements X with the property (i) $X \cap \mathcal{M} = \emptyset$, or (ii) $u(X) < \ell_k$.

Step 5. Select a new $X \in \mathcal{L}$ which is to be subdivided in the next iteration, and remove it from \mathcal{L} .

Step 6. While stopping criteria are not fulfilled, increment k := k + 1, and go to Step 1.

Possible Selection Rules (1)

Traditional Rule:

Select the dominating set \overline{X} (i.e. the set with the highest upper bound u(X)).

Convergence: guaranteed.

Possible Selection Rules (2)

Stix' Rule:

Select all sets whose upper bound exceeds a certain target value: $u(X) \ge \tau$.

Convergence: guaranteed.

Performance: improved.

Possible Selection Rules (3)

Csendes' Rule:

Select the set for which $I(X) = \frac{u(X) - \max_{x \in \mathcal{M}} f(x)}{u(X) - \ell(X)}$ is maximized.

Convergence: not guaranteed.

Performance: very good.

Idea: Probabilistic Selection Rule

Some sets "more likely" to contain global solution than others.

Therefore: select according to a probability distribution!

$$oldsymbol{P}_k(X_i ext{ is selected in iteration } k) \propto rac{u(X_i)-\ell_k}{u_k-\ell_k}$$

Some Definitions

Definition 1:

A partitioning procedure is called exhaustive, if every nested sequence $\{X_i\}_{i \in \mathbb{N}}$ of partition sets eventually shrinks to a singleton:

$$\bigcap_{i \in \mathbb{N}} X_i = \{x^*\}.$$

Definition 2:

We say that a bounding procedure has the zero convergence property, if for every exhaustive sequence $\{X_i\}_{i \in \mathbb{N}}$ of subsets of X_0 we have

$$\lim_{i \to \infty} u(X_i) = \lim_{i \to \infty} \ell(X_i).$$

Convergence of B&B

Proposition:

Assume that in a Branch–and–Bound procedure

- (a) a selection rule is used which ensures that the dominating set is chosen infinitely often,
- (b) an exhaustive partitioning procedure is used, and
- (c) the bounding procedure has the zero convergence property.

Then the B&B procedure is convergent, i.e.

 $\lim_{k \to \infty} u_k = \lim_{k \to \infty} \ell_k.$

Convergence of B&B with Probabilistic Selection Rule

Theorem:

Assume that in a Branch–and–Bound procedure

(a) a probabilistic selection rule is used which fulfills

 $\sum_{k=0}^{\infty} \mathbf{P}_k(\overline{X}_k \text{ is selected in iteration } k) = +\infty,$

- (b) an exhaustive partitioning procedure is used, and
- (c) the bounding procedure has the zero convergence property.

Then the B&B procedure converges with probability 1.

Which probabilistic selection rules fulfill convergence conditions? (1)

$$P_k(X_i \text{ is selected in iteration } k) = \frac{u(X_i) - \ell_k}{\sum\limits_{X \in \mathcal{L}_k} (u(X) - \ell_k)}.$$

The dominating set is assigned the highest probability among all $X \in \mathcal{L}_k$, and $|\mathcal{L}_k| \leq k\nu$.

$$oldsymbol{P}_k(\,\overline{X}_k \,\, ext{is selected in iteration} \,\, k) \geq rac{1}{k
u}$$

Therefore:

$$\sum_{k=0}^{\infty} \boldsymbol{P}_k(\overline{X}_k \text{ is selected in iteration } k) \geq \frac{1}{\nu} \sum_{k=0}^{\infty} \frac{1}{k} = +\infty.$$

Which probabilistic selection rules fulfill convergence conditions? (2)

Theorem:

Assume that in a Branch–and–Bound procedure

- (a) a selection rule is used which ensures that in each iteration the dominating set is assigned the highest probability among all elements of the list,
- (b) the number of elements in the list increases at most linearly in the iterations,
- (c) an exhaustive partitioning procedure is used, and
- (d) the bounding procedure has the zero convergence property.

Then the B&B procedure is convergent with probability 1.

Which probabilistic selection rules fulfill convergence conditions? (3)

Other possibility:

$$\mathbf{P}_{k}'(X_{i} \text{ is selected in iteration } k) = \frac{F\left(\frac{u(X_{i})-\ell_{k}}{u_{k}-\ell_{k}}\right)}{\sum\limits_{X \in \mathcal{L}_{k}} F\left(\frac{u(X)-\ell_{k}}{u_{k}-\ell_{k}}\right)},$$

where F is any probability distribution function on [0, 1].

Order of probabilities of the sets does not change:

$$P_k(X_i) \leq P_k(X_j) \quad \iff \quad P'_k(X_i) \leq P'_k(X_j).$$

 \Rightarrow Convergence conditions fulfilled.

Special Instances of F(1)

Uniform distribution:

yields our original probability measure:

 $P_k(X_i \text{ is selected in iteration } k) = \frac{u(X_i) - \ell_k}{\sum\limits_{X \in \mathcal{L}_k} (u(X) - \ell_k)}.$

Special Instances of F (2)

yields the purely deterministic selection rule:

Always select the set with the highest upper bound.

Special Instances of F (3)

Distribution F^3 :

 $F^{3}(x) = 1$ for $0 \le x \le 1$.

yields the purely random selection rule:

$$P_k^3(X_i \text{ is selected in iteration } k) = \frac{1}{\sum\limits_{X \in \mathcal{L}} 1} = \frac{1}{|\mathcal{L}|},$$

Numerical Tests on Maximum Clique Problem

Reformulation:

$$\max x^T A_{\mathcal{G}} x \tag{(\star)}$$
 s.t. $x \in \Delta$

where: $A_{\mathcal{G}}$ is regularization of adjacency matrix – indefinite!! Δ is the standard simplex.

Theorem (I.M.Bomze):

There is a one to one correspondance between:

- 1.) local solutions of (\star) and maximal cliques,
- 2.) global solutions of (\star) and maximum cliques.

We used DIMACS benchmark graphs as testproblems.

Performance: san200_0.9_1

Performance: san200_0.9_3

Performance: san200_0.9_2

Experiments on DIMACS Graphs:

name	dimension		random		best	performance
		min.	avg.	max.	bound	
brock200_1	200	1497	1935.45	2103	2802	69%
brock400_1	400	25	72.85	102	105	69%
brock400_2	400	17	67.20	107	90	71%
brock400_3	400	41	163.45	259	99	165%
brock400_4	400	8	254.45	560	330	77%
MANN_a27	378	9	16.25	30	123	13%
p_hat300-2	300	2833	4603.75	5079	3628	127%
p_hat300-3	300	53	145.10	288	156	93%
san200_0.9_2	200	136	253.90	348	243	104%
san200_0.9_3	200	92	853.2	1732	885	96%
san400_0.7_1	400	23	142.30	207	88	162%
san400_0.7_2	400	688	1046.60	1865	2777	38%
san400_0.7_3	400	38	833.70	1291	462	181%
san400_0.9_1	400	18	192.10	511	272	71%
sanr200_0.7	200	12	77.25	132	144	53%
sanr200_0.9	200	694	3468.05	8613	3512	98%
sanr400_0.7	400	44	216.90	372	257	84%