Inverse Linear Programming

S. Dempe, S. Lohse

Technical University Bergakademie Freiberg, Germany dempe@math.tu-freiberg.de

Outline of the talk:

- 1. Problem formulation
- 2. Special case: Zero optimal function value
- 3. Relation to an MPEC
- 4. A sufficient optimality condition
- 5. A necessary optimality condition
- 6. Condition for global minimum

Let A be an (m,n)-matrix and $Y \subseteq \mathbb{R}^m \times \mathbb{R}^n$ be polyhedral and closed.

Parametric linear programming problem:

$$\Psi(b,c) := \operatorname{argmax}_{x} \{c^{\top}x : Ax = b, x \ge 0\}.$$

Given $x^0 \in \mathbb{R}^n$:

Inverse Linear Programming Problem:

Find $(x^*, b^*, c^*) \in \mathbb{R}^n \times Y$ solving

$$\min_{x,b,c} \{ \|x - x^0\|^2 : x \in \Psi(b,c), \ (b,c) \in Y \}$$
(1)

Problem Formulation

Applications:

- 1. Parameter identification
- 2. "Best" solutions of multiobjective linear programming problems
- 3. "Improving" optimal solutions of linear programming problems

R.K.Ahuja & J.B. Orlin: Inverse Optimization, Oper.Res. 2001

Main Assumption (A1):

$$\exists (b^0, c^0) \in Y : x^0 \in \Psi(b^0, c^0).$$

Then: secondary goal

Given (b^*, c^*) :

$$\min_{b,c} \{ \| (b,c)^\top - (b^*,c^*)^\top \|_r : x^0 \in \Psi(b,c) \}.$$
 (2)

Zero optimal function value

Definition: $\mathcal{R}(y) := \{(b,c)^\top : y \in \Psi(b,c)\}$ is the *Region of Stability* for the point y.

Theorem: For a linear programming problem, the region of stability is a polyhedral set.

$$\mathcal{R}(x^{0}) = \{ (b,c)^{\top} : \exists u \text{ with } A^{\top}u \ge c, \\ x^{0\top}(A^{\top}u - c) = 0, \ Ax^{0} = b \}.$$

Corollary (R.K.Ahuja & J.B. Orlin): Problem (2) is a linear programming problem provided that $r \in \{1, \infty\}$.

Assumption (A1) is not longer used!

Relation to an MPEC

From now on:

Let b be fixed for simplicity.

Region of stability:

Definition: $\mathcal{R}(y) := \{c : y \in \Psi(c)\}$ is the *Region of Stability* for the point y. Without assumption (A1) we get a bilevel programming problem:

The resulting problem is: nonconvex, with implicitly determined feasible set.

Relation to an MPEC

Approaches to obtain optimality conditions for bilevel programs $\min_{x,y} \{F(x,y) : x \in \Psi(y), y \in Y\}$:

1. If $|\Psi(y)| \leq 1 \ \forall \ y \in Y$ then:

$$\min_{x,y} \{ F(y(x), y) : y \in Y \}$$

This is a problem with nondifferentiable objective function; apply nondifferential calculus.

Bouligand stationary solution, Clarke stationary solution.

D., 1992

Here: Not possible.

2. Reformulate (1) using the KKT conditions for the lower level problem: $\Psi(y) = \underset{x}{\operatorname{argmin}} \{f(x,y) : g(x,y) \leq 0\}$ leading to

$$F(x,y) \rightarrow \min_{x,y,u}$$

$$\nabla_x \{ f(x,y) + u^\top g(x,y) \} = 0$$

$$u \ge 0, g(x,y) \le 0, u^\top g(x,y) = 0$$

$$y \in Y$$

Use MPEC-MFCQ or MPEC-LICQ to obtain necessary optimality conditions Bouligand stationary solution, Clarke stationary solution.

Scheel, Scholtes, 2000

3. Let

 $T_{\Psi(y)}(x)$ denote the tangent cone to grph $\Psi(y)$ at some point (x, y),

 $T_Y(y)$ – tangent cone to Y at y.

Then we get the necessary optimality condition

$$abla F(x,y)(d,r) \ge 0$$

 $orall (d,r) \in T_{\Psi(y)}(x), \ r \in T_Y(y)$

This implies Bouligand stationarity Pang, Fukushima, 1999

Relation to an MPEC

Transform (1):

$$\min_{x,c}\{\|x-x^{0}\|^{2} : x \in \Psi(c), \ c \in Y\}$$
into an (MPEC):

$$\min_{x,b,c,u} \|x-x^{0}\|^{2}$$
subject to

$$Ax = b, \ x \ge 0$$

$$A^{\top}u \ge c$$

$$x^{\top}(A^{\top}u-c) = 0,$$

$$(b,c)^{\top} \in Y.$$
(3)

Let $\mathcal{R}(y) := \{c : y \in \Psi(c)\}.$

Theorem: Let $(\overline{x}, \overline{c})$ be such that $\overline{c}^{\top} \in Y \cap \operatorname{int} \mathcal{R}(\overline{x})$ and $|\Psi(\overline{c})| = 1$. Then, $(\overline{x}, \overline{c}, \overline{u})$ is a locally optimal solution of (3).

Proof: For all feasible points (x, c, u) for (3) sufficiently close to $(\overline{x}, \overline{c}, \overline{u})$ there is $x = \overline{x}$ by $\overline{c}^{\top} \in \operatorname{int} \mathcal{R}(\overline{x})$.

Relation to an MPEC

Corollary: There are an infinite number of locally optimal solutions of (3).

Definition: A point (x^*, c^*) is a locally optimal solution of problem (2) if there is an open neighborhood V of x^* such that $||x - x^0||^2 \ge ||x^* - x^0||^2$ for all c, x with $c \in Y$, $x \in \Psi(c)$, $x \in V$.

A sufficient optimality condition

Theorem: Consider a point (x^*, c^*) such that $c^* \in Y, x^* \in \Psi(c^*)$ and

$$\mathcal{R}(x^*) = \{c^*\}$$

as well as

$$x^* \in \underset{x}{\operatorname{argmin}} \{ \|x - x^0\|^2 : x \in \Psi(c^*) \}.$$

Then, (x^*, c^*) is locally optimal for (2).

Proof: Let \hat{x} be close to x^* such that $\hat{x} \in \Psi(\hat{c})$ for some $\hat{c} \in Y$. Since the sets $\Psi(\cdot)$ are closed polyhedral sets, $|\mathcal{R}(x^*)| = 1$ implies that $\mathcal{R}(x) = \{c^*\}$ for all x sufficiently close to x^* with $\mathcal{R}(x) \neq \emptyset$. Hence, $\hat{x} \in \Psi(c^*)$ implying the proof.

A necessary optimality condition

General assumption: Y is bounded.

Lemma: Let c^1, \ldots, c^t be the vertices of $\mathcal{R}(x^*) \cap Y$. (x^*, c^*) is a locally optimal solution of (2) if and only if

$$x^* \in \underset{x}{\operatorname{argmin}} \{ \|x - x^0\|^2 : x \in \Psi(c^i) \}, \ i = 1, \dots, t.$$
(4)

Proof: Local optimality of (x^*, c^*) is equivalent to

$$\|\widehat{x} - x^0\|^2 \ge \|x^0 - x^*\|^2 \tag{5}$$

for all \hat{x} sufficiently close to x^* with $\hat{x} \in \Psi(\hat{c})$ for some $\hat{c} \in Y$. This is equivalent to $\hat{c} \in \mathcal{R}(\hat{x}) \cap Y$. Since $\mathcal{R}(\hat{x}) \cap Y$ is a convex polyhedron, \hat{c} can be taken as a vertex of $\mathcal{R}(\hat{x}) \cap Y$.

If (4) is not valid, $x^* \in \Psi(c^i)$ and convexity implies the proof.

If (x^*, c^*) is not locally optimal, (5) is not valid for a sequence $\{(x^s, c^s)\}$ with $\lim_{s\to\infty} x^s = x^*, c^s$ vertex of $\mathcal{R}(x^s) \cap Y$. Upper semicontinuity of $\mathcal{R}(\cdot) \cap Y$ then implies that c^s converges to a vertex of $\mathcal{R}(x^*) \cap Y$. Finiteness of the number of all such vertices implies that c^s is a vertex of $\mathcal{R}(x^*) \cap Y$ for large s. Convexity now proves the Lemma. Let $T_{\Psi(c)}(x)$ denote the tangent cone to $\Psi(c)$ at a point $x \in \Psi(c)$.

Theorem: Let (x^*, c^*) be a locally optimal solution of the problem (2). Then, $\forall i = 1, ..., t$ we have

$$(x^* - x^0)^\top d \ge 0$$

$$\forall d \in T_{\Psi(c^i)}(x^*)$$

or equivalently

$$(x^* - x^0)^\top d \ge 0$$

 $\forall d \in \operatorname{conv} \bigcup_{i=1}^t T_{\Psi(c^i)}(x^*).$

Remark: If $|\Psi(c)| = 1$ for $c \in \operatorname{int} \mathcal{R}(x^*)$ then $T_{\Psi(c^i)}(x^*) = \{0\}$ for $c^i \in \operatorname{bd} Y \cap \operatorname{int} \mathcal{R}(x^*)$.

Theorem: Let (x^*, c^*) be a feasible solution of the problem (2). Then, (x^*, c^*) is a local minimum if

$$(x^* - x^0)^\top d \ge 0$$

$$\forall d \in \operatorname{conv} \bigcup_{i=1}^t T_{\Psi(c^i)}(x^*).$$

Proof: The condition of the Theorem implies

$$(x^* - x^0)^\top d \ge 0 \ \forall \ d \in \bigcup_{i=1}^t T_{\Psi(c^i)}(x^*) \Rightarrow$$

 $(x^* - x^0)^\top d \ge 0 \ \forall \ d \in T_{\Psi(c^i)}(x^*) \ \forall \ i = 1, \dots, t.$

By strong convexity this shows that x^* is a global optimum of

 $\min\{||x - x^0||^2 : x \in \Psi(c^i)\} \forall i = 1, \dots, t.$ Hence, x^* is a global optimal solution of

$$\min\{\|x - x^0\|^2 : x \in \bigcup_{i=1}^t \Psi(c^i)\}.$$

$$I(x) = \{i : x_i = 0\}$$

$$I(y,c) = \{j : (A^\top y - c)_j > 0\}$$

$$\mathcal{I}(x) = \{I(y,c) : c \in \{c^1, \dots, c^t\}, A^\top y - c \ge 0, (A^\top y - c)_j = 0, j \notin I(x)\}$$

$$(c^i \text{ vertex of } \mathcal{R}(x^*) \cap Y)$$

$$I^{0}(x) = \bigcap_{I \in \mathcal{I}(x)} I$$

Then:

$$T_{\Psi(\cdot)}(x) = \bigcup_{I \in \mathcal{I}(x)} T_I(x)$$

with

$$T_I(x) = \{d : Ad = 0, d_j \ge 0, j \in I(x) \setminus I, d_j = 0, j \in I\}.$$

Tangent cone

 $i_0 \not\in I^0(x)$ if and only if the following system has a solution:

$$A^{\top}y - c \ge 0$$

$$(A^{\top}y - c)_j = 0, \ j \notin I(x)$$

$$(A^{\top}y - c)_j = 0, \ \text{for } j = i_0$$

$$c \in Y$$

Tangent cone

$$T_R(x) = \{ d : Ad = 0, d_j \ge 0, j \in I(x) \setminus I^0(x), \\ d_j \ge 0, j \in I^0(x) \}.$$

Theorem: If span $\{A_i : i \notin I(\overline{x})\} = \mathbb{R}^m$, then cone $T_{\Psi(\cdot)}(\overline{x}) = T_R(\overline{x})$.

Corollary: For this special problem, verification of the necessary and sufficient optimality conditions belongs to \mathcal{P} .

Theorem: Let (x^*, c^*) be local optimal solution for (2), assume that $\mathcal{R}(x^*) \subseteq Y$. If (x^*, c^*) is not a global optimum, then $|\mathcal{R}(x^*)| = 1$.

Proof: Assume, $\mathcal{R}(x^*)$ contains infinitely many elements with vertices $c^1, \ldots, c^t, t > 1$. Then,

$${x \ge 0 : Ax = b} \subseteq {x^*} + \operatorname{conv} \bigcup_{i=1}^t T_{c^i}(x^*).$$

Local optimality of (x^*, c^*) implies that

$$(x^* - x^0)^\top d \ge 0 \ \forall \ d \in \operatorname{conv} \bigcup_{i=1}^t T_{\Psi(c^i)}(x^*). \Rightarrow$$

$$(x^* - x^0)^\top (y - x^*) \ge 0 \ \forall \ y \in \{x^*\} + \operatorname{conv} \bigcup_{i=1}^t T_{\Psi(c^i)}(x^*),$$

$$\Rightarrow (x^* - x^0)^\top (y - x^*) \ge 0 \ \forall \ y \in \operatorname{conv} \bigcup_{c \in Y} \Psi(c)$$

 $\Rightarrow x^*$ is projection of x^0 on conv $\bigcup_{c \in Y} \Psi(c)$.