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An old practical problem

Build a directed graph to join a set of nodes

• and in that graph, route a given set of multicommodity demands

• the graph must have degrees at most p (given)

→ Objective: minimize the maximum flow used on any edge.



This is a difficult problem!

→ Instance danoint of MIPLIB III ( p = 2, 8 nodes)

• 661 rows, 521 variables (56 0/1)

• Early 1990’s: optimization problem can only be solved to within 4 %
error, and only if special-purpose algorithms are used

• 2003: problem can now be solved with general-purpose mixed-integer
solvers, in about 1 day CPU time, enumerating about 1 million
nodes

→ Using early 90’s LP solvers and computers, but modern MIP, this is
about 1 year CPU time.

→ Larger instance dano3mip: 3202 constraints, 13873 variables (552
0/1) beyond the reach of any current solver (gap is about 25 %)



Starting point

Balas, Pulleyblank, Barahona, others (pre 1990).

A polyhedron P ⊆ Rn can be the projection

of a simpler polyhedron Q ⊆ RN (N > n)

More precisely:

There exist polyhedra P ⊆ Rn, such that

• P has exponentially (in n) many facets, and

• P is the projection of Q ⊆ RN , where

• N is polynomial in n, and Q has polynomially many facets.



Sherali-Adams operator

Let F = {x ∈ {0, 1}n : Ax ≤ b }

→ Let t ≥ 1 be an integer. Consider a “lifted” formulation using variables

v[Y,N ], for all pairs of disjoint Y , N ⊆ {1, 2, . . . , n} with |Y ∪N | ≤ t

Intuition: v[Y, N ] = 1 if and only if

xj = 1, for all j ∈ Y , and xj = 0, for all j ∈ N .

What constraints can we write, using these variables?

v ≥ 0, v[∅, ∅] = 1

v[Y ∪ j, N ] + v[Y, N ∪ j] = v[Y, N ],

for all j /∈ Y ∪N and appropriate Y, N .



(F = {x ∈ {0, 1}n : Ax ≤ b })

→ For every row Σjaijxj ≤ bi, and disjoint Y, N with |Y ∪N | ≤ t,

Σj∈Y aij v[Y, N ] + Σj /∈Y aij v[Y ∪ j, N ] − bi v[Y, N ] ≤ 0

(1)

v[Y ∪ j, N ] + v[Y, N ∪ j] − v[Y, N ] = 0 ∀ j /∈ Y ∪ N (2)

0 ≤ v, v[∅, ∅] = 1 (3)

→ A “lift-and-project” formulation: given

min{cTx : x ∈ F}

solve min {Σj cj v[j, ∅] : (1), (2), (3)}, with solution v∗

and set x∗j = v∗[j, ∅], 1 ≤ j ≤ n.



Other lift-and-project operators

• Balas (1970s). Disjunctive programming = one-variable convexification.
Also see Balas, Ceria, Cornuejols (1990).

• Lovász and Schrijver (1989). N0, N , N+ operators.

• Lasserre (2001).

→ Nice recent interpretation and review by Laurent.

• B. and Zuckerberg (2002). Subset-algebra lifting.



v[Y ∪ j, N ] + v[Y,N ∪ j] = v[Y,N ] ⇒ the system is redundant:

only need v[Y, ∅] for all Y with |Y | ≤ t + 1

→ Suppose t = 1, and consider the matrix M = w wT , where w[Y ] .= v[Y, ∅] for |Y | ≤ 1

has i, j entry equal to mij = w[i] w[j] = w[ {i, j} ] = v[ {i, j}, ∅ ] (= mji)

For any row h of A, and 1 ≤ j ≤ n,

Σi ahi v[{i, j}, ∅] − bh v[j, ∅] ≤ 0 or Σi ahi mij − bh m0j ≤ 0.

So each column of M satisfies each constraint of Ax ≤ b, homogeneized.

Also, given j, for any i, v[i, j] = v[i, ∅] − v[{i, j}, ∅], and

Σi ahi v[i, j] − bh v[∅, j] ≤ 0 or

Σi ahi (mi0 − mij) − bh (m00 − mj0) ≤ 0.

the 0th minus the jth column of M also satisfies each constraint of
Ax ≤ b, homogeneized.



1  1  0  1  1
1  1  0  1  1
0  0  0  0  0
1  1  0  1  1

M = w wT =

1  1  0  1  1

x =  ( 1, 0, 1, 1)

w =  ( 1, 1, 0, 1, 1 )

T

T

T

\



v[Y ∪ j, N ] + v[Y,N ∪ j] = v[Y,N ] ⇒ the system is redundant:

only need v[Y, ∅] for all Y with |Y | ≤ t + 1

→ Suppose t = 1, and consider the matrix M = w wT , where w[Y ] .= v[Y, ∅] for |Y | ≤ 1

has i, j entry equal to mij = w[i] w[j] = w[ {i, j} ] = v[ {i, j}, ∅ ] (= mji)

For any row h of A, and 1 ≤ j ≤ n,

Σi ahi v[{i, j}, ∅] − bh v[j, ∅] ≤ 0 or Σi ahi mij − bh m0j ≤ 0.

So each column of M satisfies each constraint of Ax ≤ b, homogeneized.

Also, given j, for any i, v[i, j] = v[i, ∅] − v[{i, j}, ∅], and

Σi ahi v[i, j] − bh v[∅, j] ≤ 0 or

Σi ahi (mi0 − mij) − bh (m00 − mj0) ≤ 0.

the 0th minus the jth column of M also satisfies each constraint of
Ax ≤ b, homogeneized.



Same example satisfies x1 + x3 ≥ 2

1  1  0  1  1
1  1  0  1  1
0  0  0  0  0
1  1  0  1  1

M = w wT =

1  1  0  1  1

x =  ( 1, 0, 1, 1)

w =  ( 1, 1, 0, 1, 1 )

T

T

T

\

Matrix satisfies m1j + m3j ≥ 2m0j for all columns j.



v[Y ∪ j, N ] + v[Y,N ∪ j] = v[Y,N ] ⇒ the system is redundant:

only need v[Y, ∅] for all Y with |Y | ≤ t + 1

→ Suppose t = 1, and consider the matrix M = w wT , where w[Y ] .= v[Y, ∅] for |Y | ≤ 1

has i, j entry equal to mij = w[i] w[j] = w[ {i, j} ] = v[ {i, j}, ∅ ] (= mji)

For any row h of A, and 1 ≤ j ≤ n,

Σi ahi v[{i, j}, ∅] − bh v[j, ∅] ≤ 0 or Σi ahi mij − bh m0j ≤ 0.

So each column of M satisfies each constraint of Ax ≤ b, homogeneized.

Also, given j, for any i, v[i, j] = v[i, ∅] − v[{i, j}, ∅], and

Σi ahi v[i, j] − bh v[∅, j] ≤ 0 or

Σi ahi (mi0 − mij) − bh (m00 − mj0) ≤ 0.

the 0th minus the jth column of M also satisfies each constraint of
Ax ≤ b, homogeneized.



Summary:

→ When t = 1, the Sherali-Adams operator is the same as the Lovász-
Schrijver N operator (without symmetricity = N0)

→ For t > 1, could also “lift” to the matrix wwT , but this will require sets
of cardinality 2t,

→ Could also impose wwT symmetric positive-semidefinite

→ The Lasserre lifting, and the subset-algebra lifting, provide better gen-
eralizations



The stable set problem

Def: A stable set in a graph
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is a set of pairwise non-adjacent vertices

Formulation: Given graph G,

xi + xj ≤ 1, ∀ {i, j} ∈ E(G),

xi = 0 or 1, ∀ i ∈ V (G).



Classical inequalities

������

��

��

1

2

3
4

2k + 1

Def: An odd hole is a cycle of odd length with no chords.
Odd-hole inequality (facet-defining, polynomially separable):

Σ2k+1
i=1 xi ≤ k

0

1

3

4

2k + 1
2

Def: An odd wheel is a cycle of odd length (with no chords) plus an addi-
tional vertex adjacent to all wheel vertices.
Odd-wheel inequality (facet-defining, polynomially separable):

kx0 + Σ2k+1
i=1 xi ≤ k



Sherali-Adams and Odd Holes

1 
5

2

3 4

“Case” x1 = 0. Look at the variables v[Y, N ], with N = {1} and |Y | = 1.

1

2

3 4

5

Consider the inequality x2 + x3 ≤ 1, and use v[∅, {1}]:

v[2, 1] + v[3, 1] ≤ v[∅, 1]

Similarly, using x4 + x5 ≤ 1,

v[4, 1] + v[5, 1] ≤ v[∅, 1]

and v[1, 1] = 0, so: Σiv[i, 1] ≤ 2v[∅, 1].



“Case” x1 = 1. Now look at the variables v[{j, 1}, ∅].

1

2

3 4

5

Consider x1 + x2 ≤ 1, and use v[1, ∅]:

v[1, ∅] + v[{1, 2}, ∅] ≤ v[1, ∅] so v[{1, 2}, ∅] = 0.

Similarly, v[{1, 5}, ∅] = 0, and using x3 + x4 ≤ 1,

v[{1, 3}, ∅] + v[{1, 4}, ∅] ≤ v[1, ∅].

So:

Σiv[{1, i}, ∅] ≤ 2v[1, ∅]



Summary:

Σi v[i, 1] ≤ 2v[∅, 1],

and
Σi v[{1, i}, ∅] ≤ 2v[1, ∅].

Note:
v[i, 1] + v[{1, i}, ∅] = xi and v[∅, 1] + v[1, ∅] = 1.

Conclusion:

Σi xi ≤ 2



Odd Wheels

0

4

2

5

63

1

7

“Case” x0 = 0 and x1 = 1.

1

2

3

4 5

6

7

0

x3 + x4 ≤ 1, so v[{1, 3}, 0] + v[{1, 4}, 0] ≤ v[1, 0].

Similarly, v[{1, 5}, 0] + v[{1, 6}, 0] ≤ v[1, 0],

So, Σi≥1v[{1, i}, 0] ≤ 3v[1, 0].

Conclusion: 3x0 + Σi≥1xi ≤ 3.



Cheng and Cunningham (1997):

Generalizations of odd-hole and odd-wheel inequalities.

Given a graph G, inequalities of the form

∑
j∈V (H)

αjxj ≤ β,

where H is a subgraph of G.

• Subdivisions of wheels

0

1 

2

3 

4

2k+1

• Subdivisions of p−wheels
1 

2

3 

4

2k+1

complete graph on
p  vertices



Cheng and de Vries (2002):

(p, t) − antiwebs for p ≥ 2t− 1:
1

2

3 8

65

4 7
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(p, t) − antiwebs − s − wheels:
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subdivisions of the above.

→ polynomially separable for fixed t and s



Robertson and Seymour (1980s - 1990s) : tree-width

Def: A tree-decomposition of a graph G consists of a tree T and a
family of sets Xt (for each node t of T ), such that:

• Each Xt is a subset of vertices of G.

• For each vertex v of G, the collection of sets Xt containing v forms a
subtree of T .

• For each edge {u, v} of G there is a subset Xt with {u, v} ⊆ Xt .
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Def: A tree-decomposition of a graph G consists of a tree T and a
family of sets Xt (for each node t of T ), such that:

• Each Xt is a subset of vertices of G.

• For each vertex v of G, the collection of sets Xt containing v forms a
subtree of T .

• For each edge {u, v} of G there is a subset Xt with {u, v} ⊆ Xt .

The width of the decomposition is maxt {|Xt|} − 1.

→ G has tree-width ≤ k if it has a tree-decomposition of width ≤ k.

... equivalently
if there is a chordal supergraph of G of clique number ≤ k

Robertson and Seymour: G has large tree-width if and only if G contains
a large square grid minor



(p, t) − antiwebs − s − wheels:
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Lemma: A subdivision of a (p, t) − antiwebs − s − wheel has tree-
width ≤ 2t + s − 2.

. . . What can we say about inequalities of the form

∑
j∈V (H)

αjxj ≤ β,

where H h
¯
as small tree-width ?



Theorem

Suppose we construct the Sherali-Adams level- k formulation SAk to the
vertex packing problem for a graph G.

Then, any vector x̂ that satisfies the constraints of SAk also satisfies all
valid inequalites of the form

Σj∈V (H)αj xj ≤ β

for every subgraph H of G of tree-width ≤ k.

Corollary: For k ≥ 2t + s − 2, we are guaranteed to satisfy all (subdi-
vided) (p, t)− antiweb− s− wheel inequalities, etc.



Lipták and Tunçel (2003).
Also see Goemans and Tunçel (2001), Cook and Dash (2001)

Consider the graph:
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(= the line-graph of an iterated blossom)

→ Theorem (L & T): the N0-rank of this graph is ∼ log2 k.

→ Conjecture (L & T): the N0- and N -ranks of any graph are equal.

→ The graph has tree-width 3.

Corollary. Its Sherali-Adams rank is ≤ 3.



General packing polyhedra

Ax ≤ b, x ∈ {0, 1}n,

where A ≥ 0.

Def: (Balas et al) The clique graph of A has

• A vertex for each column of A,

• An edge between k and j if there is a row i with aik > 0 and aij > 0.
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Definition: The tree-width of an inequality αTx ≤ β valid for

{Ax ≤ b, x ∈ {0, 1}n},

is the minimum tree-width of the clique graph of any submatrix A′ of A,

such that αTx ≤ β is valid for
{
A′x ≤ b′, x ∈ {0, 1}n′}

.

Theorem: For any k ≥ 1, the level- k Sherali-Adams formulation for

{Ax ≤ b, x ∈ {0, 1}n}

is guaranteed to satisfy all inequalities with tree-width ≤ k − 1.



Covering problems?

Set-covering polyhedra: {Ax ≥ 1, x ∈ {0, 1}n}, A a 0− 1 matrix.

Theorem (B. and Zuckerberg, 2002). Given a set-covering problem, for any fixed k ≥ 1 we can gen-
erate in polynomial time a relaxation that is guaranteed to satisfy all valid inequalities with coefficients
in {0, 1, . . . , k}.

Theorem (B. and Zuckerberg, 2002). Let r ≥ 1 and 0 < ε < 1 be fixed. Given a set-covering
problem

τ = min
{
cT x : Ax ≥ 1, x ∈ {0, 1}n

}
,

in polynomial time we can compute a value v with

(1 − ε) min
{
cT x : x ∈ Kr(A, b)

}
≤ v ≤ τ ,

where Kr(A, b) is the rank-k Chvátal-Gomory closure of {Ax ≥ 1, 0 ≤ x ≤ 1}.


