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Abstract. Semidefinite relaxations are known to deliver good approx-
imations for combinatorial optimization problems like graph bisection.
Using the spectral bundle method it is possible to exploit structural prop-
erties of the underlying problem and to apply, even to sparse large scale
instances, cutting plane methods, probably the most successful technique
in linear programming. We set up a common branch-and-cut framework
for linear and semidefinite relaxations of the minimum graph bisection
problem. It incorporates separation algorithms for valid inequalities pre-
sented in the recent study [?] of the facial structure of the associated
polytope. Extensive numerical experiments show that the semidefinite
branch-and-cut approach outperforms the classical simplex approach on
a clear majority of the sparse large scale test instances. On instances
from compiler design the simplex approach is faster.
Keywords: branch and cut algorithms, cutting plane algorithms, poly-
hedral combinatorics, semidefinite programs

1 Introduction

Let G = (V,E) be an undirected graph with V = {1, . . . , n} and E ⊆ {{i, j} :
i, j ∈ V, i < j}. For given vertex weights fv ∈ IN∪{0}, v ∈ V , and edge costs
w{i,j} ∈ IR, {i, j} ∈ E, a partition of the vertex set V into two disjoint clusters S

and V \S with sizes f(S) ≤ F and f(V \S) ≤ F , where F ∈ IN∩
[
1
2f(V ), f(V )

]
,

is called a bisection. Finding a bisection such that the total cost of edges in the
cut δ(S) := {{i, j} ∈ E : i ∈ S ∧ j ∈ V \ S} is minimal is the minimum bisection
problem (MB). The problem is known to be NP-hard [?]. The polytope associated
with MB,

PB := conv
{

y ∈ IR|E| : y = χδ(S), S ⊆ V, f(S) ≤ F, f(V \ S) ≤ F
}

,

where χδ(S) is the incidence vector of the cut δ(S) with respect to the edge
set E, is called the bisection cut polytope. MB as well as PB are related to other



problems and polytopes already known in the literature. Obviously, the bisection
cut polytope is contained in the cut polytope [?,?]

PC := conv
{

y ∈ IR|E| : y = χδ(S), S ⊆ V
}

.

If F = f(V ) then MB is equivalent to the maximum cut problem (using the
negative cost function) and PB = PC. For F = d 1

2f(V )e MB is equivalent to the
equipartition problem [?] and the bisection cut polytope equals the equipartition
polytope [?,?]. Furthermore, MB is a special case of the minimum node capaci-
tated graph partitioning problem (MNCGP) [?], where more than two clusters
are available for the partition of the node set and each cluster has a common
limited capacity. The objective in MNCGP is the same as in MB, i.e., to min-
imize the total cost of edges having endpoints in distinct clusters. Finally, we
mention the knapsack polytope [?]

PK := conv

{
x ∈ {0, 1}|V | :

∑
v∈V

fvxv ≤ F

}
,

which plays a fundamental role in valid inequalities for PB. Graph partitioning
problems in general have numerous applications, for instance in numerics [?],
VLSI-design [?], compiler-design [?] and frequency assignment [?]. A large variety
of valid inequalities for the polytope associated with MNCGP is known [?,?,?,?]
and, since MB is a special case of MNCGP, all those inequalities are also valid for
PB. A recent successful study of a combined semidefinite polyhedral branch-and-
cut approach for max-cut is [?], it is designed for rather dense graphs with up to
400 nodes. In contrast, our semidefinite branch-and-cut approach is applicable to
sparse graphs with up to 2000 nodes. In addition, we present a direct comparison
with an LP approach within the same branch-and-cut environment where both
approaches use the same separation routines.

In [?] we give a detailed analysis of PB including several classes of new and
facet-defining inequalities. We summarize these results and those from the lit-
erature in Sect. ??. We use these inequalities to derive and strengthen two re-
laxations for MB. One is based on an integer programming, the second on a
semidefinite programming formulation. We develop in Sect. ?? both an LP-
based branch-and-cut algorithm and an SDP based branch-and-cut algorithm
using the same framework SCIP [?]. In Sect. ?? we give a comprehensive com-
putational comparison of both approaches on various test instances with some
surprising outcomes.

2 Valid Inequalities for PB

A large variety of valid inequalities for the cut polytope, the equipartition poly-
tope, and the polytope associated with MNCGP is known: cycle inequalities [?]
of the cut polytope; tree, star, and cycle inequalities [?] as well as suspended
tree and path block cycle inequalities [?,?] for the equipartition polytope; tree,



star, cycle with ear, cycle with tails, and knapsack tree inequalities [?] valid for
the polytope associated with MNCGP. Since MB is a special case of MNCGP
and PB ⊆ PC the bisection cut polytope inherits most of the valid inequalities
listed above.

For convenience we cite the cycle inequalities which we will later use in both
models for MB. Let the subgraph C = (VC , EC) be a cycle in G. Let D be a
subset of EC such that |D| is odd. Then the cycle inequality∑

e∈D

ye −
∑

e∈EC\D

ye ≤ |D| − 1 (1)

is a valid inequality for the cut polytope PC.
The cut structure implies that whenever there is a walk between two nodes

of the graph with an even number of edges in the cut, the two end-nodes of the
walk have to be in the same cluster. In particular, given a special root node r,
a walk Prv in G to some node v, an edge subset Hv ⊆ Prv of even cardinality,
and an incidence vector y of a cut; if the term

1−
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1− ye) (2)

evaluates to one then r and v are on the same side of the cut; for nodes in
opposite clusters, it is at most zero. In [?] this is used to set up an inequality
linking the cut structure and the capacity constraint on the node weights.

Proposition 1 (bisection knapsack walk inequality [?]). Let∑
v∈V avxv ≤ a0 be a valid inequality for the knapsack polytope PK with

av ≥ 0 for all v ∈ V . For a subset V ′ ⊆ V , a fixed root node r ∈ V ′, walks
Prv ⊆ E, and sets Hv ⊆ Prv with |Hv| even, the bisection knapsack walk
inequality ∑

v∈V ′

av

1−
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1− ye)

 ≤ a0 . (3)

is valid for the polytope PB.

Given a root node r and a vector y ∈ [0, 1]|E| the optimal walks Prv and subsets
Hv maximizing (??) can be found in polynomial time with an algorithm that
follows the one for separating cycle inequalities [?].

The knapsack tree inequalities of [?] form a special case, where the walks Prv

are taken from a tree (T,ET ) of G rooted at r and Hv = ∅ for all v ∈ V ′,

∑
v∈T

av

(
1−

∑
e∈Prv

ye

)
≤ a0 . (4)

Following [?], one may trivially strengthen the coefficients of (??) to

∑
e∈ET

min

{ ∑
v:e∈Prv

av,
∑
v∈T

av − a0

}
ye ≥

∑
v∈T

av − a0, (5)



we call this a truncated knapsack tree inequality. A less obvious strengthening
exploits the dependence of the coefficients in (??) on the choice of the root node,
which we express by the notation

α0 :=
∑
v∈T

av − a0, αr
e := min{

∑
v:e∈Prv

av, α0}, e ∈ ET , (6)

The strongest form is achieved if r enforces a sort of balance with respect to the
cumulated node weights on the paths to r.

Theorem 2. [?] Let (T,ET ) be a tree in G. The strongest truncated knapsack
tree inequality, with respect to the knapsack inequality

∑
v∈V avxv ≤ a0, defined

on (T,ET ) is obtained for a root r ∈ R := Argminv∈T

∑
e∈ET

αv
e . That is, if

r ∈ R then
∑

e∈ET
αs

eye ≥
∑

e∈ET
αr

eye ≥ α0 holds for all s ∈ T and all y ∈ PB.
In particular,

∑
e∈ET

αr
eye =

∑
e∈ET

αs
eye holds for all r, s ∈ R and all y ∈ PB.

The elements of the set R are called minimal roots of a given tree (T,ET ), and
by Theorem ?? all minimal roots of (T,ET ) deliver the same strongest truncated
knapsack tree inequality. Additional structural results allow to locate minimal
roots algorithmically at almost no cost. This strengthening proved highly ef-
fective in our experiments. Note, if the inequality induces a facet then r is a
minimal root by Theorem ??. In some cases the minimal root condition is also
sufficient. In order to state this result, call a path in (T,ET ) branch-less, if its
inner nodes are all of degree 2 in the tree.

Theorem 3. [?] Assume that G = (T,ET ) is a tree rooted at a node r ∈ T ,
fv = 1 for all v ∈ T and |T |

2 + 1 ≤ F < |T |. The truncated knapsack tree
inequality

∑
e∈E min{|{v : e ∈ Prv}|, |V |−F} ≥ |V |−F is facet-defining for PB

if and only if one of the following conditions is satisfied:

(a) r is a minimal root and (T,ET ) satisfies the so-called branch-less path con-
dition: each branch-less path with F nodes has one end-edge that is a leaf in
(T,ET ),

(b) F = |T | − 1.

To motivate a strengthening for general bisection knapsack walk inequalities
consider the case of a disconnected graph with two components, one of them
being a single edge {u, v}, the other connected one being V ′ = V \ {u, v}. If
yuv = 1 then u and v belong to different clusters and therefore the capacity
remaining for the clusters in V ′ (e.g. the right-hand side of (??)) can be reduced
to F −min {fu, fv} yuv. To generalize this idea we define for Ḡ ⊆ G with V̄ ⊆ V ,
Ē ⊆ E(V̄ ) and a ∈ IR|V̄ |

+ a function βḠ : {0, 1}|Ē| → IR ∪∞ with

βḠ(y) = inf
{

a(S), a(V̄ \ S) : S ⊆ V̄ , max
{
a(S), a(V̄ \ S)

}
≤ a0, y = χδḠ(S)

}
.

Now we look at the convex envelope β̌Ḡ : IR|Ē| → IR ∪∞ of βḠ(y), i.e.,

β̌Ḡ(y) = sup
{

β̆(y) : β̆ : IR|Ē| → IR, β̆ convex, β̆(z) ≤ βḠ(z) for z ∈ {0, 1}|Ē|
}

.

Note that β̌Ḡ is a piecewise linear function on its domain.



Proposition 4 (capacity reduced bisection knapsack walk inequal-
ity [?]). Let

∑
v∈V avxv ≤ a0 with av ≥ 0 for all v ∈ V be a valid inequality

for the knapsack polytope PK. Let V0 be a non-empty subset of V and r ∈ V0.
Select subgraphs (Vl, El) = Gl ⊂ G with pairwise disjoint sets Vl, Vl∩V0 = ∅ and
El ⊆ E(Vl) for l = 1, . . . , L. Find for each l an affine minorant for the convex
envelope β̌Gl

such that
cl
0 +

∑
e∈El

ceye ≤ β̌Gl
(y) (7)

holds for all y in PB. Then the capacity reduced bisection knapsack walk in-
equality

∑
v∈V0

av

1−
∑

e∈Prv\Hv

ye −
∑

e∈Prv∩Hv

(1− ye)

 ≤ a0 −
L∑

l=1

(cl
0 +

∑
e∈El

ceye) (8)

is valid for PB.

In certain cases it is possible to establish a full description of β̌Ḡ via a complete
description of the cluster weight polytope defined as follows. Given a graph
G = (V,E) with non-negative node weights av ∈ IR for all v ∈ V . For a set
S ⊆ V we define h(S) := (a(S), (χδ(S))T )T ∈ IR|E|+1. With respect to a given
a0 ∈ IR we call

PCW = conv {h(S) : S ⊆ V, a(S) ≤ a0, a(V \ S) ≤ a0 }

the cluster weight polytope.
In [?], a full description of PCW

(
Ḡ
)

is given for the special case that the
subgraph Ḡ =

(
V̄ , Ē

)
is a star centered at some node r ∈ V̄ , a ≥ 0, and

a0 satisfies a(V̄ ) ≤ a0 . In order to state the nontrivial facets of this case,
assume a

(
V̄ \ {r}

)
> ar and call a triple (Vp, v̄, Vn) feasible if it fulfills V̄ =

{r, v̄} ∪̇ Vp ∪̇ Vn and a(Vp) ≤ 1
2a
(
V̄
)

< a(Vp) + av̄. For all feasible triples
(Vp, v̄, Vn) the inequalities

y0 −
∑
v∈Vp

avyrv −
(
a(V̄ )− 2a(Vp)− av̄

)
yrv̄ +

∑
v∈Vn

avyrv ≥ 0 (9)

are the facet-inducing inequalities for PCW(Ḡ). Thus, inequalities (??) form the
best linear minorants (??) to be used in ?? in this case.

In our experiments this rather involved strengthening technique proved far
less effective than the simple root strengthening for knapsack tree inequalities,
but this may be due to the dominating non-negative cost structure in our ex-
periments.

3 Linear and Semidefinite Relaxations for MB

The linear relaxation for MB is derived from the following integer linear program-
ming formulation. We select a node s ∈ V and extend E so that s is adjacent to



all other nodes in V , setting the weights w(·) of new edges to zero. We introduce
binary variables yij for all ij ∈ E and require that yij = 1 if nodes i and j are
in different clusters and yij = 0 otherwise. The capacity constraints on the two
clusters can then be formulated as

fs +
∑

i∈V \{s}

fi(1− yis) ≤ F , (10)

∑
i∈V \{s}

fiyis ≤ F . (11)

Thus we obtain the following integer linear model for MB.

min
∑
e∈E

weye

s.t. (??), (??), (??),

y ∈ {0, 1}|E| .

(12)

The cycle inequalities (??) make sure that each solution to (??) corresponds to
an incidence vector of a cut in G. (??) and (??) require that this cut is a bisection
cut. Although the number of all valid cycle inequalities for PB is exponential in
|E|, the inequalities can be separated in polynomial time [?].

Our semidefinite relaxation for MB follows the classical approach of [?]. Given
the weighted adjacency matrix W of G, represent a bipartition by x ∈ {−1, 1}n

with xi = −1 if x ∈ S and xi = 1 if x ∈ V \S. Then an integer quadratic model
for MB reads

min

∑
i<j

wij
1− xixj

2
:
∣∣fT x

∣∣ ≤ 2F − f(V ), x ∈ {−1, 1}|V |

 . (13)

Rewrite
∑

i<j wij
1−xixj

2 as
〈

1
4L, xxT

〉
, where L = Diag(We)−W is the weighted

Laplace matrix of G, and relax xxT for x ∈ {−1, 1}n to X � 0 with diag(X) = e
to obtain

min
〈

1
4L,X

〉
s.t.

〈
ffT , X

〉
≤ (2F − f(V ))2,

diag(X) = e ,

X � 0 .

(14)

The framework employs the same separation algorithms for (??) and (??) by
transforming a X̄ to a ȳ via ȳij = 1−X̄ij

2 for all {i, j} ∈ E. Separated in-
equalities

∑
{i,j}∈E kijyij ≤ kl are translated into constraints 〈K, X〉 ≤ ks

for the primal semidefinite relaxation by Kij = − 1
2kij for all {i, j} ∈ E and

ks = 2kl −
∑

{i,j}∈E kij .
Our branch-and-cut implementation using the linear relaxation follows ba-

sically standard techniques known in the community. Our implementation with



the semidefinite relaxation is, however, not straightforward and involves many
details of which we sketch a few. In contrast to [?], where a standard polyhedral
bundle method is used together with a rather expensive semidefinite oracle, we
solve the semidefinite relaxation approximately by applying the spectral bun-
dle method [?,?] to the dual of (??) in its equivalent form as an eigenvalue
optimization problem,

− min
z∈IR|V |

p≥0

|V |λmax

(
−1

4
L + Diag(z)− ffT p

)
− 〈e, z〉+ (2F − f(V ))2 p . (15)

In this setting, the oracle is a Lanczos method for computing extremal eigen-
values and corresponding eigenvectors of large structured matrices; we use the
eigenvectors to form a semidefinite cutting model. Any dual feasible solution
of (??) yields a valid lower bound for MB. The decisive step in the use of the
spectral bundle method in branch-and-cut is to exploit its restarting properties
and its primal approximate solution.

While solving (??) the bundle method aggregates the eigenvector information
to an approximate primal solution X̃ of (??) of the form

X̃ = PUPT + αW � 0 , (16)

where P ∈ IRn×k, PT P = I, holds a basis of the aggregated eigenvectors, U ∈
Sk

+, α ≥ 0 so that trU + α = |V |, and W ∈ Sn
+ is sparse with trW = 1. The

software allows to choose the support of W . We start with the support of L and
extend it on the fly by further off-diagonal elements (edges) that promise to be
useful in the separation of cycle inequalities; this proved to be highly effective
already in [?]. The approximate solution X̃ will in general satisfy the constraints
approximately only. On the one hand this may result in off-diagonal elements X̃ij

outside of the interval [−1, 1], so X̃ has to be rounded or truncated before the
standard separation routines can be applied (see above for the transformation
to y). On the other hand, a separated inequality may still be violated after the
next optimization run, so precautions have to be taken against separating the
same inequality again and again. Such aspects have been addressed in [?] and
we build on this work.

For generating primal solutions we use heuristics, similar in style to Goemans-
Williamson [?], on the spectral bundle part PUPT of the approximate primal
solution X̃. One of the more successful variants pays special attention to the
sign structure of the large eigenvalues. We improve these rounded solutions by
simple local search techniques. The good quality of these solutions proved to be
one major advantage of SDP over LP in our branch-and-cut comparisons.

After the addition of newly separated cutting planes there is no difficulty
in restarting the bundle method from the old Lagrange multiplier solution by
setting the new multipliers to zero. Extending the old subgradients to the new
coordinates can be done easily, if the support of the new inequalities is restricted
to the support of W . This way the bundle model needs not be rebuilt in spite
of the changes in dimension. Fortunately, no dramatic scaling problems seem



to arise during the usual separation process, maybe because violation of the in-
equalities and changes in the multipliers seem to converge to zero at a common
speed. Quite often, however, we observed significant scaling problems when the
relaxation needs to be resolved after the addition of a branching constraint like
setting Xij = 1. Indeed, a few of the Lagrange multipliers – those associated
with the new constraint Xij = 1 and with the constraints containing the newly
restricted edge – will typically change a lot, but most other multipliers seem not
to move much. In this context the following idea for a scaling heuristic turned
out to be quite effective. Take the two eigenvectors v, w to the two nonzero eigen-
values of Xij and allow the more or the less change in the Lagrange multipliers
in dependence on the Ritz values vT Av and wT Aw of each constraint matrix A.

In a combined bundle and cutting plane approach a heavy tailing off effect
has to be expected and can be observed in solving the relaxation. To cope with
this, we never wait for convergence but stop solving the relaxation quite early
on several “lack of progress” criteria. Yet, the resulting rough approximations
still need quite some time. Consequently the number of branch-and-bound nodes
stays small and the common strong branching techniques of LP cannot be ap-
plied. To make up for this we developed a rather elaborate branching rule. Based
on the vector labelling corresponding to PUPT we try to cluster the nodes into
subsets having well aligned vectors and investigate the effect on the cost func-
tion if two such clusters are forced to be aligned in the same or in the opposite
direction. Given the two clusters where this shows the strongest effect, we pick
a representative of each cluster, say nodes ı̂ and ̂, and set Xı̂̂ to +1 in one
subproblem and to −1 in the other.

4 Computational Results

For our empirical investigations we used sparse graph instances from the samples
presented in [?] varying in the number of edges between 1 500 and 500 000. We
generally set F = 0.525f(V ). As a branch-and-cut framework we use SCIP [?]
with ILOG CPLEX 9.130 as LP-solver and the spectral bundle method developed
by [?] as the SDP-solver. The computations were executed on a 3.2 GHz Pentium
IV processor with 1 GB RAM.

In Table ?? we present a comparison of the performance of the cutting plane
algorithms based on the knapsack tree inequalities with minimal roots (kt), ca-
pacity improved bisection knapsack walk inequalities (bkw) and cycle inequalities
(cy) in combination with the linear and the semidefinite relaxation. Note that
the cycle inequalities are part of the integer linear model (??), so they are sep-
arated in each setting of the LP relaxation. In the tests of Table ?? we only
computed the root node of the branch-and-cut tree. We added inequalities of
each class separately as long as violated cuts were found, the time limit of 4
hours was not exceeded and a heuristically computed upper bound was not yet
proven to be optimal. Along with the lower bounds we report the best upper
bounds known to us but not necessarily achieved in the same computations.



Within the linear relaxation, the knapsack tree inequalities have the biggest
impact on the improvement of the lower bound. This may seem surprising in
view of the fact that the knapsack walk inequalities subsume the knapsack tree
inequalities; the reason is that, for speed, both separators start from a few seed
nodes and then the minimal root strengthening of Theorem ?? boosts the per-
formance of knapsack trees. Column all shows that it is worth to apply all
separators in the linear case. The cycle separator alone achieves very poor lower
bounds, so studying the bisection cut polytope PB pays off when considering the
linear relaxation of MB. The situation is stunningly different in the semidefinite
case. Here, the pure semidefinite relaxation (none) yields already good lower
bounds. For very large instances like alut2292.494500 the separation routines
only slow down the solution process and thus lead to worse bounds when the
computing time is a major limiting factor. The best results are achieved when
the separator for cycle inequalities is used exclusively. The bisection specific in-
equalities, i.e., the knapsack tree and bisection knapsack walk inequalities, yield
roughly the same performance. These also improve the bound significantly but
in comparison to cycle inequalities computation times are higher.

Based on the results of Table ?? the parameters of our branch-and-cut codes
were set as follows. For the LP-relaxation the knapsack tree separator is given
the highest priority and separation frequency, followed by the cycle and the
bisection knapsack walk separators. For the semidefinite relaxation the cycle
separator is the only separator. We limited computation time to 10 hours for
each instance. The computations are presented in Tables ?? and ??. By solving
big instances (Table ??) the SDP-relaxation outperforms the LP-relaxation with
respect to both quality of dual bounds and computation time. In most cases
we also observed that after a few seconds the value of the current SDP-bound
exceeds the value of the current LP-bound and stays ahead throughout. However,
the situation looks quite different when solving graph instances coming from
compiler design as in [?]. For these instances the linear solver is far ahead of the
semidefinite one with respect to computation time.

5 Conclusion

In this paper we considered the minimum graph bisection problem, a combina-
torial problem for which linear and semidefinite relaxations are easy to derive.
Using previous polyhedral studies presented in [?] we developed separation rou-
tines for valid inequalities to the bisection cut polytope PB and incorporated
them into a common branch-and-cut framework for linear and semidefinite re-
laxations. On the basis of large sparse instances coming from VLSI design we
showed the good performance of the semidefinite approach versus the main-
stream linear one.
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Table 3. Performance of the linear and the semidefinite branch-and-cut algorithms.
Results on compiler design graphs [?].

linear relaxation semidefinite relaxation

# b&b time upper lower gap # b&b time upper lower gap
graph n.m

nodes (sec.) bound bound (%) nodes (sec.) bound bound (%)

cb.30.47 354 1 266 266 0 25166 540 266 266 0

cb.30.56 326 2 379 379 0 10276 256 379 379 0

cb.45.98 49 5 989 989 0 2995 438 989 989 0

cb.47.101 100 3 527 527 0 4403 433 527 527 0

cb.47.99 12 5 765 765 0 963 113 765 765 0

cb.61.187 785 81 2826 2826 0 10333 ∗5907 2826 2647 7

∗ Early termination due to a memory shortage.
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