Inverse Linear Programming
S. Dempe, S. Lohse

Technical University Bergakademie Freiberg,
Germany
dempe@math.tu-freiberg.de

Outline of the talk:

1. Problem formulation

2. Special case: Zero optimal function value
3. Relation to an MPEC

4. A sufficient optimality condition

5. A necessary optimality condition

6. Condition for global minimum



Problem Formulation

Let A be an (m,n)-matrix and Y C R™ x R"™ be
polyhedral and closed.

Parametric linear programming problem:
W(b,c) ;= argmax {c'z: Az =b, =z > 0}.
i

Given z0 € R :
Inverse Linear Programming Problem:

Find (z*,b% ¢*) € R™ x Y solving

min{||lz — z°||? 1 z € W(b,c), (b,c) eY} (1)

x,b,c



Problem Formulation

Applications:

1. Parameter identification

2. "Best” solutions of multiobjective linear pro-
gramming problems

3. "Improving”’ optimal solutions of linear pro-
gramming problems



Zero optimal function value

R.K.Ahuja & J.B. Orlin: Inverse Optimization,
Oper.Res. 2001

Main Assumption (A1l):
32,0 e v : 20 € w0, D).

Then: secondary goal

Given (b*,c*):

min{[|(b, o) = (") 12 e Wb, )} (2)



Zero optimal function value

Definition: R(y) := {(b,¢) " : y € W(b,c)}
is the Region of Stability for the point y.

Theorem: For a linear programming problem,
the region of stability is a polyhedral set.

R(z0) = { (b,c)T : 3 u with ATu > ¢,
2OT(ATu —¢) =0, Az0 =b}.

Corollary (R.K.Ahuja & J.B. Orlin): Prob-
lem (2) is a linear programming problem pro-
vided that r € {1, o0}.

Assumption (A1) is not longer used!



Relation to an MPEC

From now on:
Let b be fixed for simplicity.
Region of stability:

Definition: R(y) :={c:y € V(c)}
is the Region of Stability for the point y.



Relation to an MPEC

Without assumption (A1) we get a bilevel pro-
gramming problem:

X2 1 T max
C x=const. \ ' .XO

Y

The resulting problem is: nonconvex, with im-
plicitly determined feasible set.



Relation to an MPEC

Approaches to obtain optimality conditions for
bilevel programs
Ming y{F(z,y) 1z € V(y), y € Y}:

1. If [W(y)|<1VyeyY then:

min{F(y(z),y) 1y € Y}

This is a problem with nondifferentiable ob-
jective function; apply nondifferential cal-
culus.
Bouligand stationary solution, Clarke sta-
tionary solution.

D., 1992
Here: Not possible.



2. Reformulate (1) using the KKT conditions
for the lower level problem:

V(y) = argmin {f(z,y) : g(z,y) <O}

leading to

F(x,y) — min

x,y,u
Va{f(z,y) +u' g(z,y)} =0
u>0,g(z,y) <0,u g(z,y) =0
yey

Use MPEC-MFCQ or MPEC-LICQ to ob-
tain necessary optimality conditions
Bouligand stationary solution, Clarke sta-

tionary solution.
Scheel, Scholtes, 2000



3. Let
Tw(y)(:c) denote the tangent cone to grphW(y)
at some point (z,v),
Ty (y) — tangent cone to Y at y.
Then we get the necessary optimality con-
dition

VF(x,y)(d,7) >0
\vd (d,?“) - Tw(y)(w), T E Ty(y)

This implies Bouligand stationarity
Pang, Fukushima, 1999



Relation to an MPEC

Transform (1):
ming c{||lz — 20| : z € W(c), c€ Y}
into an (MPECQC):

min |z — 202
x,b,c,u
subject to Ar=b, £ >0
Alu>ec (3)
' (A'u—¢c)=0,
(b,c)' €Y.

Let R(y) :={c:y € V(c)}.

Theorem: Let (z,¢) be such that
¢l eYNintR(z) and |W(e)| = 1.
Then, (z,¢,w) is a locally optimal solution of

(3).

Proof: For all feasible points (z,c,u) for (3)
sufficiently close to (z,¢,uw) there is t = T by
¢! € intR(=).






A sufficient optimality condition

Definition: A point (z*,c¢*) is a locally opti-
mal solution of problem (2) if there is an open
neighborhood V of z* such that ||z — 29| >
|z* — 202 for all ¢,z with ¢ € Y, = € W(c),
xeV.

X &
2 ¢ " x=const. e, 0
| x

/

locally optimal solutions 1

¥




A sufficient optimality condition

Theorem: Consider a point (z*,¢*) such that
cteY, ¥ € W(c*) and

R(z™) = {c"}
as well as

z* € argmin {||lz — z0||? : z € W(c")}.
i

Then, (z*, ¢*) is locally optimal for (2).

Proof: Let z be close to z* such that z €
W(c) for some ¢ € Y. Since the sets W(-) are
closed polyhedral sets, |R(z*)| = 1 implies that
R(x) = {c*} for all = sufficiently close to z*
with R(x) #= 0. Hence, z € W(c*) implying the
proof.




A necessary optimality condition

General assumption: Y is bounded.

Lemma: Letecl, ..., ¢t bethe vertices of R(z*)N
Y. (z*, c*) is a locally optimal solution of (2)
if and only if

¥ € argmin {||lz—z°||? i1z e (N}, i=1,...,t.
i

(4)



A necessary optimality condition

Proof: Local optimality of (a*, ¢*) is equiva-
lent to

~ 2 2
|2 — )% > [|2® — ¥ (5)

for all z sufficiently close to z* with z € W(¢) for
somecec€Y. Thisis equivalent toce R(z)NY.
Since R(z) NY is a convex polyhedron, ¢ can
be taken as a vertex of R(z)NY.

If (4) is not valid, =* € W(c¢) and convexity
implies the proof.

If (z*,c*) is not locally optimal, (5) is not valid
for a sequence {(z%,c*)} with lims—o % = z*, ¢*
vertex of R(z°) NY. Upper semicontinuity of
R(-)NY then implies that ¢® converges to a
vertex of R(z*) NY. Finiteness of the number
of all such vertices implies that ¢® is a vertex
of R(x*)NY for large s. Convexity now proves
the Lemma.



A necessary optimality condition

Let Tw(c)(:p) denote the tangent cone to W(c)
at a point z € V(o).

Theorem: Let (2%, ¢*) be a locally optimal so-
lution of the problem (2). Then,Vi=1,...,t
we have

(z* — 29 "d >0
or equivalently
t
vd € conv | | Ty iy (@),

=1

Remark: If |W(c)| = 1 for ¢ € intR(x*) then
Ty (eiy(z*) = {0} for ¢ e bdY NnintR(z*).



A necessary optimality condition

max.

CTXM  x°
|t )

Y




A sufficient optimality condition

Theorem: Let (z* c¢*) be a feasible solution
of the problem (2). Then, (x* ¢*) is a local
minimum if
t
vd € conv | Ty iy ().
i=1
Proof: The condition of the Theorem implies

t
(e -2 'd>0vde | Ty (eiy(z) =
1=1
(z*—29)'d>0vde Tyey(e) Vi=1,... 1t

By strong convexity this shows that z* is a
global optimum of

min{|lz —z°|° :z e W(HI Vi=1,..., ¢t
Hence, =* is a global optimal solution of

t .
min{||z — 20?1z € |J w(H)}.
1=1



Tangent cone

I(z) ={i:z; =0}

I(y,e) ={j: (Aly—¢); >0}

I(x) ={I(y,0) : ce{ct,...,},Aly—c>0,
(Aly—¢c); =0, j & I(x)}
(¢t vertex of R(z*) NY)

)= N I
IeZ(x)

Then:

Tyy(@ = U Tix)
IeZ(x)

with

Tr(z) =
{d:Ad=0,d; >0,j € I(x)\I,d; = 0,5 € I}.



Tangent cone

ig € I9(z) if and only if the following system
has a solution:

ATy—cZO
(Aly—¢); =0, j & I(x)
(ATy—c)jzo, for j =i
ceyY



‘Tangent cone

Tr(z) ={d: Ad=0, d; >0, jeI(z)\I%),
d; >0, j€ %)}

Theorem: If span{A; : ¢ & I(z)} = R™ , then
cone Ty, (z) = Tg(Z).

Corollary: For this special problem, verifica-
tion of the necessary and sufficient optimality
conditions belongs to P.



Global optimum

Theorem: Let (z*, ¢*) be local optimal solu-
tion for (2), assume that R(z*) C Y. If (x*, c*)
is not a global optimum, then |R(z*)| = 1.

Proof: Assume, R(z*) contains infinitely many
elements with vertices ¢l,...,¢t,t > 1. Then,

t
{z >0: Az =b} C {z*} 4+ conv | T.i(z").
i=1
Local optimality of (z*,¢*) implies that

t
(¥ -2 "d >0V deconv Ty ey (@) =
1=1

t
(z*=2°) ' (y—a*) > 0V y € {z*}+conv |J Ty (@),

=1
= (z*—2%) " (y—2*) >0V yecconv |J W)
ceY

= z* is projection of z0 on conv | W(c).
ceY



