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Problem Formulation

Let A be an (m,n)-matrix and Y ⊆ Rm×Rn be

polyhedral and closed.

Parametric linear programming problem:

Ψ(b, c) := argmax
x

{c>x : Ax = b, x ≥ 0}.

Given x0 ∈ Rn :

Inverse Linear Programming Problem:

Find (x∗, b∗, c∗) ∈ Rn × Y solving

min
x,b,c

{‖x− x0‖2 : x ∈ Ψ(b, c), (b, c) ∈ Y } (1)



Problem Formulation

Applications:

1. Parameter identification

2. ”Best” solutions of multiobjective linear pro-

gramming problems

3. ”Improving” optimal solutions of linear pro-

gramming problems



Zero optimal function value

R.K.Ahuja & J.B. Orlin: Inverse Optimization,

Oper.Res. 2001

Main Assumption (A1):

∃(b0, c0) ∈ Y : x0 ∈ Ψ(b0, c0).

Then: secondary goal

Given (b∗, c∗):

min
b,c

{‖(b, c)> − (b∗, c∗)>‖r : x0 ∈ Ψ(b, c)}. (2)



Zero optimal function value

Definition: R(y) := {(b, c)> : y ∈ Ψ(b, c)}
is the Region of Stability for the point y.

Theorem: For a linear programming problem,

the region of stability is a polyhedral set.

R(x0) = { (b, c)> : ∃ u with A>u ≥ c,

x0>(A>u− c) = 0, Ax0 = b}.

Corollary (R.K.Ahuja & J.B. Orlin): Prob-

lem (2) is a linear programming problem pro-

vided that r ∈ {1,∞}.

Assumption (A1) is not longer used!



Relation to an MPEC

From now on:

Let b be fixed for simplicity.

Region of stability:

Definition: R(y) := {c : y ∈ Ψ(c)}
is the Region of Stability for the point y.



Relation to an MPEC

Without assumption (A1) we get a bilevel pro-

gramming problem:

The resulting problem is: nonconvex, with im-

plicitly determined feasible set.



Relation to an MPEC

Approaches to obtain optimality conditions for

bilevel programs

minx,y{F (x, y) : x ∈ Ψ(y), y ∈ Y }:

1. If |Ψ(y)| ≤ 1 ∀ y ∈ Y then:

min
x,y

{F (y(x), y) : y ∈ Y }

This is a problem with nondifferentiable ob-

jective function; apply nondifferential cal-

culus.

Bouligand stationary solution, Clarke sta-

tionary solution.

D., 1992

Here: Not possible.



2. Reformulate (1) using the KKT conditions

for the lower level problem:

Ψ(y) = argmin
x

{f(x, y) : g(x, y) ≤ 0}

leading to

F (x, y) → min
x,y,u

∇x{f(x, y) + u>g(x, y)} = 0

u ≥ 0, g(x, y) ≤ 0, u>g(x, y) = 0

y ∈ Y

Use MPEC-MFCQ or MPEC-LICQ to ob-

tain necessary optimality conditions

Bouligand stationary solution, Clarke sta-

tionary solution.

Scheel, Scholtes, 2000



3. Let

TΨ(y)(x) denote the tangent cone to grphΨ(y)

at some point (x, y),

TY (y) – tangent cone to Y at y.

Then we get the necessary optimality con-

dition

∇F (x, y)(d, r) ≥ 0

∀ (d, r) ∈ TΨ(y)(x), r ∈ TY (y)

This implies Bouligand stationarity

Pang, Fukushima, 1999



Relation to an MPEC

Transform (1):
minx,c{‖x− x0‖2 : x ∈ Ψ(c), c ∈ Y }
into an (MPEC):

min
x,b,c,u

‖x− x0‖2

subject to Ax = b, x ≥ 0

A>u ≥ c (3)

x>(A>u− c) = 0,

(b, c)> ∈ Y.

Let R(y) := {c : y ∈ Ψ(c)}.

Theorem: Let (x, c) be such that
c> ∈ Y ∩ intR(x) and |Ψ(c)| = 1.
Then, (x, c, u) is a locally optimal solution of
(3).

Proof: For all feasible points (x, c, u) for (3)
sufficiently close to (x, c, u) there is x = x by
c> ∈ intR(x).



Relation to an MPEC

Corollary: There are an infinite number of lo-

cally optimal solutions of (3).



A sufficient optimality condition

Definition: A point (x∗, c∗) is a locally opti-

mal solution of problem (2) if there is an open

neighborhood V of x∗ such that ‖x − x0‖2 ≥
‖x∗ − x0‖2 for all c, x with c ∈ Y , x ∈ Ψ(c),

x ∈ V.



A sufficient optimality condition

Theorem: Consider a point (x∗, c∗) such that

c∗ ∈ Y, x∗ ∈ Ψ(c∗) and

R(x∗) = {c∗}

as well as

x∗ ∈ argmin
x

{‖x− x0‖2 : x ∈ Ψ(c∗)}.

Then, (x∗, c∗) is locally optimal for (2).

Proof: Let x̂ be close to x∗ such that x̂ ∈
Ψ(ĉ) for some ĉ ∈ Y. Since the sets Ψ(·) are

closed polyhedral sets, |R(x∗)| = 1 implies that

R(x) = {c∗} for all x sufficiently close to x∗

with R(x) 6= ∅. Hence, x̂ ∈ Ψ(c∗) implying the

proof.



A necessary optimality condition

General assumption: Y is bounded.

Lemma: Let c1, . . . , ct be the vertices of R(x∗)∩
Y . (x∗, c∗) is a locally optimal solution of (2)

if and only if

x∗ ∈ argmin
x

{‖x−x0‖2 : x ∈ Ψ(ci)}, i = 1, . . . , t.

(4)



A necessary optimality condition

Proof: Local optimality of (x∗, c∗) is equiva-
lent to

‖x̂− x0‖2 ≥ ‖x0 − x∗‖2 (5)

for all x̂ sufficiently close to x∗ with x̂ ∈ Ψ(ĉ) for
some ĉ ∈ Y . This is equivalent to ĉ ∈ R(x̂)∩Y .
Since R(x̂) ∩ Y is a convex polyhedron, ĉ can
be taken as a vertex of R(x̂) ∩ Y .

If (4) is not valid, x∗ ∈ Ψ(ci) and convexity
implies the proof.

If (x∗, c∗) is not locally optimal, (5) is not valid
for a sequence {(xs, cs)} with lims→∞ xs = x∗, cs

vertex of R(xs) ∩ Y . Upper semicontinuity of
R(·) ∩ Y then implies that cs converges to a
vertex of R(x∗) ∩ Y. Finiteness of the number
of all such vertices implies that cs is a vertex
of R(x∗)∩Y for large s. Convexity now proves
the Lemma.



A necessary optimality condition

Let TΨ(c)(x) denote the tangent cone to Ψ(c)

at a point x ∈ Ψ(c).

Theorem: Let (x∗, c∗) be a locally optimal so-

lution of the problem (2). Then, ∀ i = 1, . . . , t

we have

(x∗ − x0)>d ≥ 0

∀d ∈ TΨ(ci)(x
∗)

or equivalently

(x∗ − x0)>d ≥ 0

∀d ∈ conv
t⋃

i=1

TΨ(ci)(x
∗).

Remark: If |Ψ(c)| = 1 for c ∈ intR(x∗) then

TΨ(ci)(x
∗) = {0} for ci ∈ bdY ∩ intR(x∗).



A necessary optimality condition



A sufficient optimality condition

Theorem: Let (x∗, c∗) be a feasible solution
of the problem (2). Then, (x∗, c∗) is a local
minimum if

(x∗ − x0)>d ≥ 0

∀d ∈ conv
t⋃

i=1

TΨ(ci)(x
∗).

Proof: The condition of the Theorem implies

(x∗ − x0)>d ≥ 0 ∀ d ∈
t⋃

i=1

TΨ(ci)(x
∗) ⇒

(x∗ − x0)>d ≥ 0 ∀ d ∈ TΨ(ci)(x
∗) ∀ i = 1, . . . , t.

By strong convexity this shows that x∗ is a
global optimum of

min{‖x− x0‖2 : x ∈ Ψ(ci)} ∀ i = 1, . . . , t.

Hence, x∗ is a global optimal solution of

min{‖x− x0‖2 : x ∈
t⋃

i=1

Ψ(ci)}.



Tangent cone

I(x) = {i : xi = 0}

I(y, c) = {j : (A>y − c)j > 0}

I(x) = {I(y, c) : c ∈ {c1, . . . , ct}, A>y − c ≥ 0,

(A>y − c)j = 0, j 6∈ I(x)}

(ci vertex of R(x∗) ∩ Y )

I0(x) =
⋂

I∈I(x)
I

Then:

TΨ(·)(x) =
⋃

I∈I(x)
TI(x)

with

TI(x) =

{d : Ad = 0, dj ≥ 0, j ∈ I(x) \ I, dj = 0, j ∈ I}.



Tangent cone

i0 6∈ I0(x) if and only if the following system

has a solution:

A>y − c ≥ 0

(A>y − c)j = 0, j 6∈ I(x)

(A>y − c)j = 0, for j = i0

c ∈ Y



Tangent cone

TR(x) = {d : Ad = 0, dj ≥ 0, j ∈ I(x) \ I0(x),
dj ≥ 0, j ∈ I0(x)}.

Theorem: If span{Ai : i 6∈ I(x)} = Rm , then

cone TΨ(·)(x) = TR(x).

Corollary: For this special problem, verifica-

tion of the necessary and sufficient optimality

conditions belongs to P.



Global optimum

Theorem: Let (x∗, c∗) be local optimal solu-
tion for (2), assume that R(x∗) ⊆ Y. If (x∗, c∗)
is not a global optimum, then |R(x∗)| = 1.

Proof: Assume, R(x∗) contains infinitely many
elements with vertices c1, . . . , ct, t > 1. Then,

{x ≥ 0 : Ax = b} ⊆ {x∗}+ conv
t⋃

i=1

Tci(x∗).

Local optimality of (x∗, c∗) implies that

(x∗ − x0)>d ≥ 0 ∀ d ∈ conv
t⋃

i=1

TΨ(ci)(x
∗). ⇒

(x∗−x0)>(y−x∗) ≥ 0 ∀ y ∈ {x∗}+conv
t⋃

i=1

TΨ(ci)(x
∗),

⇒ (x∗ − x0)>(y − x∗) ≥ 0 ∀ y ∈ conv
⋃

c∈Y

Ψ(c)

⇒ x∗ is projection of x0 on conv
⋃

c∈Y
Ψ(c).


