SDP versus RLT for Nonconvex QCQP

Kurt M. Anstreicher
Dept. of Management Sciences
University of Iowa

Workshop on Integer Programming and Continuous Optimization

Chemnitz, November 2004

1 The QCQP Problem

We consider a Quadratically Constrained Quadratic Programming problem of the form:

$$
\begin{aligned}
\text { QCQP: } \quad \max & x^{T} Q_{0} x+a_{0}^{T} x \\
\text { s.t. } & x^{T} Q_{i} x+a_{i}^{T} x \leq b_{i}, \quad i \in \mathcal{I} \\
& x^{T} Q_{i} x+a_{i}^{T} x=b_{i}, \quad i \in \mathcal{E} \\
& l \leq x \leq u,
\end{aligned}
$$

where $x \in \Re^{n}$ and $\mathcal{I} \cup \mathcal{E}=\{1, \ldots, m\}$. The matrices Q_{i} are assumed to be symmetric. If $Q_{i} \preceq 0$ for $i=0, Q_{i} \succeq 0$ for $i \in \mathcal{I}$ and $Q_{i}=0$ for $i \in \mathcal{E}$, then QCQP is a convex optimization problem. In general however QCQP is NP-hard.

QCQP is a well-studied problem in the global optimization literature with many applications, frequently arising from Euclidean distance geometry.

2 RLT and SDP Relaxations

Relaxations of QCQP based on Semidefinite Programming (SDP) and the ReformulationLinearlization Technique (RLT) both relax product terms $x_{i} x_{j}$ to an element $X_{i j}$ of an $n \times n$ matrix X. The two relaxations differ in the form of the constraints on X.

Semidefinite Programming

The SDP relaxation of QCQP may be written

$$
\begin{aligned}
\text { SDP: } \quad \min & Q_{0} \bullet X+a_{0}^{T} x \\
\text { s.t. } & Q_{i} \bullet X+a_{i}^{T} x \leq b_{i}, \quad i \in \mathcal{I} \\
& Q_{i} \bullet X+a_{i}^{T} x=b_{i}, \quad i \in \mathcal{E} \\
& l \leq x \leq u, \quad X-x x^{T} \succeq 0 .
\end{aligned}
$$

It is very well known that the condition $X-x x^{T} \succeq 0$ is equivalent to

$$
\tilde{X}:=\left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq 0
$$

and therefore SDP may be alternatively written in the form

$$
\begin{array}{lll}
\text { SDP : } \quad \min & \tilde{Q}_{0} \bullet \tilde{X} \\
\text { s.t. } & \tilde{Q}_{i} \bullet \tilde{X} \leq 0, \quad i \in \mathcal{I} \\
& \tilde{Q}_{i} \bullet \tilde{X}=0, \quad i \in \mathcal{E} \\
& l \leq x \leq u, \quad \tilde{X} \succeq 0
\end{array}
$$

where

$$
\tilde{Q}_{i}:=\left(\begin{array}{cc}
-b_{i} & a_{i}^{T} / 2 \\
a_{i} / 2 & Q_{i}
\end{array}\right)
$$

Reformulation-Linearization Technique

The RLT relaxation of QCQP is based on forming products of the bound constraints $x_{i}-l_{i} \geq 0$ and $u_{i}-x_{i} \geq 0, i=1, \ldots, n$. Forming all such possible products, and relaxing product terms $x_{i} x_{j}$ to $X_{i j}$, results in the system of constraints

$$
\begin{aligned}
X_{i j}-l_{i} x_{j}-l_{j} x_{i} & \geq-l_{i} l_{j}, \\
X_{i j}-u_{i} x_{j}-u_{j} x_{i} & \geq-u_{i} u_{j}, \\
X_{i j}-l_{i} x_{j}-u_{j} x_{i} & \leq-l_{i} u_{j} \\
X_{i j}-l_{j} x_{i}-u_{i} x_{j} & \leq-l_{j} u_{i},
\end{aligned}
$$

$i, j=1, \ldots, n$. Note that for $i=j$ the two upper bounds on $X_{i i}$ are the same. Using the fact that $X_{i j}=X_{j i}$, the result is an ordinary Linear Programming (LP) problem with $n(n+1) / 2$ variables and a total of $m+n(2 n+3)$ constraints. For the purpose of interpretation it is helpful to write the constraints on $X_{i j}$ in the alternative form

$$
\begin{aligned}
X_{i j} & \geq x_{i} x_{j}-\left(x_{i}-l_{i}\right)\left(x_{j}-l_{j}\right) \\
X_{i j} & \geq x_{i} x_{j}-\left(u_{i}-x_{i}\right)\left(u_{j}-x_{j}\right), \\
X_{i j} & \leq x_{i} x_{j}+\left(x_{i}-l_{i}\right)\left(u_{j}-x_{j}\right) \\
X_{i j} & \leq x_{i} x_{j}+\left(u_{i}-x_{i}\right)\left(x_{j}-l_{j}\right)
\end{aligned}
$$

Comparison between SDP and RLT

To compare the SDP and RLT relaxations it is useful to consider the principal submatrix of \tilde{X} corresponding to two variables x_{i} and x_{j}. Taking $i=1$ and $j=2$ w.l.o.g., let

$$
\tilde{X}^{12}=\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & X_{11} & X_{12} \\
x_{2} & X_{12} & X_{22}
\end{array}\right)
$$

It is then straightforward to show that the condition $\tilde{X}^{12} \succeq 0$, from SDP, is equivalent to the constraints

$$
\begin{aligned}
X_{i i} & \geq x_{i}^{2}, \quad i=1,2 \\
X_{12} & \leq x_{1} x_{2}+\sqrt{\left(X_{11}-x_{1}^{2}\right)\left(X_{22}-x_{2}^{2}\right)} \\
X_{12} & \geq x_{1} x_{2}-\sqrt{\left(X_{11}-x_{1}^{2}\right)\left(X_{22}-x_{2}^{2}\right)}
\end{aligned}
$$

Proposition. Consider the SDP and RLT constraints on X_{11}, X_{22} and X_{12} for values of x_{i} satisfying $l_{i} \leq x_{i} \leq u_{i}, i=1,2$. Then:

1. SDP implies no upper bound on $X_{i i}, i=1,2$ compared to the RLT upper bounds

$$
X_{i i} \leq x_{i}^{2}+\left(x_{i}-l_{i}\right)\left(u_{i}-x_{i}\right)
$$

2. The SDP lower bounds $X_{i i} \geq x_{i}^{2}, i=1,2$ dominate the RLT lower bounds

$$
X_{i i} \geq x_{i}^{2}-\left(x_{i}-l_{i}\right)^{2}, \quad X_{i i} \geq x_{i}^{2}-\left(u_{i}-x_{i}\right)^{2}
$$

3. The SDP bounds on X_{12} dominate the RLT bounds on X_{12} if for $i=1,2$

$$
X_{i i} \leq x_{i}^{2}+\left(x_{i}-l_{i}\right)^{2}, \quad X_{i i} \leq x_{i}^{2}+\left(u_{i}-x_{i}\right)^{2}
$$

Proof of part 3: Assume that $X_{i i} \leq x_{i}^{2}+\left(x_{i}-l_{i}\right)^{2}, i=1,2$. Then

$$
\begin{aligned}
\left(x_{i}-l_{i}\right)^{2} & \geq X_{i i}-x_{i}^{2}, \quad i=1,2 \\
\left(x_{i}-l_{i}\right) & \geq \sqrt{X_{i i}-x_{i}^{2}}, \quad i=1,2 \\
\left(x_{1}-l_{1}\right)\left(x_{2}-l_{2}\right) & \geq \sqrt{\left(X_{11}-x_{1}^{2}\right)\left(X_{22}-x_{2}^{2}\right)}
\end{aligned}
$$

It follows that the SDP lower bound

$$
X_{12} \geq x_{1} x_{2}-\sqrt{\left(X_{11}-x_{1}^{2}\right)\left(X_{22}-x_{2}^{2}\right)}
$$

can be no worse than the RLT lower bound

$$
X_{12} \geq x_{1} x_{2}-\left(x_{1}-l_{1}\right)\left(x_{2}-l_{2}\right)
$$

The analysis for the other RLT bounds is similar.

Remark. If $x_{i}=\left(l_{i}+u_{i}\right) / 2, i=1,2$ then the SDP bounds on X_{12} dominate the RLT bounds for all $X_{i i}$ that satisfy the RLT upper bounds in part 1. In this case can compute that the 3-dimensional volume of the intersection of the SDP and RLT constraints on X_{11}, X_{22}, X_{12} is $\left(u_{1}-l_{1}\right)^{3}\left(u_{2}-l_{2}\right)^{3} / 72$, compared to $\left(u_{1}-l_{1}\right)^{3}\left(u_{2}-l_{2}\right)^{3} / 8$ for RLT constraints alone. So for these "midpoint" values of x_{i}, adding SDP decreases volume by a factor of 9 .

Figure 1: RLT versus $\mathrm{SDP}+\mathrm{RLT}$ regions, $0 \leq x \leq e, x_{1}=x_{2}=.5$.

Figure 2: RLT versus $\mathrm{SDP}+\mathrm{RLT}$ regions, $0 \leq x \leq e, x_{1}=.1, x_{2}=.5$.

Figure 3: RLT versus $\mathrm{SDP}+\mathrm{RLT}$ regions, $0 \leq x \leq e, x_{1}=.1, x_{2}=.9$.

Figure 4: RLT versus $\mathrm{SDP}+\mathrm{RLT}$ regions, $0 \leq x \leq e, x_{1}=.9, x_{2}=.99$.

3 Computational Results I: Box-constrained QP

Consider 15 box-constrained QP problems with $n=30$, from Vandenbussche and Nemhauser (2003). Density of Q_{0} varies from 60% to 100%. Compare bounds from Vandenbussche and Nemhauser polyhedral relaxation PS, BARON, RLT, SDP, and SDP+RLT. (Results for BARON are at root after tightening - courtesy of Dieter Vandenbusshe. SDP includes upper bound on diagonal components $X_{i i}$.)

Table 1: Comparison of bounds for indefinite box-constrained QP Problems

4 Computational Results II: Circle Packing

Consider the problem of maximizing the radius of n non-overlapping circles packed into the unit square in \Re^{2}. Via a simple, well-known transformation this is equivalent to the "point packing" problem

$$
\begin{array}{ll}
\max & \theta \\
\text { s.t. } & \left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq \theta, \quad 1 \leq i<j \leq n \\
& 0 \leq x \leq e, \quad 0 \leq y \leq e
\end{array}
$$

Note that:

1. The variable θ represents the minimum squared distance separating n points in the unit square. The corresponding radius for n circles that can be packed into the unit square is $\sqrt{\theta} /[2(1+\sqrt{\theta})]$.
2. The problem formulation involves no terms of the form $x_{i} y_{j}$. As a result, the RLT and SDP bounds can both be based on matrices X and Y relaxing $x x^{T}$ and $y y^{T}$, respectively.
3. Let $n_{x}=\lceil n / 2\rceil, n_{y}=\left\lceil n_{x} / 2\right\rceil$. By symmetry could assume $.5 \leq x_{i} \leq 1, i=1, \ldots, n_{x}$ and $.5 \leq y_{i} \leq 1, i=1, \ldots, n_{y}$.

$$
N=2
$$

$$
N=5
$$

5 circles in the unit square

$N=3$

$$
N=10
$$

$$
\mathrm{N}=11
$$

11 circles in the unit square

$\begin{aligned} & \text { radius } \\ & \text { distance }\end{aligned}=0.142399237696$
0.39820730233^{2} $\begin{aligned} & \text { density } \\ & \text { contacts }=0.70074157756\end{aligned}$
$N=9$
9 circles in the unit square

$$
N=12
$$

12 circles in the unit square

$\begin{array}{ll}\text { radius } \\ \text { distance }=0.13958844038 \\ =0.388730126323 & \text { density } \\ \text { contacts } & =0.73846823884 \\ =25\end{array}$

Conjecture. Consider the RLT and SDP relaxations of the point packing problem for $n \geq 2$, where the SDP relaxation includes the upper bounds on $X_{i i}$ and $Y_{i i}$. Then:

1. The optimal value for the RLT relaxation is 2 .
2. The optimal value for the SDP relaxation is $1+\frac{1}{n-1}$ and adding the RLT constraints does not change this value.
3. For $n \geq 5$ the optimal value for the RLT relaxation using symmetry is $\frac{1}{2}$.
4. For $n \geq 5$ the optimal value for the SDP relaxation using symmetry is

$$
.25+\frac{1}{4\lfloor(n-1) / 4\rfloor}
$$

equal to $.25+\frac{1}{n-1}$ if $n-1$ is divisible by 4 .

Additional RLT constraints based on order

Note that one could assume w.l.o.g. that $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$. Adding these constraints alone has no effect on the SDP or RLT relaxations. However, one can generate new RLT constraints by taking products of these constraints with each other and/or the original bound constraints. To limit the number of additional constraints, we consider the inequalities

$$
x_{i} \geq x_{i+1} \quad i=1, \ldots, n-1
$$

and the constraints that result from products with the upper and lower bounds on x_{i} and x_{i+1}. This gives a total of $5(n-1)$ additional constraints. (If the tightened bounds based on symmetry are also used then the first n_{y} components of x are treated as a separate block from the remaining $n-n_{y}$ components.)

Conjecture. Consider the RLT and SDP relaxations of the point packing problem for $n \geq 2$, where the SDP relaxation includes the upper bounds on $X_{i i}$ and $Y_{i i}$. Then:

1. The optimal value for the RLT relaxation with the additional order constraints is $1+\frac{1}{n-1}$.
2. For $n \geq 5$ the optimal value for the RLT relaxation using symmetry and the additional order constraints is

$$
.25+\frac{1}{4\lfloor(n-1) / 4\rfloor}
$$

3. For $n \geq 9$ the optimal value for the SDP relaxation using symmetry and the additional order constraints is strictly less than that of the RLT relaxation using symmetry and the additional order constraints.

Bounds for Point Packing

5 What Next?

1. Lower bound on volume reduction $\left(X_{i i}, X_{j j}, X_{i j}\right)$ for RLT+SDP compared to RLT.
2. Alternative treatment of symmetry/order in point packing problem.
3. Dynamic generation of constraints for RLT+SDP.
4. Additional Euclidean distance problems (protein folding local refinement).
