Packing problems, tree-width, and lift-and-project

Daniel Bienstock and Sercan Ozbay

Columbia University, New York

An old practical problem

Build a directed graph to join a set of nodes

- and in that graph, route a given set of multicommodity demands
- the graph must have degrees at most p (given)
\rightarrow Objective: minimize the maximum flow used on any edge.

This is a difficult problem!

\rightarrow Instance danoint of MIPLIB III ($\boldsymbol{p}=\mathbf{2}, \mathbf{8}$ nodes)

- 661 rows, 521 variables ($560 / 1$)
- Early 1990 's: optimization problem can only be solved to within 4% error, and only if special-purpose algorithms are used
- 2003: problem can now be solved with general-purpose mixed-integer solvers, in about 1 day CPU time, enumerating about 1 million nodes
\rightarrow Using early 90's LP solvers and computers, but modern MIP, this is about 1 year CPU time.
\rightarrow Larger instance dano3mip: 3202 constraints, 13873 variables (552
$0 / 1$) beyond the reach of any current solver (gap is about 25%)

Starting point

Balas, Pulleyblank, Barahona, others (pre 1990).

A polyhedron $P \subseteq R^{n}$ can be the projection
of a simpler polyhedron $Q \subseteq R^{N}(N>n)$

More precisely:

There exist polyhedra $P \subseteq R^{n}$, such that

- P has exponentially (in n) many facets, and
- P is the projection of $Q \subseteq R^{N}$, where
- N is polynomial in n, and Q has polynomially many facets.

Sherali-Adams operator

Let $\mathcal{F}=\left\{x \in\{0,1\}^{n}: A x \leq b\right\}$
\rightarrow Let $t \geq 1$ be an integer. Consider a "lifted" formulation using variables
$v[Y, N]$, for all pairs of disjoint $Y, N \subseteq\{1,2, \ldots, n\}$ with $|Y \cup N| \leq t$
Intuition: $v[Y, N]=1$ if and only if

$$
x_{j}=1, \text { for all } j \in Y, \text { and } \quad x_{j}=0, \text { for all } j \in N .
$$

What constraints can we write, using these variables?

$$
\begin{aligned}
& v \geq 0, \quad v[\emptyset, \emptyset]=1 \\
& v[Y \cup j, N]+v[Y, N \cup j]=v[Y, N]
\end{aligned}
$$

$$
\text { for all } j \notin Y \cup N \text { and appropriate } Y, N \text {. }
$$

$\left(\mathcal{F}=\left\{x \in\{0,1\}^{n}: A x \leq b\right\}\right)$
\rightarrow For every row $\Sigma_{j} a_{i j} x_{j} \leq b_{i}$, and disjoint Y, N with $|Y \cup N| \leq t$,

$$
\begin{align*}
& \Sigma_{j \in \boldsymbol{Y}} a_{i j} v[Y, N]+\Sigma_{j \notin \boldsymbol{Y}} a_{i j} v[Y \cup j, N]-b_{i} v[Y, N] \leq 0 \tag{1}\\
& \boldsymbol{v}[\boldsymbol{Y} \cup \boldsymbol{j}, \boldsymbol{N}]+\boldsymbol{v}[\boldsymbol{Y}, \boldsymbol{N} \cup \boldsymbol{j}]-\boldsymbol{v}[\boldsymbol{Y}, \boldsymbol{N}]=0 \quad \forall \boldsymbol{j} \notin \boldsymbol{Y} \cup \boldsymbol{N} \tag{2}\\
& \mathbf{0} \leq \boldsymbol{v}, \quad \boldsymbol{v}[\emptyset, \emptyset]=1 \tag{3}
\end{align*}
$$

\rightarrow A "lift-and-project" formulation: given

$$
\min \left\{c^{T} x: x \in \mathcal{F}\right\}
$$

solve $\min \left\{\Sigma_{j} c_{j} v[j, \emptyset]:(1),(2),(3)\right\}$, with solution v^{*}
and set $x_{j}^{*}=v^{*}[j, \emptyset], 1 \leq j \leq n$.

Other lift-and-project operators

- Balas (1970s). Disjunctive programming $=$ one-variable convexification. Also see Balas, Ceria, Cornuejols (1990).
- Lovász and Schrijver (1989). N_{0}, N, N_{+}operators.
- Lasserre (2001).
\rightarrow Nice recent interpretation and review by Laurent.
- B. and Zuckerberg (2002). Subset-algebra lifting.
$v[Y \cup j, N]+v[Y, N \cup j]=v[Y, N] \Rightarrow$ the system is redundant:
only need $v[Y, \emptyset]$ for all Y with $|Y| \leq t+1$
\rightarrow Suppose $t=1$, and consider the matrix $\boldsymbol{M}=\boldsymbol{w} \boldsymbol{w}^{\boldsymbol{T}}$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \leq 1$
has i, j entry equal to $m_{i j}=w[i] w[j]=w[\{i, j\}]=v[\{i, j\}, \emptyset] \quad\left(=m_{j i}\right)$
For any row h of A, and $1 \leq j \leq n$,

$$
\Sigma_{i} a_{h i} v[\{i, j\}, \emptyset]-b_{h} v[j, \emptyset] \leq 0 \quad \text { or } \quad \Sigma_{i} a_{h i} m_{i j}-b_{h} m_{0 j} \leq 0
$$

So each column of \boldsymbol{M} satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.
Also, given j, for any $i, v[i, j]=v[i, \emptyset]-v[\{i, j\}, \emptyset]$, and

$$
\begin{array}{r}
\Sigma_{i} a_{h i} v[i, j]-b_{h} v[\emptyset, j] \leq 0 \text { or } \\
\Sigma_{i} a_{h i}\left(m_{i 0}-m_{i j}\right)-b_{h}\left(m_{00}-m_{j 0}\right) \leq 0 .
\end{array}
$$

the $0^{\text {th }}$ minus the $j^{\text {th }}$ column of \boldsymbol{M} also satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.

$$
\begin{array}{r}
\mathrm{x}=(1,0,1,1)^{\mathrm{T}} \\
\mathrm{w}=(1,1,0,1,1)^{\mathrm{T}}
\end{array}
$$

$$
\mathrm{M}=\mathrm{w} \mathrm{w}^{\mathrm{T}}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

$v[Y \cup j, N]+v[Y, N \cup j]=v[Y, N] \Rightarrow$ the system is redundant:
only need $v[Y, \emptyset]$ for all Y with $|Y| \leq t+1$
\rightarrow Suppose $t=1$, and consider the matrix $\boldsymbol{M}=\boldsymbol{w} \boldsymbol{w}^{\boldsymbol{T}}$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \leq 1$
has i, j entry equal to $m_{i j}=w[i] w[j]=w[\{i, j\}]=v[\{i, j\}, \emptyset] \quad\left(=m_{j i}\right)$
For any row h of A, and $1 \leq j \leq n$,

$$
\Sigma_{i} a_{h i} v[\{i, j\}, \emptyset]-b_{h} v[j, \emptyset] \leq 0 \quad \text { or } \quad \Sigma_{i} a_{h i} m_{i j}-b_{h} m_{0 j} \leq 0
$$

So each column of \boldsymbol{M} satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.
Also, given j, for any $i, v[i, j]=v[i, \emptyset]-v[\{i, j\}, \emptyset]$, and

$$
\begin{array}{r}
\Sigma_{i} a_{h i} v[i, j]-b_{h} v[\emptyset, j] \leq 0 \text { or } \\
\Sigma_{i} a_{h i}\left(m_{i 0}-m_{i j}\right)-b_{h}\left(m_{00}-m_{j 0}\right) \leq 0 .
\end{array}
$$

the $0^{\text {th }}$ minus the $j^{\text {th }}$ column of \boldsymbol{M} also satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.

Same example satisfies $\boldsymbol{x}_{1}+\boldsymbol{x}_{3} \geq \mathbf{2}$

$$
\begin{array}{r}
\mathrm{x}=(1,0,1,1)^{\mathrm{T}} \\
\mathrm{w}=(1,1,0,1,1)^{\mathrm{T}}
\end{array}
$$

$$
\mathrm{M}=\mathrm{W} \mathrm{w}^{\mathrm{T}}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Matrix satisfies $m_{1 j}+m_{3 j} \geq 2 m_{0 j}$ for all columns j.
$v[Y \cup j, N]+v[Y, N \cup j]=v[Y, N] \Rightarrow$ the system is redundant:
only need $v[Y, \emptyset]$ for all Y with $|Y| \leq t+1$
\rightarrow Suppose $t=1$, and consider the matrix $\boldsymbol{M}=\boldsymbol{w} \boldsymbol{w}^{\boldsymbol{T}}$, where $w[Y] \doteq v[Y, \emptyset]$ for $|Y| \leq 1$
has i, j entry equal to $m_{i j}=w[i] w[j]=w[\{i, j\}]=v[\{i, j\}, \emptyset] \quad\left(=m_{j i}\right)$
For any row h of A, and $1 \leq j \leq n$,

$$
\Sigma_{i} a_{h i} v[\{i, j\}, \emptyset]-b_{h} v[j, \emptyset] \leq 0 \quad \text { or } \quad \Sigma_{i} a_{h i} m_{i j}-b_{h} m_{0 j} \leq 0
$$

So each column of \boldsymbol{M} satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.
Also, given j, for any $i, v[i, j]=v[i, \emptyset]-v[\{i, j\}, \emptyset]$, and

$$
\begin{array}{r}
\Sigma_{i} a_{h i} v[i, j]-b_{h} v[\emptyset, j] \leq 0 \text { or } \\
\Sigma_{i} a_{h i}\left(m_{i 0}-m_{i j}\right)-b_{h}\left(m_{00}-m_{j 0}\right) \leq 0 .
\end{array}
$$

the $0^{\text {th }}$ minus the $j^{\text {th }}$ column of \boldsymbol{M} also satisfies each constraint of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, homogeneized.

Summary:

\rightarrow When $t=1$, the Sherali-Adams operator is the same as the LovászSchrijver N operator (without symmetricity $=N_{0}$)
\rightarrow For $t>1$, could also "lift" to the matrix $w w^{T}$, but this will require sets of cardinality $2 t$,
\rightarrow Could also impose $w w^{T}$ symmetric positive-semidefinite
\rightarrow The Lasserre lifting, and the subset-algebra lifting, provide better generalizations

The stable set problem

Def: A stable set in a graph

is a set of pairwise non-adjacent vertices
Formulation: Given graph G,

$$
\begin{gathered}
x_{i}+x_{j} \leq 1, \quad \forall\{i, j\} \in E(G), \\
x_{i}=0 \text { or } 1, \quad \forall i \in V(G) .
\end{gathered}
$$

Classical inequalities

Def: An odd hole is a cycle of odd length with no chords. Odd-hole inequality (facet-defining, polynomially separable):

$$
\sum_{i=1}^{2 k+1} x_{i} \leq k
$$

Def: An odd wheel is a cycle of odd length (with no chords) plus an additional vertex adjacent to all wheel vertices.
Odd-wheel inequality (facet-defining, polynomially separable):

$$
k x_{0}+\Sigma_{i=1}^{2 k+1} x_{i} \leq k
$$

Sherali-Adams and Odd Holes

"Case" $\boldsymbol{x}_{1}=0$. Look at the variables $v[Y, N]$, with $N=\{1\}$ and $|Y|=1$.

Consider the inequality $x_{2}+x_{3} \leq 1$, and use $v[\emptyset,\{1\}]$:

$$
v[2,1]+v[3,1] \leq v[\emptyset, 1]
$$

Similarly, using $x_{4}+x_{5} \leq 1$,

$$
v[4,1]+v[5,1] \leq v[\emptyset, 1]
$$

and $v[1,1]=0$, so: $\quad \Sigma_{i} v[i, 1] \leq 2 v[\emptyset, 1]$.
"Case" $x_{1}=1$. Now look at the variables $v[\{j, 1\}, \emptyset]$.

Consider $x_{1}+x_{2} \leq 1$, and use $v[1, \emptyset]$:

$$
v[1, \emptyset]+v[\{1,2\}, \emptyset] \leq v[1, \emptyset] \quad \text { so } \quad v[\{1,2\}, \emptyset]=0 \text {. }
$$

Similarly, $v[\{1,5\}, \emptyset]=0$, and using $x_{3}+x_{4} \leq 1$,

$$
v[\{1,3\}, \emptyset]+v[\{1,4\}, \emptyset] \leq v[1, \emptyset] .
$$

So:

$$
\Sigma_{i} v[\{1, i\}, \emptyset] \leq 2 v[1, \emptyset]
$$

Summary:

$$
\Sigma_{i} v[i, 1] \leq 2 v[\emptyset, 1]
$$

and

$$
\Sigma_{i} v[\{1, i\}, \emptyset] \leq 2 v[1, \emptyset] .
$$

Note:

$$
v[i, 1]+v[\{1, i\}, \emptyset]=x_{i} \quad \text { and } \quad v[\emptyset, 1]+v[1, \emptyset]=1
$$

Conclusion:

$$
\Sigma_{i} x_{i} \leq 2
$$

Odd Wheels

"Case" $x_{0}=0$ and $x_{1}=1$.

$$
x_{3}+x_{4} \leq 1, \text { so } v[\{1,3\}, 0]+v[\{1,4\}, 0] \leq v[1,0] .
$$

Similarly, $v[\{1,5\}, 0]+v[\{1,6\}, 0] \leq v[1,0]$,
So, $\quad \Sigma_{i \geq 1} v[\{1, i\}, 0] \leq 3 v[1,0]$.
Conclusion: $3 x_{0}+\sum_{i \geq 1} x_{i} \leq 3$.

Cheng and Cunningham (1997):

Generalizations of odd-hole and odd-wheel inequalities.
Given a graph G, inequalities of the form

$$
\sum_{j \in V(H)} \alpha_{j} x_{j} \leq \beta
$$

where H is a subgraph of G.

- Subdivisions of wheels

- Subdivisions of \boldsymbol{p}-wheels

Cheng and de Vries (2002):
$(p, t)-$ antiwebs for $p \geq 2 t-1$:

$(p, t)-a n t i w e b s-s-w h e e l s:$

subdivisions of the above.
\rightarrow polynomially separable for fixed t and s

Robertson and Seymour (1980s - 1990s) : tree-width

Def: A tree-decomposition of a graph G consists of a tree T and a family of sets \boldsymbol{X}_{t} (for each node t of \boldsymbol{T}), such that:

- Each X_{t} is a subset of vertices of \boldsymbol{G}.
- For each vertex \boldsymbol{v} of \boldsymbol{G}, the collection of sets $\boldsymbol{X}_{\boldsymbol{t}}$ containing \boldsymbol{v} forms a subtree of T.
- For each edge $\{u, v\}$ of \boldsymbol{G} there is a subset \boldsymbol{X}_{t} with $\{\boldsymbol{u}, \boldsymbol{v}\} \subseteq \boldsymbol{X}_{\boldsymbol{t}}$.

Def: A tree-decomposition of a graph G consists of a tree T and a family of sets $\boldsymbol{X}_{\boldsymbol{t}}$ (for each node \boldsymbol{t} of \boldsymbol{T}), such that:

- Each \boldsymbol{X}_{t} is a subset of vertices of \boldsymbol{G}.
- For each vertex \boldsymbol{v} of \boldsymbol{G}, the collection of sets \boldsymbol{X}_{t} containing \boldsymbol{v} forms a subtree of T.
\bullet For each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ of \boldsymbol{G} there is a subset \boldsymbol{X}_{t} with $\{\boldsymbol{u}, \boldsymbol{v}\} \subseteq \boldsymbol{X}_{\boldsymbol{t}}$. The width of the decomposition is $\max _{t}\left\{\left|\boldsymbol{X}_{t}\right|\right\}-1$.
$\rightarrow \boldsymbol{G}$ has tree-width $\leq \boldsymbol{k}$ if it has a tree-decomposition of width $\leq \boldsymbol{k}$.
... equivalently
if there is a chordal supergraph of \boldsymbol{G} of clique number $\leq \boldsymbol{k}$
Robertson and Seymour: \boldsymbol{G} has large tree-width if and only if \boldsymbol{G} contains a large square grid minor
$(p, t)-$ antiwebs $-s-w h e e l s:$

Lemma: A subdivision of a $(\boldsymbol{p}, \boldsymbol{t})$ - antiwebs $-\boldsymbol{s}-\boldsymbol{w} \boldsymbol{w e e l}$ has treewidth $\leq 2 t+s-2$.
... What can we say about inequalities of the form

$$
\sum_{j \in V(H)} \alpha_{j} x_{j} \leq \beta
$$

where \boldsymbol{H} has small tree-width?

Theorem

Suppose we construct the Sherali-Adams level- \boldsymbol{k} formulation $\boldsymbol{S} \boldsymbol{A}^{k}$ to the vertex packing problem for a graph G.

Then, any vector $\hat{\boldsymbol{x}}$ that satisfies the constraints of $\boldsymbol{S} \boldsymbol{A}^{\boldsymbol{k}}$ also satisfies all valid inequalites of the form

$$
\Sigma_{j \in V(H)} \alpha_{j} x_{j} \leq \boldsymbol{\beta}
$$

for every subgraph \boldsymbol{H} of \boldsymbol{G} of tree-width $\leq \boldsymbol{k}$.

Corollary: For $\boldsymbol{k} \geq \mathbf{2 t}+\boldsymbol{s} \mathbf{- 2}$, we are guaranteed to satisfy all (subdivided) $(p, t)-$ antiweb $-s-w h e e l$ inequalities, etc.

Lipták and Tunçel (2003).
Also see Goemans and Tunçel (2001), Cook and Dash (2001)
Consider the graph:

($=$ the line-graph of an iterated blossom)
\rightarrow Theorem (L \& T): the $\boldsymbol{N}_{\mathbf{0}}$-rank of this graph is $\sim \log _{2} \boldsymbol{k}$.
\rightarrow Conjecture (L \& T): the $\boldsymbol{N}_{0^{-}}$and \boldsymbol{N}-ranks of any graph are equal.
\rightarrow The graph has tree-width 3.
Corollary. Its Sherali-Adams rank is $\leq \mathbf{3}$.

General packing polyhedra

$$
A x \leq b, \quad x \in\{0,1\}^{n}
$$

where $A \geq 0$.
Def: (Balas et al) The clique graph of A has

- A vertex for each column of A,
- An edge between k and j if there is a row i with $\boldsymbol{a}_{\boldsymbol{i k}}>\mathbf{0}$ and $\boldsymbol{a}_{\boldsymbol{i j}}>\mathbf{0}$.

Definition: The tree-width of an inequality $\boldsymbol{\alpha}^{T} \boldsymbol{x} \leq \boldsymbol{\beta}$ valid for $\left\{A x \leq b, x \in\{0,1\}^{n}\right\}$,
is the minimum tree-width of the clique graph of any submatrix \boldsymbol{A}^{\prime} of \boldsymbol{A}, such that $\alpha^{T} x \leq \boldsymbol{\beta}$ is valid for $\left\{A^{\prime} x \leq b^{\prime}, x \in\{0,1\}^{n^{\prime}}\right\}$.

Theorem: For any $k \geq 1$, the level- \boldsymbol{k} Sherali-Adams formulation for $\left\{A x \leq b, x \in\{0,1\}^{n}\right\}$
is guaranteed to satisfy all inequalities with tree-width $\leq \boldsymbol{k}-1$.

Set-covering polyhedra: $\left\{\boldsymbol{A x} \geq 1, x \in\{0,1\}^{n}\right\}, A$ a $0-1$ matrix.

Theorem (B. and Zuckerberg, 2002). Given a set-covering problem, for any fixed $k \geq 1$ we can generate in polynomial time a relaxation that is guaranteed to satisfy all valid inequalities with coefficients in $\{0,1, \ldots, k\}$.

Theorem (B. and Zuckerberg, 2002). Let $r \geq 1$ and $0<\epsilon<1$ be fixed. Given a set-covering problem

$$
\tau=\min \left\{c^{T} x: A x \geq 1, x \in\{0,1\}^{n}\right\}
$$

in polynomial time we can compute a value \boldsymbol{v} with

$$
(1-\epsilon) \min \left\{c^{T} x: x \in K^{r}(A, b)\right\} \leq v \leq \tau
$$

where $\boldsymbol{K}^{r}(\boldsymbol{A}, \boldsymbol{b})$ is the rank-k Chvátal-Gomory closure of $\{\boldsymbol{A x} \geq 1,0 \leq x \leq 1\}$.

