Packing problems, tree-width, and lift-and-project Daniel Bienstock and Sercan Ozbay

Columbia University, New York

An old practical problem

Build a directed graph to join a set of nodes

- and in that graph, route a given set of multicommodity demands
- the graph must have degrees at most p (given)

 \rightarrow Objective: minimize the maximum flow used on any edge.

This is a difficult problem!

- \rightarrow Instance **danoint** of MIPLIB III (p = 2, 8 nodes)
 - 661 rows, 521 variables (56 0/1)
 - \bullet Early 1990's: optimization problem can only be solved to within 4 % error, and only if special-purpose algorithms are used
 - 2003: problem can now be solved with general-purpose mixed-integer solvers, in about **1 day CPU time**, enumerating about **1 million** nodes

 \rightarrow Using early 90's LP solvers and computers, but modern MIP, this is about 1 year CPU time.

 \rightarrow Larger instance **dano3mip**: 3202 constraints, 13873 variables (552 0/1) beyond the reach of any current solver (gap is about 25 %)

Starting point

Balas, Pulleyblank, Barahona, others (pre 1990).

A polyhedron $P \subseteq \mathbb{R}^n$ can be the **projection**

of a simpler polyhedron $Q \subseteq \mathbb{R}^N \ (N > n)$

More precisely:

There exist polyhedra $P \subseteq \mathbb{R}^n$, such that

- P has exponentially (in n) many facets, and
- P is the projection of $Q \subseteq \mathbb{R}^N$, where
- N is polynomial in n, and Q has polynomially many facets.

Sherali-Adams operator

Let $\mathcal{F} = \{x \in \{0,1\}^n : Ax \leq b\}$ \rightarrow Let $t \geq 1$ be an integer. Consider a "lifted" formulation using variables v[Y, N], for all pairs of disjoint $Y, N \subseteq \{1, 2, ..., n\}$ with $|Y \cup N| \leq t$ Intuition: v[Y, N] = 1 if and only if

 $x_j = 1$, for all $j \in Y$, and $x_j = 0$, for all $j \in N$.

What constraints can we write, using these variables?

 $egin{aligned} &v\geq 0, \quad v[\emptyset,\emptyset]=1 \ &v[Y\cup j,N]\,+v[Y,N\cup j]\,\,=\,\,v[Y,N], \end{aligned}$

for all $j \notin Y \cup N$ and appropriate Y, N.

$$(\mathcal{F} = \{ x \in \{0, 1\}^n : Ax \le b \})$$

 \rightarrow For every row $\Sigma_j a_{ij} x_j \leq b_i$, and disjoint Y, N with $|Y \cup N| \leq t$,

$$\sum_{j \in Y} a_{ij} v[Y, N] + \sum_{j \notin Y} a_{ij} v[Y \cup j, N] - b_i v[Y, N] \leq 0$$
(1)

$$v[Y \cup j, N] + v[Y, N \cup j] - v[Y, N] = 0 \quad \forall j \notin Y \cup N \quad (2)$$
$$0 \le v, \quad v[\emptyset, \emptyset] = 1 \quad (3)$$

 \rightarrow A "lift-and-project" formulation: given

 $\min\{c^T x : x \in \mathcal{F}\}$

solve min $\{ \Sigma_j c_j v[j, \emptyset] : (1), (2), (3) \}$, with solution v^*

and set $x_j^* = v^*[j, \emptyset], 1 \le j \le n$.

Other lift-and-project operators

- Balas (1970s). Disjunctive programming = one-variable convexification. Also see Balas, Ceria, Cornuejols (1990).
- Lovász and Schrijver (1989). N_0 , N, N_+ operators.
- Lasserre (2001).
- \rightarrow Nice recent interpretation and review by Laurent.
- B. and Zuckerberg (2002). Subset-algebra lifting.

 $v[Y \cup j, N] + v[Y, N \cup j] = v[Y, N] \Rightarrow$ the system is **redundant**:

only need $v[Y, \emptyset]$ for all Y with $|Y| \le t + 1$

 \rightarrow Suppose t = 1, and consider the matrix $M = w w^T$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \le 1$

has i, j entry equal to $m_{ij} = w[i] w[j] = w[\{i, j\}] = v[\{i, j\}, \emptyset]$ (= m_{ji})

For any row h of A, and $1 \le j \le n$,

 $\Sigma_i a_{hi} v[\{i,j\}, \emptyset] - b_h v[j, \emptyset] \leq 0 \quad \text{or} \quad \Sigma_i a_{hi} m_{ij} - b_h m_{0j} \leq 0.$

So each column of M satisfies each constraint of $Ax \leq b$, homogeneized.

Also, given j, for any i, $v[i, j] = v[i, \emptyset] - v[\{i, j\}, \emptyset]$, and

$$\sum_i a_{hi} \, v[i,j] \, - \, b_h \, v[\emptyset,j] \, \leq \, 0$$
 or

 $\Sigma_i a_{hi} \left(m_{i0} - m_{ij}
ight) \, - \, b_h \left(m_{00} - m_{j0}
ight) \ \leq \ 0.$

the 0^{th} minus the j^{th} column of M also satisfies each constraint of $Ax \leq b$, homogeneized.

$$\mathbf{x} = (1, 0, 1, 1)^{\mathrm{T}}$$
$$\mathbf{w} = (1, 1, 0, 1, 1)^{\mathrm{T}}$$

$$\mathbf{M} = \mathbf{w} \ \mathbf{w}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

\

 $v[Y \cup j, N] + v[Y, N \cup j] = v[Y, N] \Rightarrow$ the system is **redundant**:

only need $v[Y, \emptyset]$ for all Y with $|Y| \le t + 1$

 \rightarrow Suppose t = 1, and consider the matrix $M = w w^T$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \le 1$

has i, j entry equal to $m_{ij} = w[i] w[j] = w[\{i, j\}] = v[\{i, j\}, \emptyset]$ (= m_{ji})

For any row h of A, and $1 \le j \le n$,

 $\Sigma_i a_{hi} v[\{i,j\}, \emptyset] - b_h v[j, \emptyset] \leq 0 \quad \text{or} \quad \Sigma_i a_{hi} m_{ij} - b_h m_{0j} \leq 0.$

So each column of M satisfies each constraint of $Ax \leq b$, homogeneized.

Also, given j, for any i, $v[i, j] = v[i, \emptyset] - v[\{i, j\}, \emptyset]$, and

$$\sum_i a_{hi} \, v[i,j] \, - \, b_h \, v[\emptyset,j] \, \leq \, 0$$
 or

 $\Sigma_i a_{hi} \left(m_{i0} - m_{ij}
ight) \, - \, b_h \left(m_{00} - m_{j0}
ight) \ \leq \ 0.$

the 0^{th} minus the j^{th} column of M also satisfies each constraint of $Ax \leq b$, homogeneized.

Same example satisfies $x_1 + x_3 \ge 2$

$$\mathbf{x} = (1, 0, 1, 1)^{\mathrm{T}}$$

 $\mathbf{w} = (1, 1, 0, 1, 1)^{\mathrm{T}}$

$$\mathbf{M} = \mathbf{w} \ \mathbf{w}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Matrix satisfies $m_{1j} + m_{3j} \ge 2m_{0j}$ for all columns j.

\

 $v[Y \cup j, N] + v[Y, N \cup j] = v[Y, N] \Rightarrow$ the system is **redundant**:

only need $v[Y, \emptyset]$ for all Y with $|Y| \le t + 1$

 \rightarrow Suppose t = 1, and consider the matrix $M = w w^T$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \le 1$

has i, j entry equal to $m_{ij} = w[i] w[j] = w[\{i, j\}] = v[\{i, j\}, \emptyset]$ (= m_{ji})

For any row h of A, and $1 \le j \le n$,

 $\Sigma_i a_{hi} v[\{i,j\}, \emptyset] - b_h v[j, \emptyset] \leq 0 \quad \text{or} \quad \Sigma_i a_{hi} m_{ij} - b_h m_{0j} \leq 0.$

So each column of M satisfies each constraint of $Ax \leq b$, homogeneized.

Also, given j, for any i, $v[i, j] = v[i, \emptyset] - v[\{i, j\}, \emptyset]$, and

$$\sum_i a_{hi} \, v[i,j] \, - \, b_h \, v[\emptyset,j] \, \leq \, 0$$
 or

 $\Sigma_i a_{hi} \left(m_{i0} - m_{ij}
ight) \, - \, b_h \left(m_{00} - m_{j0}
ight) \ \leq \ 0.$

the 0^{th} minus the j^{th} column of M also satisfies each constraint of $Ax \leq b$, homogeneized.

Summary:

 \rightarrow When t = 1, the Sherali-Adams operator is the same as the Lovász-Schrijver N operator (without symmetricity = N_0)

 \rightarrow For t > 1, could also "lift" to the matrix ww^T , but this will require sets of cardinality 2t,

 \rightarrow Could also impose ww^T symmetric positive-semidefinite

 \rightarrow The Lasserre lifting, and the subset-algebra lifting, provide better generalizations

The stable set problem

Def: A stable set in a graph

is a set of pairwise non-adjacent vertices

Formulation: Given graph G,

 $x_i + x_j \le 1, \quad \forall \{i, j\} \in E(G),$ $x_i = 0 \text{ or } 1, \quad \forall i \in V(G).$

Classical inequalities

Def: An odd hole is a cycle of odd length with no chords. Odd-hole inequality (facet-defining, polynomially separable):

 $\sum_{i=1}^{2k+1} x_i \leq k$

Def: An odd wheel is a cycle of odd length (with no chords) plus an additional vertex adjacent to all wheel vertices.

Odd-wheel inequality (facet-defining, polynomially separable):

$$kx_0 + \sum_{i=1}^{2k+1} x_i \le k$$

"Case" $x_1 = 0$. Look at the variables v[Y, N], with $N = \{1\}$ and |Y| = 1.

Consider the inequality $x_2 + x_3 \leq 1$, and use $v[\emptyset, \{1\}]$:

 $v[2,1] + v[3,1] \le v[\emptyset,1]$

Similarly, using $x_4 + x_5 \le 1$,

$$v[4,1] + v[5,1] \leq v[\emptyset,1]$$

and v[1,1] = 0, so: $\Sigma_i v[i,1] \leq 2v[\emptyset,1]$.

"Case" $x_1 = 1$. Now look at the variables $v[\{j, 1\}, \emptyset]$.

Consider $x_1 + x_2 \leq 1$, and use $v[1, \emptyset]$:

 $v[1,\emptyset] + v[\{1,2\},\emptyset] \le v[1,\emptyset]$ so $v[\{1,2\},\emptyset] = 0.$

Similarly, $v[\{1,5\}, \emptyset] = 0$, and using $x_3 + x_4 \le 1$, $v[\{1,3\}, \emptyset] + v[\{1,4\}, \emptyset] \le v[1, \emptyset].$

So:

$$\Sigma_i v[\{1,i\}, \emptyset] \leq 2v[1, \emptyset]$$

Summary:

$$\Sigma_i v[i,1] \leq 2v[\emptyset,1],$$

and

$$\Sigma_i v[\{1, i\}, \emptyset] \leq 2v[1, \emptyset].$$

Note:

$$v[i, 1] + v[\{1, i\}, \emptyset] = x_i$$
 and $v[\emptyset, 1] + v[1, \emptyset] = 1$.
Conclusion:

$$\Sigma_i x_i \leq 2$$

"Case" $x_0 = 0$ and $x_1 = 1$.

 $x_3 + x_4 \le 1$, so $v[\{1,3\}, 0] + v[\{1,4\}, 0] \le v[1,0].$

Similarly, $v[\{1,5\},0] + v[\{1,6\},0] \le v[1,0],$

So, $\sum_{i \ge 1} v[\{1, i\}, 0] \le 3v[1, 0].$

Conclusion: $3x_0 + \sum_{i \ge 1} x_i \le 3$.

Cheng and Cunningham (1997):

Generalizations of odd-hole and odd-wheel inequalities.

Given a graph G, inequalities of the form

where H is a subgraph of G.

 \bullet Subdivisions of p-wheels

Cheng and de Vries (2002):

subdivisions of the above.

 \rightarrow polynomially separable for fixed t and s

Robertson and Seymour (1980s - 1990s) : tree-width

Def: A **tree-decomposition** of a graph G consists of a tree T and a family of sets X_t (for each node t of T), such that:

- Each X_t is a subset of vertices of G.
- For each vertex v of G, the collection of sets X_t containing v forms a subtree of T.
- ullet For each edge $\{u,v\}$ of G there is a subset X_t with $\{u,v\}\subseteq X_t$.

 $\begin{array}{c}
2,4\\
6\\
2,4\\
(2,3)\\
4\\
(2,3)\\
(1)\\
2\\
3\end{array}$

Def: A **tree-decomposition** of a graph G consists of a tree T and a family of sets X_t (for each node t of T), such that:

- Each X_t is a subset of vertices of G.
- For each vertex \boldsymbol{v} of \boldsymbol{G} , the collection of sets \boldsymbol{X}_t containing \boldsymbol{v} forms a subtree of \boldsymbol{T} .
- ullet For each edge $\{u,v\}$ of G there is a subset X_t with $\{u,v\}\subseteq X_t$.

The width of the decomposition is $\max_t \{|X_t|\} - 1$.

 \rightarrow **G** has **tree-width** $\leq k$ if it has a tree-decomposition of width $\leq k$.

... equivalently if there is a **chordal supergraph** of G of **clique number** $\leq k$

Robertson and Seymour: G has large tree-width if and only if G contains a large square grid minor

Lemma: A subdivision of a (p, t) - antiwebs - s - wheel has treewidth $\leq 2t + s - 2$.

... What can we say about inequalities of the form

$$\sum_{j \in V(H)} \alpha_j x_j \leq \beta,$$

where H has small tree-width ?

Theorem

Suppose we construct the Sherali-Adams level- k formulation SA^k to the vertex packing problem for a graph G.

Then, any vector \hat{x} that satisfies the constraints of SA^k also satisfies all valid inequalities of the form

 $\Sigma_{j\in V(H)}lpha_j\,x_j\leqeta$

for every subgraph H of G of tree-width $\leq k$.

Corollary: For $k \ge 2t + s - 2$, we are guaranteed to satisfy all (subdivided) (p, t) - antiweb - s - wheel inequalities, etc.

Lipták and Tunçel (2003).

Also see Goemans and Tunçel (2001), Cook and Dash (2001)

Consider the graph:

(= the line-graph of an iterated blossom) \rightarrow Theorem (L & T): the N_0 -rank of this graph is $\sim \log_2 k$.

 \rightarrow Conjecture (L & T): the N_0 - and N-ranks of any graph are equal.

 \rightarrow The graph has tree-width **3**.

Corollary. Its Sherali-Adams rank is ≤ 3 .

General packing polyhedra

$$Ax \leq b, \quad x \in \{0,1\}^n,$$

where $A \ge 0$.

Def: (Balas et al) The clique graph of A has

- A vertex for each **column** of A,
- An edge between k and j if there is a row i with $a_{ik} > 0$ and $a_{ij} > 0$.

Definition: The **tree-width** of an inequality $\alpha^T x \leq \beta$ valid for

 $\{Ax \leq b, x \in \{0,1\}^n\},\$

is the minimum tree-width of the clique graph of any submatrix A' of A,

such that $\alpha^T x \leq \beta$ is valid for $\{A'x \leq b', x \in \{0,1\}^{n'}\}$.

Theorem: For any $k \ge 1$, the level- k Sherali-Adams formulation for $\{Ax \le b, x \in \{0,1\}^n\}$

is guaranteed to satisfy all inequalities with tree-width $\ \leq k-1.$ \blacksquare

Covering problems?

Set-covering polyhedra: $\{Ax \ge 1, x \in \{0,1\}^n\}, A \ge 0 - 1$ matrix.

Theorem (B. and Zuckerberg, 2002). Given a set-covering problem, for any fixed $k \geq 1$ we can generate in polynomial time a relaxation that is guaranteed to satisfy all valid inequalities with coefficients in $\{0, 1, \ldots, k\}$.

Theorem (B. and Zuckerberg, 2002). Let $r \ge 1$ and $0 < \epsilon < 1$ be fixed. Given a set-covering problem

 $au = \min ig\{ c^T x \; : \; Ax \geq 1, \; x \in \{0,1\}^n ig\},$

in polynomial time we can compute a value v with

 $(1-\epsilon)\min\left\{c^Tx \ : x\in K^r(A,b)
ight\} \ \leq \ v \ \leq \ au,$

where $K^r(A, b)$ is the rank-k Chvátal-Gomory closure of $\{Ax \ge 1, 0 \le x \le 1\}$.