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1 The QCQP Problem

We consider a Quadratically Constrained Quadratic Programming problem of the form:

QCQP : max xTQ0x + aT
0 x

s.t. xTQix + aT
i x ≤ bi, i ∈ I

xTQix + aT
i x = bi, i ∈ E

l ≤ x ≤ u,

where x ∈ �n and I ∪ E = {1, . . . , m}. The matrices Qi are assumed to be symmetric. If

Qi � 0 for i = 0, Qi � 0 for i ∈ I and Qi = 0 for i ∈ E , then QCQP is a convex optimization

problem. In general however QCQP is NP-hard.

QCQP is a well-studied problem in the global optimization literature with many applications,

frequently arising from Euclidean distance geometry.

2 RLT and SDP Relaxations

Relaxations of QCQP based on Semidefinite Programming (SDP) and the Reformulation-

Linearlization Technique (RLT) both relax product terms xixj to an element Xij of an n × n

matrix X . The two relaxations differ in the form of the constraints on X .



Semidefinite Programming

The SDP relaxation of QCQP may be written

SDP : min Q0 • X + aT
0 x

s.t. Qi • X + aT
i x ≤ bi, i ∈ I

Qi • X + aT
i x = bi, i ∈ E

l ≤ x ≤ u, X − xxT � 0.

It is very well known that the condition X − xxT � 0 is equivalent to

X̃ :=

⎛
⎝ 1 xT

x X

⎞
⎠ � 0,

and therefore SDP may be alternatively written in the form

SDP : min Q̃0 • X̃

s.t. Q̃i • X̃ ≤ 0, i ∈ I
Q̃i • X̃ = 0, i ∈ E
l ≤ x ≤ u, X̃ � 0,

where

Q̃i :=

⎛
⎝ −bi aT

i /2

ai/2 Qi

⎞
⎠ .



Reformulation-Linearization Technique

The RLT relaxation of QCQP is based on forming products of the bound constraints xi− li ≥ 0

and ui − xi ≥ 0, i = 1, . . . , n. Forming all such possible products, and relaxing product terms

xixj to Xij, results in the system of constraints

Xij − lixj − ljxi ≥ −lilj,

Xij − uixj − ujxi ≥ −uiuj,

Xij − lixj − ujxi ≤ −liuj,

Xij − ljxi − uixj ≤ −ljui,

i, j = 1, . . . , n. Note that for i = j the two upper bounds on Xii are the same. Using the fact

that Xij = Xji, the result is an ordinary Linear Programming (LP) problem with n(n + 1)/2

variables and a total of m+n(2n+3) constraints. For the purpose of interpretation it is helpful

to write the constraints on Xij in the alternative form

Xij ≥ xixj − (xi − li)(xj − lj),

Xij ≥ xixj − (ui − xi)(uj − xj),

Xij ≤ xixj + (xi − li)(uj − xj),

Xij ≤ xixj + (ui − xi)(xj − lj).



Comparison between SDP and RLT

To compare the SDP and RLT relaxations it is useful to consider the principal submatrix of X̃

corresponding to two variables xi and xj. Taking i = 1 and j = 2 w.l.o.g., let

X̃12 =

⎛
⎜⎜⎜⎜⎝

1 x1 x2

x1 X11 X12

x2 X12 X22

⎞
⎟⎟⎟⎟⎠ .

It is then straightforward to show that the condition X̃12 � 0, from SDP, is equivalent to the

constraints

Xii ≥ x2
i , i = 1, 2,

X12 ≤ x1x2 +
√
(X11 − x2

1)(X22 − x2
2),

X12 ≥ x1x2 −
√
(X11 − x2

1)(X22 − x2
2).



Proposition. Consider the SDP and RLT constraints on X11, X22 and X12 for values of xi

satisfying li ≤ xi ≤ ui, i = 1, 2. Then:

1. SDP implies no upper bound on Xii, i = 1, 2 compared to the RLT upper bounds

Xii ≤ x2
i + (xi − li)(ui − xi).

2. The SDP lower bounds Xii ≥ x2
i , i = 1, 2 dominate the RLT lower bounds

Xii ≥ x2
i − (xi − li)

2, Xii ≥ x2
i − (ui − xi)

2.

3. The SDP bounds on X12 dominate the RLT bounds on X12 if for i = 1, 2

Xii ≤ x2
i + (xi − li)

2, Xii ≤ x2
i + (ui − xi)

2.



Proof of part 3: Assume that Xii ≤ x2
i + (xi − li)

2, i = 1, 2. Then

(xi − li)
2 ≥ Xii − x2

i , i = 1, 2

(xi − li) ≥
√
Xii − x2

i , i = 1, 2

(x1 − l1)(x2 − l2) ≥
√
(X11 − x2

1)(X22 − x2
2).

It follows that the SDP lower bound

X12 ≥ x1x2 −
√
(X11 − x2

1)(X22 − x2
2)

can be no worse than the RLT lower bound

X12 ≥ x1x2 − (x1 − l1)(x2 − l2).

The analysis for the other RLT bounds is similar. �

Remark. If xi = (li +ui)/2, i = 1, 2 then the SDP bounds on X12 dominate the RLT bounds

for all Xii that satisfy the RLT upper bounds in part 1. In this case can compute that the

3–dimensional volume of the intersection of the SDP and RLT constraints on X11, X22, X12 is

(u1 − l1)
3(u2 − l2)

3/72, compared to (u1 − l1)
3(u2 − l2)

3/8 for RLT constraints alone. So for

these “midpoint” values of xi, adding SDP decreases volume by a factor of 9.
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Figure 1: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = x2 = .5.
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Figure 2: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = .1, x2 = .5.
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Figure 3: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = .1, x2 = .9.
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Figure 4: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = .9, x2 = .99.



3 Computational Results I: Box-constrained QP

Consider 15 box-constrained QP problems with n = 30, from Vandenbussche and Nemhauser

(2003). Density of Q0 varies from 60% to 100%. Compare bounds from Vandenbussche

and Nemhauser polyhedral relaxation PS, BARON, RLT, SDP, and SDP+RLT. (Results for

BARON are at root after tightening - courtesy of Dieter Vandenbusshe. SDP includes upper

bound on diagonal components Xii.)

Table 1: Comparison of bounds for indefinite box-constrained QP Problems

Problem Optimal Bound value SDP+ Gap to optimal value SDP+
instance value RLT BARON PS SDP RLT RLT BARON PS SDP RLT
30-60-1 706.00 1454.75 1430.20 1405.25 768.12 714.67 106.06% 102.58% 99.04% 8.80% 1.23%
30-60-2 1377.17 1699.50 1668.51 1637.00 1426.94 1377.17 23.41% 21.15% 18.87% 3.61% 0.00%
30-60-3 1293.50 2047.00 2006.83 1966.00 1370.13 1298.21 58.25% 55.15% 51.99% 5.92% 0.36%
30-70-1 654.00 1569.00 1547.43 1525.50 746.43 674.00 139.91% 136.61% 133.26% 14.13% 3.06%
30-70-2 1313.00 1940.25 1888.67 1836.25 1375.07 1313.00 47.77% 43.84% 39.85% 4.73% 0.00%
30-70-3 1657.40 2302.75 2251.55 2199.50 1719.77 1657.55 38.94% 35.85% 32.71% 3.76% 0.01%
30-80-1 952.73 2107.50 2072.29 2036.50 1050.76 965.25 121.21% 117.51% 113.75% 10.29% 1.31%
30-80-2 1597.00 2178.25 2158.29 2138.00 1622.81 1597.00 36.40% 35.15% 33.88% 1.62% 0.00%
30-80-3 1809.78 2403.50 2376.47 2349.00 1836.79 1809.78 32.81% 31.31% 29.79% 1.49% 0.00%
30-90-1 1296.50 2423.50 2385.44 2346.75 1348.48 1296.50 86.93% 83.99% 81.01% 4.01% 0.00%
30-90-2 1466.84 2667.00 2623.11 2578.50 1527.87 1466.84 81.82% 78.83% 75.79% 4.16% 0.00%
30-90-3 1494.00 2538.25 2499.69 2460.50 1516.81 1494.00 69.90% 67.32% 64.69% 1.53% 0.00%
30-100-1 1227.13 2602.00 2541.99 2481.00 1285.74 1227.13 112.04% 107.15% 102.18% 4.78% 0.00%
30-100-2 1260.50 2729.25 2699.12 2668.50 1365.32 1261.08 116.52% 114.13% 111.70% 8.32% 0.05%
30-100-3 1511.05 2751.75 2704.14 2655.75 1611.11 1513.08 82.11% 78.96% 75.76% 6.62% 0.13%

Average 76.94% 73.97% 70.95% 5.58% 0.41%



4 Computational Results II: Circle Packing

Consider the problem of maximizing the radius of n non–overlapping circles packed into the

unit square in �2. Via a simple, well-known transformation this is equivalent to the “point

packing” problem

max θ

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ θ, 1 ≤ i < j ≤ n

0 ≤ x ≤ e, 0 ≤ y ≤ e.

Note that:

1. The variable θ represents the minimum squared distance separating n points in the unit

square. The corresponding radius for n circles that can be packed into the unit square is√
θ/[2(1 +

√
θ)].

2. The problem formulation involves no terms of the form xiyj. As a result, the RLT and

SDP bounds can both be based on matrices X and Y relaxing xxT and yyT , respectively.

3. Let nx = 	n/2
, ny = 	nx/2
. By symmetry could assume .5 ≤ xi ≤ 1, i = 1, . . . , nx and

.5 ≤ yi ≤ 1, i = 1, . . . , ny.
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  1 circle in the unit square

radius   = 0.500000000000 density  = 0.785398163397
contacts = 4
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  2 circles in the unit square

radius   = 0.292893218813
distance = 1.414213562373

density  = 0.539012084453
contacts = 5
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  3 circles in the unit square

radius   = 0.254333095030
distance = 1.035276180410

density  = 0.609644808741
contacts = 7
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  4 circles in the unit square

radius   = 0.250000000000
distance = 1.000000000000

density  = 0.785398163397
contacts = 12
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  5 circles in the unit square

radius   = 0.207106781187
distance = 0.707106781187

density  = 0.673765105566
contacts = 12
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  6 circles in the unit square

radius   = 0.187680601147
distance = 0.600925212577

density  = 0.663956909464
contacts = 13
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  7 circles in the unit square

radius   = 0.174457630187
distance = 0.535898384862

density  = 0.669310826841
contacts = 14
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  8 circles in the unit square

radius   = 0.170540688701
distance = 0.517638090205

density  = 0.730963825254
contacts = 20
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  9 circles in the unit square

radius   = 0.166666666667
distance = 0.500000000000

density  = 0.785398163397
contacts = 24
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 10 circles in the unit square

radius   = 0.148204322565
distance = 0.421279543984

density  = 0.690035785264
contacts = 21
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 11 circles in the unit square

radius   = 0.142399237696
distance = 0.398207310237

density  = 0.700741577756
contacts = 20
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 12 circles in the unit square

radius   = 0.139958844038
distance = 0.388730126323

density  = 0.738468223884
contacts = 25
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Conjecture. Consider the RLT and SDP relaxations of the point packing problem for n ≥ 2,

where the SDP relaxation includes the upper bounds on Xii and Yii. Then:

1. The optimal value for the RLT relaxation is 2.

2. The optimal value for the SDP relaxation is 1 + 1
n−1 and adding the RLT constraints does

not change this value.

3. For n ≥ 5 the optimal value for the RLT relaxation using symmetry is 1
2
.

4. For n ≥ 5 the optimal value for the SDP relaxation using symmetry is

.25 +
1

4�(n − 1)/4�,

equal to .25 + 1
n−1

if n − 1 is divisible by 4.



Additional RLT constraints based on order

Note that one could assume w.l.o.g. that x1 ≥ x2 ≥ . . . ≥ xn. Adding these constraints alone

has no effect on the SDP or RLT relaxations. However, one can generate new RLT constraints

by taking products of these constraints with each other and/or the original bound constraints.

To limit the number of additional constraints, we consider the inequalities

xi ≥ xi+1 i = 1, . . . , n − 1

and the constraints that result from products with the upper and lower bounds on xi and

xi+1. This gives a total of 5(n − 1) additional constraints. (If the tightened bounds based on

symmetry are also used then the first ny components of x are treated as a separate block from

the remaining n − ny components.)



Conjecture. Consider the RLT and SDP relaxations of the point packing problem for n ≥ 2,

where the SDP relaxation includes the upper bounds on Xii and Yii. Then:

1. The optimal value for the RLT relaxation with the additional order constraints is 1 + 1
n−1

.

2. For n ≥ 5 the optimal value for the RLT relaxation using symmetry and the additional

order constraints is

.25 +
1

4�(n − 1)/4�.

3. For n ≥ 9 the optimal value for the SDP relaxation using symmetry and the additional

order constraints is strictly less than that of the RLT relaxation using symmetry and the

additional order constraints.



Bounds for Point Packing
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5 What Next?

1. Lower bound on volume reduction (Xii, Xjj, Xij) for RLT+SDP compared to RLT.

2. Alternative treatment of symmetry/order in point packing problem.

3. Dynamic generation of constraints for RLT+SDP.

4. Additional Euclidean distance problems (protein folding local refinement).


