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Abstract

Eigenvectors to the second smallest eigenvalue of the Laplace matrix of a graph,
also known as Fiedler vectors, are the basic ingredient in spectral graph partition-
ing heuristics. Maximizing this second smallest eigenvalue over all nonnegative edge
weightings with bounded total weight yields the absolute algebraic connectivity intro-
duced by Fiedler, who proved tight connections of this value to the connectivity of the
graph. Our objective is to gain a better understanding of the connections between
separators and the eigenspace of this eigenvalue by studying the dual semidefinite
optimization problem to the absolute algebraic connectivity. Exploiting optimality
conditions we show that this problem is equivalent to finding an embedding of the
n nodes of the graph in n−space so that their barycenter is the origin, the distance
between adjacent nodes is bounded by one and the nodes are spread as much as pos-
sible (the sum of the squared norms is maximized). For connected graphs we prove
that for any separator in the graph, at least one of the two separated node sets is
embedded in the shadow (with the origin being the light source) of the convex hull of
the separator. Furthermore, we show that there always exists an optimal embedding
whose dimension is bounded by the tree width of the graph plus one.
Keywords: spectral graph theory, semidefinite programming, eigenvalue optimiza-
tion, embedding, graph partitioning, tree-width
MSC 2000: 05C50; 90C22, 90C35, 05C10, 05C78

1 Introduction

Let G = (N,E) be an undirected graph with node set N = {1, . . . , n} and edge set
E ⊆ {{i, j} : i, j ∈ N, i 6= j}. Edge {i, j} will be abbreviated by ij if there is no danger
of confusion. The adjacency matrix A ∈ R

n×n of the graph is defined as the (symmetric)
matrix having aij = 1 if ij ∈ E and 0 otherwise. The Laplace matrix or Laplacian of the
graph is the matrix L = diag(Ae)−A, where e denotes the vector of all ones of appropriate
dimension and diag(v) denotes the diagonal matrix having v on its main diagonal. For
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symmetric matrices H ∈ R
n×n we order the eigenvalues by λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H).

Because the Laplacian L is positive semidefinite and Le = 0, we have λ1(L) = 0 with
eigenvector e. Fiedler [6, 7] showed that the second smallest eigenvalue λ2(L) is tightly
related to edge and vertex connectivity of the graph. In particular, λ2(G) is positive if
and only if G is connected. Therefore, Fiedler called λ2(L) the algebraic connectivity of
the graph. Eigenvectors to λ2(L), often referred to as Fiedler vectors, have been used
quite successfully in heuristics for graph partitioning in parallel computing [20, 21, 14],
in clustering of geometric objects [1] or hyperlinks in the world wide web [12] or even
computer vision [15]. The second smallest eigenvalue allows to derive various bounds in
graph partitioning or bandwidth optimization [13, 11]; further properties of the Laplacian
spectrum are presented in [8, 9, 10, 2, 29] and [17, 18] give a survey on the Laplacian
spectrum of graphs. See also [3, 19] for related applications of spectral graph theory in
combinatorial optimization.

By the Courant-Fischer Theorem, the eigenvalue λ2(L) and its eigenvectors may be
characterized as optimal solutions to the optimization problem

λ2(L) = min
v∈Rn,vT e=0,‖v‖=1

vTLv.

The usefulness of λ2 and its eigenvectors in graph partitioning should relate to this char-
acterization in some way. In order to get a better understanding of these connections, it
seems natural to study the eigenspace of λ2 for weighted matrices on the same support (i.e.,
arc weighted graphs on the same edge set) that are extremal in the sense, that for their
distribution of the weight, λ2 is maximal. The optimal λ2 with respect to the support of
the graph was introduced by Fiedler [7] under the name “absolute algebraic connectivity”.
We study the semidefinite dual of this optimization problem. Due to complementarity, the
optimal solutions of the dual are restricted to the eigenspace of the optimal λ2 and so all
properties of dual optimal solutions directly provide information on the structure of the
eigenspace associated with the absolute algebraic connectivity. It turns out that the dual
may be interpreted as an embedding problem of the nodes of G in R

n, see (4). The same
optimization problem appears in [24] in connection with finding the fastest mixing Markov
process on a graph; this work also mentions interest in low-dimensional solutions of this
problem within the field of maximum variance unfolding in machine learning [26, 27].

We show that optimal embeddings of (4) have structural properties tightly connected
to the separator structure of the graph (Th. 3). In particular, if a subset S ⊂ N of
nodes separates the graph into two disconnected node sets C1, C2 forming a partition of
N \ S, then for one of the two sets, say C1, all nodes are in the “shadow” of the convex
hull of the nodes in S as seen from the origin, i.e., the straight line segment between any
node of C1 and the origin intersects the convex hull of S. Since any nonzero projection
of the embedding to a one-dimensional subspace yields an eigenvector to the optimal λ2

(Rem. 2), this offers good geometric insight into the usefulness of Fiedler vectors for graph
partitioning.

The embedding may also be interpreted as a variant of vector labelings of graphs as
introduced in [16]. On first sight, strong similarities exist with respect to the Colin de
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Verdière number µ(G), see the excellent survey [25]. But the strong Arnold-property is
not required in our context, so no direct connection to µ(G) should be expected. Yet,
similar to maximizing the corank in the Colin de Verdière number, one may ask for an
optimal embedding of minimal dimension. Besides general interest in the existence of
low dimensional optimal solutions of semidefinite programs [22] such solutions are also
sought in the machine learning applications [26, 27] mentioned above. Even though we
are still far from answering this question to our full satisfaction, we are able to exhibit
an intriguing bound based on the tree width of the graph. Indeed, we show in the proof
of Th. 5, that there is always an optimal embedding whose dimension is bounded by the
cardinality of a “central” node of an arbitrary tree decomposition of G. This bound is
tight for some particular graph classes (see Ex. 8). None the less, the bound seems to be
far too pessimistic, e.g., for planar graphs. Therefore it is conceivable that significantly
better bounds can be obtained by minor related approaches.

The paper is organized as follows. In Section 2 we derive the embedding problem
as the dual problem to the eigenvalue optimization problem of determining the absolute
algebraic connectivity and present an overview of our main results on this embedding
together with some examples. The proof of the first result (the Separator-Shadow Theorem)
is given in Section 3. Section 4 is devoted to optimality preserving manipulations of optimal
embeddings for reducing the dimension of embeddings. These are rotations and foldings
around separators that contain the origin in their convex hull and allow, in Section 5, to
design an algorithm that gives rise to the proof of the tree width bound on the minimal
dimension of optimal solutions.

We use basic notions and notation from graph theory and semidefinite programming
([28]). In particular, for symmetric H ∈ R

n×n, H � 0 is used to denote positive semidef-
initeness; for matrices A,B ∈ R

m×n, 〈A,B〉 =
∑

ij AijBij is the canonical inner product;

in the case of vectors a, b ∈ R
n we will simply use aT b; ‖ · ‖ refers to the usual Euclidean

norm; e denotes the vector of all ones of appropriate size; for a set S ⊂ R
n, conv S refers

to the convex hull of S and coneS = {λx : x ∈ convS, λ ≥ 0}. The projection on a closed
convex set C is denoted by pC(·).

2 Optimal Embeddings and Main Results

In the remainder of the paper we assume, that the graph G = (N,E) is connected and
n ≥ 2. Let

Ŵ = {ŵ ∈ R
E
+ :

∑

ij∈E

ŵij = ŵTe = 1}

denote the set of all possible nonnegative edge weightings that sum up to 1. For a particular
ŵ ∈ Ŵ , let Aŵ denote the weighted adjacency matrix, i.e., Aij = ŵij for ij ∈ E and 0
otherwise, and Lŵ = diag(Aŵe)−Aŵ the corresponding weighted Laplacian. For i, j ∈ V ,
i 6= j define Eij ∈ R

n×n as the matrix having the two diagonal elements (Eij)ii = (Eij)jj =
1, the two offdiagonal elements (Eij)ij = (Eij)ji = −1 and all other elements equal to zero.
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Then we may rewrite the Laplacian as

Lŵ =
∑

ij∈E

ŵijEij.

The matrix Lŵ is positive semidefinite (because Eij is positive semidefinite and ŵij ≥ 0 for
all ij ∈ E) and has an eigenvalue zero with eigenvector e (because Eije = 0). Our basic
optimization problem is to determine the absolute algebraic connectivity

â(G) = |E|max
ŵ∈cW

λ2(Lŵ), (1)

where â(G) denotes the absolute algebraic connectivity introduced in [7]. The maximum
is attained, because a continuous function is maximized over a compact set. Since G is
assumed to be connected, the result of Fiedler [6] for ŵ = 1

|E|e asserts λ2(Lŵ) = 1
|E|λ2(L) >

0, so the optimum value is strictly positive. In order to reformulate the optimization
problem as a semidefinite program it will be convenient to shift the smallest eigenvalue
0 to a sufficiently large value. Thus, (1) may be rewritten as the following semidefinite
program,

â(G)
|E| = max λ

s.t.
∑

ij∈E ŵijEij + µ̂eeT − λI � 0,∑
ij∈E ŵij = 1,

ŵ ≥ 0, λ, µ̂ free.

Because the optimal value is strictly greater than zero by the connectedness of G, we
may rescale the problem by 1/λ and equivalently minimize the sum of the scaled weights
wij = ŵij/λ instead,

|E|
â(G)

= min
∑

ij∈E wij

s.t.
∑

ij∈E wijEij + µeeT � I,

w ≥ 0, µ free.

(2)

Note that by the considerations above, w = 1
λ2(L)−ε

e, µ = 1+ε is a strictly feasible solution

for λ2(L) > ε > 0. Therefore the program attains its optimal solution and semidefinite
duality theory together with strict feasibility asserts that the optimal value of its dual
semidefinite program is also attained. The dual reads

|E|
â(G)

= max 〈I,X〉

s.t.
〈
eeT , X

〉
= 0,

〈Eij , X〉 ≤ 1 for ij ∈ E,
X � 0.

(3)

Now consider a Gram representation of X via a matrix V ∈ R
n×n with X = V TV and

denote column i of V by vi, V = [v1, . . . , vn]. Then,

Xij = vT
i vj and 〈Eij , X〉 = ‖vi‖

2 − 2vT
i vj + ‖vj‖

2 = ‖vi − vj‖
2.
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Since 0 =
〈
eeT , X

〉
= eTXe = eTV TV e and V e =

∑
vi, the dual semidefinite program (3)

translates directly to

|E|
â(G)

= max
∑

i∈N ‖vi‖
2

s.t. (
∑

i∈N vi)
2 = 0,

‖vi − vj‖2 ≤ 1 for ij ∈ E,
vi ∈ R

n for i ∈ N.

(4)

Thus, the dual problem to (1) is equivalent to finding an embedding of the nodes of the
graph in n−space so that their barycenter is at the origin (we will call this the equilibrium
constraint), the distances of adjacent nodes are bounded by one (the distance constraints),
and the sum of their squared norms is maximized.

Remark 1 Together with the KKT conditions (we do not list feasibility constraints again)

vj +
∑

ij∈E

wij(vi − vj) + µ
∑

i∈N

vi = 0 ∀j ∈ N

wij(1− ‖vi − vj‖
2) = 0 ∀ij ∈ E

µ(
∑

i∈N

vi)
2 = 0

the embedding problem suggests the following physical interpretation of optimal primal and
dual solutions. Consider each node as having a point mass of unit size and imagine each
edge being a mass free rope of length one that connects the points. Now the optimum
solution of (4) corresponds to an equilibrium solution of this net spread within a force field
that acts with force v on a point of mass one at position v. The wij are the forces acting
along rope ij. Indeed, all wij > 0 are on the same scale as the force field, because wij > 0
only if ‖vi − vj‖2 = 1. So the first line of the KKT conditions asserts that these forces are
in equilibrium in each point (µ

∑
vi = 0 by feasibility, so this term does not enter). If an

optimal two dimensional embedding exists, such a physical situation is encountered when
spreading the net on a disk rotating around its center (the centripetal force is mω2r, where
m is the mass, ω the angular frequency and r the radius). In [24] the same problem (and
interpretation) was derived starting from the problem of determining the fastest mixing
Markov chain.

We illustrate this for an example graph on 30 vertices, see Fig. 1, that was generated by
picking the vertices randomly in the unit square and by connecting two points by an edge
if their Euclidean distance is at most 0.3. The edge weights corresponding to an optimal
solution of problem (2) are given in grey shades in Fig. 2 (white is weight 0, black is
maximum weight). The optimal embedding of (4) is displayed in Fig. 2. It was computed
using SeDuMi [23] and is in fact two dimensional in this case. The origin is indicated by
the small circle in the center.

Remark 2 The projections of optimal embeddings onto one-dimensional subspaces yield
eigenvectors to the algebraic connectivity. To see this, suppose V = [v1, . . . , vn] is an
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Figure 1: Original graph: The 30 vertices, picked randomly in [0, 1]2, are
connected by an edge if the Euclidean distance is at most 0.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

2

3

4
5

6
78

9

10
11

12

13

14
15 16

17

18
19

20

21

2223

24

25

26
27

28

2930

Figure 2: Graph with optimal edge weights.
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Figure 3: Optimal embedding (the central circle indicates the origin).

optimal embedding of (4) and ŵ are the corresponding optimal weights giving rise to the
algebraic connectivity |E|λ2(Lŵ) in (1). For any p ∈ span{v1, . . . , vn} with ‖p‖ = 1 the
vector u = V Tp is the projection of the optimal embedding onto the one-dimension subspace
{αp : α ∈ R} and an eigenvector to λ2(Lŵ). Indeed, X = V TV is then an optimal solution
of (3), w = ŵ/λ2(Lŵ) together with µ = λ2(Lŵ) + 1 an optimal solution of (2) and by
complementarity and

〈
eeT , X

〉
= 0 we obtain

0 =

〈
X,

∑

ij∈E

wijEij + µeeT − I

〉
λ2(Lŵ)

=

〈
X,

∑

ij∈E

λ2(Lŵ)wijEij − λ2(Lŵ)I

〉

=
〈
V TV , Lŵ − λ2(Lŵ)I

〉

=
〈
I, V (Lŵ − λ2(Lŵ)I)V T

〉
.

So each column of V T and hence u = V Tp is in the eigenspace of Lŵ to eigenvalue λ2(Lŵ).

Our main results show that structural properties of optimal embeddings vi, i ∈ N ,
of (4) are tightly linked to the separator structure of the underlying graph, where a
(node-)separator of G is a subset S ⊂ N of nodes, whose removal disconnects the graph
into at least two connected components. Often we will not discern every single component
arising this way but simply speak of two or more disconnected sets of nodes. The first
result states that for each separator S all but at most one of its components must be em-
bedded so that any ray emanating from the origin first has to hit conv{vs : s ∈ S} before

7



it can reach a node of these components, i.e., considering the origin as a light source and
conv{vs : s ∈ S} as a solid object, all but one of the components must be embedded in the
shadow of the separator.

Theorem 3 (Separator-Shadow) Let vi ∈ R
n (i ∈ N) be an optimal solution of (4) for

a connected graph G = (N,E) and let S be a separator in G giving rise to disconnected
sets C1 and C2. For at least one Cj

conv{0, vi} ∩ conv{vs : s ∈ S} 6= ∅ ∀i ∈ Cj .

In words, the straight line segments conv{0, vi} of all nodes i ∈ Cj intersect the convex hull
of the points in S.

We encourage the reader to check the separator-shadow property on some of the separators
in Figure 3, e.g., for S = {13} or S = {19, 24}.

Considering a separator S with the property 0 /∈ conv{vs : s ∈ S}, the Separator-
Shadow Theorem ensures that all but one of the components are embedded in the subspace
spanned by the separator. Thus, if all minimal separators are small in size, there seems
to be hope that there also exists an optimal embedding of small dimension. Our second
main result confirms this expectation. In order to state it, we first recall the definitions of
tree-decomposition and tree-width as given in [5].

Definition 4 For a graph G = (N,E) a tree-decomposition of G is a tree T = (N , E)
with N ⊆ 2N and E ⊆

(
N
2

)
satisfying the following requirements:

(i) N =
⋃

U∈N U .
(ii) For every e ∈ E there is a U ∈ N with e ⊆ U .
(iii) If U1, U2, U3 ∈ N with U2 on the T−path from U1 to U3, then U1 ∩ U3 ⊆ U2.

The width of T is the number max{|U | − 1 : U ∈ N}. The tree-width tw(G) is the least
width of any tree-decomposition of G.

For example, trees have tree-width one (each edge forms one set U , so N = E and E =
{{e1, e2} : e1, e2 ∈ E, e1 ∩ e2 6= ∅}). In general, it is NP -complete to determine the
tree-width, but any valid tree-decomposition provides an upper bound.

Theorem 5 For each connected graph G there exists an optimal embedding of (4) of di-
mension at most tw(G) + 1.

It is not difficult to devise examples where optimal embeddings of much higher dimen-
sions exist, as well. A simple one, that will also be helpful in the remainder of the paper,
is the star K1,n.

Example 6 For a star K1,n = ({0, 1, . . . , n}, {{0, i} : i = 1, . . . , n}) with n ≥ 2 one
optimal solution embeds the center node 0 in the origin and all other nodes in the vertices
of a regular n-1 dimensional simplex with ‖vi‖ = 1, i = 1, . . . , n for an objective value
of n (optimality follows from setting wij = 1 and µ = 1 in (2)). For even n ≥ 2 a one
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dimensional optimal embedding is given by assigning the center node 0 to the origin, half
the outer nodes to +1 and the other half to -1. For odd n ≥ 3 one possibility to find a two
dimensional optimal embedding is to put node 0 into the origin, node 1 to (1, 0),even nodes

i ≥ 2 to (− 1
n−1

,
√

1− ( 1
n−1

)2) and the odd nodes i ≥ 3 to (− 1
n−1

,−
√

1− ( 1
n−1

)2).

Solving (3) by interior point methods will, in fact, always generate optimal embeddings
of (4) of maximum dimension, because interior point methods generate maximally com-
plementary solutions [4]. So the next question is whether it is difficult to find optimal
embeddings satisfying the bound of Theorem 5. For general graphs there is little hope
to find a tree-decomposition giving the tree-width of the graph, but for a given optimal
embedding and some tree-decomposition of width t our proof of Theorem 5 allows to trans-
form the embedding algorithmically by a sequence of optimality-preserving rotations and
foldings into an optimal embedding of dimension at most t+ 1.

The bound of Theorem 5 on the minimum dimension of optimal embeddings is not
tight for all graphs. Already in the example above, any star K1,n with even n ≥ 2 has an
optimal embedding in one dimension. For certain classes of graphs the bound of Theorem
5 on the minimum dimension of optimal embeddings is, in fact, far off (e.g. planar grid
graphs have one-dimensional optimal embeddings), but in general the bound cannot be
improved as is shown by the second of the following two examples.

Example 7 (Complete Graphs) For Kn = ({1, . . . , n}, {{i, j} : 1 ≤ i < j ≤ n}) we
show that the unique optimal embedding is the regular n − 1 dimensional simplex with all

points lying on the ball of radius rn =
√

n−1
2n

. The optimal X is given by Xii = r2
n = n−1

2n

for 1 ≤ i ≤ n, Xij = Xji = − r2
n

n−1
= − 1

2n
for 1 ≤ i < j ≤ n, and the optimal weights are

wij = 1
n

for 1 ≤ i < j ≤ n. Choosing µ = 1
n

we compute Lw + µeeT − I = 0, so (w, µ)
is feasible for (2) with objective n−1

2
. Likewise, X is feasible for (3) and 〈I,X〉 = n−1

2
, so

optimality is shown. Furthermore, since wij > 0 for all ij, the constraints 〈Eij , X〉 = 1
hold for all optimal X, i.e., the embedding must have all points pairwise at distance one.
So the regular n − 1 dimensional simplex is the only optimal embedding. Note that the
tree-width of Kn is n− 1, thus the complete graphs are not tight with respect to the bound
of Th. 5.

Example 8 (Graphs with tight dimension bound) We append to Kn three indepen-
dent vertices that are completely linked to Kn resulting in a graph G(n) = ({1, . . . , n +
3}, E(n) = {{i, j} : 1 ≤ i ≤ n, i < j ≤ n + 3}). The tree-width of G(n) is n and for n ≥ 4
the minimal dimension of an optimal embedding of G(n) is n+1. In fact, we show that, for
n ≥ 4, the vertices of Kn are again arranged as a centrally symmetric n − 1 dimensional

simplex with all points lying on a ball of radius rn =
√

n−1
2n

and the three new points are

arranged centrally symmetric on a circle orthogonal to this simplex with radius r̄ =
√

n+1
2n

.

The optimum of (3) is obtained by extending the optimum of Ex. 7 with Xii = r̄2 = n+1
2n

for n < i ≤ n+ 3, Xij = Xji = − r̄2

2
= −n+1

4n
for n < i < j ≤ n+ 3, and Xij = Xji = 0 for
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Figure 4: A graph with tree-width 2 and optimal embedding of dimension
at least three, see Ex. 8 (the central circle indicates the origin).

1 ≤ i ≤ n, n < j ≤ n + 3. The optimal weights are wij = 1
n

for 1 ≤ i ≤ n, n < j ≤ n + 3
and wij = 1

n
− 3

n2 for 1 ≤ i < j ≤ n (use Rem. 1 and symmetry). Setting µ = 1
n

the slack
matrix of (2) computes to

Z = Lw +
1

n
eeT − I =

[
3
n2Jn 0

0 1
n
J3

]
� 0, (5)

where Jk denotes the square matrix of all ones of order k. Therefore (w, µ) is feasible for

(2), the objective value is 3n 1
n

+ n(n−1)
2

( 1
n
− 3

n2 ) = 1 + n
2

+ 3
2n

. Likewise, X is positive
semidefinite because it is a Gram matrix. Furthermore, X satisfies all distance constraints
and has the same objective value. Hence the primal and the dual solution are optimal.

Now take any optimal embedding vi, i = 1, . . . , n and set V = [v1, . . . , vn]. Since w > 0,
all optimal embeddings must have all edge lengths equal to one, ‖vi − vj‖ = 1 for all
ij ∈ E(n). By (5) and semidefinite complementarity it holds that

〈
V TV , Z

〉
= 0, thus∑n

i=1 vi = 0 and
∑n+3

i=n+1 vi = 0. So the embedding of Kn must be centrally symmetric
like in Ex. 7, and by the distance constraints each of the three additional vertices must be
embedded orthogonal to the embedding of Kn with distance r̄ to the origin. As the three
vectors have to sum up to zero, this can only be done in two additional dimensions. This
completes the proof.

For n = 1 the construction yields a star with one central and three exterior nodes and
the bound is also tight. For n = 2 the embedding described above is not optimal (it would
collapse to the image of the star), for n = 3 the embedding is optimal but not of minimal
dimension. Without going into details, the cases n = 2, 3 can be extended to tight examples
by appending to each node of Kn yet another node by a single edge, see Fig. 4 for an

10



illustration of the resulting embedding for n = 2.

3 The proof of the Separator-Shadow Theorem 3

Our proof of the Separator-Shadow Theorem will be indirect. Given a feasible embedding
that does not satisfy the statement of the theorem, we improve it by folding appropriate
components out of the current space in opposite directions (see Figures 6 and 7 below).
This requires some preparations. First note that a feasible embedding cannot be full
dimensional and so there is always space for folding.

Observation 9 Given vi ∈ R
n (i ∈ N) feasible for (4), there is a vector h ∈ R

n, ‖h‖ = 1,
with vi ∈ H = {x ∈ R

n : hTx = 0} for i ∈ N .

Proof. The n vectors vi satisfy
∑

i∈N vi = 0, so they are linearly dependent and therefore
dim(span {v1, . . . , vn}) ≤ n− 1.

Given the linear subspace H = {x ∈ R
n : hTx = 0}, a normalized b ∈ H, and some β ∈ R,

we next describe the operation of folding the flat halfspace {x ∈ H : bTx < β} along the
affine subspace B = {x ∈ R

n : hTx = 0, bTx = β} by rotating it around B into direction h
by an angle γ and show that distances between folded points are not longer than before.
The latter fact will help to ensure feasibility with respect to the distance constraints of (4).
In stating this operation we make use of the fact that due to ‖h‖ = ‖b‖ = 1 and hT b = 0
the projection of a point x ∈ R

n onto B is computed by

pB(x) = x+ (β − bTx)b− hTxh. (6)

Therefore the rotation of x ∈ H around B uses the radius ‖x− pB(x)‖ = |β − bTx|.

Observation 10 (Folding a Flat Halfspace) Given h ∈ R
n with ‖h‖ = 1, H = {x ∈

R
n : hTx = 0}, given b ∈ H with ‖b‖ = 1, β ∈ R, and B = {x ∈ H : bTx = β}. Define the

continuous map ϕ : H× [−π, π]→ R
n by

ϕ(x, γ) =

{
pB(x)− (β − bTx)[b cos γ + h sin γ] if bTx < β,
x if bTx ≥ β.

For all γ ∈ [−π, π] and all x ∈ H,

(i) pB(x) = pB(ϕ(x, γ)) and ‖x− pB(x)‖ = ‖ϕ(x, γ)− pB(x)‖,
(ii) ‖ϕ(x, γ)− ϕ(y, γ)‖ = ‖x− y‖ for all y ∈ B,
(iii) ‖ϕ(x, γ)− ϕ(y, γ)‖ ≤ ‖x− y‖ for all y ∈ H.

Proof. (i) follows by direct calculation from (6).
If bTx ≥ β and bTy ≥ β the points are not transformed. If bTx < β and bTy ≤ β both

points are subject to the same orthogonal transformation which preserves distances. This
implies (ii). If, w.l.o.g., bTx < β ≤ bTy, the intersection of the line segment between x and

11



y and B determines a unique point z ∈ B ∩ conv{x, y}. The triangle inequality and (ii)
yield ‖ϕ(x, γ)− y‖ ≤ ‖ϕ(x, γ)− z‖+ ‖z− y‖ = ‖x− z‖+ ‖z− y‖ = ‖x− y‖, so (iii) holds.

Next, we need to trace the objective value as we fold a subset of nodes. Any such
operation can be viewed as a combination of a rotation around the barycenter of the nodes
and a uniform translation without rotation. The following two observations show that
rotations around the barycenter do not affect the cost function while the change induced
by a translation is easily tracked via the barycenter alone.

Observation 11 (Rotation around the Barycenter) Given vi ∈ R
n (i ∈ C ⊆ N),

v̄ = 1
|C|

∑
i∈C vi, set v′i = Q(vi − v̄) + v̄ where Q is an orthogonal matrix. Then,

∑

i∈C

‖v′i‖
2

=
∑

i∈C

‖vi‖
2 .

Proof.
∑

i∈C

‖v′i‖
2

=
∑

i∈C

‖Q(vi − v̄)‖
2 + 2v̄TQ

∑

i∈C

(vi − v̄)

︸ ︷︷ ︸
=0

+|C| ‖v̄‖2

=
∑

i∈C

‖vi − v̄‖
2 + 2v̄T

∑

i∈C

(vi − v̄) + |C| ‖v̄‖2

=
∑

i∈C

‖vi − v̄ + v̄‖2 =
∑

i∈C

‖vi‖
2 .

Observation 12 (Translation) Given d ∈ R
n, vi ∈ R

n and v′i = vi + d (i ∈ C ⊆ N),
v̄ = 1

|C|

∑
i∈C vi. Then,

∑

i∈C

‖v′i‖
2

=
∑

i∈C

‖vi‖
2 + |C|(2v̄ + d)Td.

Proof.
∑

i∈C ‖vi + d‖2 =
∑

i∈C ‖vi‖
2 + 2|C|v̄Td+ |C|dTd.

Putting these together, we now describe the cost change arising in folding a subset of
the nodes.

Observation 13 (The Cost of Folding) Given h, b, β > 0, H, B, and ϕ as in Obs. 10,
given vi ∈ {x ∈ H : bTx < β} (i ∈ C ⊆ N), v̄ = 1

|C|

∑
i∈C vi, γ ∈ [−π, π], set for i ∈ C

v′i = ϕ(vi, γ).

Then, ∑

i∈C

‖v′i‖
2

=
∑

i∈C

‖vi‖
2 + 2|C|r(1− cos γ)β with r = β − bT v̄ > 0.

12
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Figure 5: Rotation around an Affine Subspace.

Proof. The rotation around B may be split into a rotation of the points in C around their
barycenter v̄ as in Obs. 11 and a translation as analyzed in Obs. 12. The corresponding
displacement d for rotating v̄ around B by angle γ is d = r(sin γ)h + r(1− cos γ)b where
r = β − bT v̄ > 0 is the radius (see Fig. 5). By v̄Th = 0, bTh = 0, and Obs. 12 the cost
function changes by

|C|(2v̄Td+ dTd) = |C|
(
2r(1− cos γ)v̄T b+ r2[sin2 γ + (1− cos γ)2]

)

= |C|
(
2r(1− cos γ)v̄T b+ r2[2− 2 cos γ]

)

= 2|C|r(1− cos γ)(v̄T b+ r)

= 2|C|r(1− cos γ)β.

Proof of Theorem 3. Let h ∈ R
n with ‖h‖ = 1 satisfy hTvi = 0 for all i ∈ N as in

Obs. 9 and let S = conv{vs : s ∈ S}. Assume, for contradiction, that the theorem is not
true. Then there is a node in C1, call it node 1, and a node in C2, call it node 2, embedded
in v1 and v2 respectively, that satisfy conv{0, v1} ∩ S = conv{0, v2} ∩ S = ∅. By convex
separation each set conv{0, vj} can be separated from S by a separating hyperplane within
the subspace span {vi : i ∈ N}. So for j ∈ {1, 2} there are vectors bj ∈ span {vi : i ∈ N}
(these satisfy bTj h = 0) and scalars βj > 0 so that bTj x ≥ βj for all x ∈ S and bTj x < βj for
all x ∈ conv{0, vj}.

Next we show that we can find a convex combination of these two inequalities by
choosing an appropriate α ∈ [0, 1] so that for b(α) = (1−α)b1+αb2, β(α) = (1−α)β1+αβ2

the open halfspace {x : b(α)Tx < β(α)} contains points of both C1 and C2 (illustrated in
Fig. 6). Indeed, for α = 0 the halfspace contains v1 and so a point of C1, for α = 1 it
contains v2 which belongs to C2, and it contains the origin for all α ∈ [0, 1]. Suppose, for
contradiction, that in sweeping α through [0, 1] the halfspace looses the last point of C1

before it encounters the first point of C2 at some particular ᾱ. Then the corresponding
hyperplane defined by b(α)Tx = β(α) > 0 would separate 0 strictly from conv{vi : i ∈ N};
but this contradicts the feasibility of the vi as the origin is a convex combination of the vi

by the equilibrium constraint 1
n

∑
i∈N vi = 0.

13
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S

C

C
b x = βT

1

2

0

h

−h

h x = 0T

−b

Figure 7: Improving movement in Case 1 of the separator-shadow proof.

14



Having found appropriate b and β note that bTh = 0 holds and by scaling b and β we
may assume w.l.o.g. ‖b‖ = 1. Let, for j ∈ {1, 2}, Mj = {i ∈ Cj : bTvi < β}, mj = |Mj| > 0,
and v̄j = 1

mj

∑
i∈Mj

vi. Next, consider rotating independently for each j the points in Mj

around the affine subspace B = {x ∈ R
n : hTx = 0, bTx = β} as specified in Obs. 13.

Because the points in M1 and M2 are not adjacent and distances to the remaining points
are not increased by Obs. 10(iii), the edge constraints in (4) remain satisfied. We show,
that rotating the points in M1 in direction h and the points in M2 against direction h by
sufficiently small angels γ1 and γ2 improves the solution (see Fig. 7). As in the proof of
Obs. 13 denote, for j ∈ {1, 2}, radius and displacement of v̄j by

rj = β − bT v̄j > 0 and dj = rj [(sin γj)h+ (1− cos γj)b]

yielding the improvement 2mjrj(1 − cos γj)β. Rotation j adds mjdj to the barycenter
of all points and has to be compensated in order to maintain feasibility with respect to
the equilibrium constraint. Shifts of the global barycenter in the direction of h can be
avoided by requiring m1d

T
1 h = −m2d

T
2 h, i.e., given γ1 choose γ2 in dependence of γ1 so

that m1r1 sin γ1 = −m2r2 sin γ2. After carrying out these rotations it therefore remains to
shift all points by

d = −(m1d
T
1 b+m2d

T
2 b)b/n = −[m1r1(1− cos γ1) +m2r2(1− cos γ2)]b/n

for feasibility in (4). Using Obs. 12, the total objective improvement is

∑

j∈{1,2}

2mjrj(1− cos γj)β − nd
Td =

=
∑

j∈{1,2}

2mjrj(1− cos γj)β −
1

n
[m1r1(1− cos γ1) +m2r2(1− cos γ2)]

2.

This is positive for γ1 and γ2(γ1) close enough to zero, yielding a contradiction to the
optimality of the embedding.

4 Separators containing the Origin

The freedom for squeezing optimal embeddings into lower dimensions that will be needed
for the proof of Theorem 5 in Section 5, is offered by separators that contain the origin in
the convex hull of their embedded nodes. Example 6 of the star K1,n may help to illustrate
the main idea: Alluding to the physical interpretation, we will rearrange, in a first step, the
cumulated force vectors of the separated node sets so that they are balanced in just one or
two additional dimensions with respect to this central separator. In a second step, we will
show how to combine this with reducing the dimension of each component. The result will
be that we either find a particularly large component that governs the dimension of the
entire embedding or no such component exists and we succeed in flattening the embedding
to a space exceeding the dimension of the separator by at most two.
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We start with an optimal embedding vi (i ∈ V ) of G and fix some h and H as specified
in Obs. 9. Let S ⊂ V be a separator in G satisfying

0 ∈ S = conv{vi : i ∈ S}

separating G into m disconnected sets Cj ⊂ N , j ∈ M = {1, . . . , m}. For each j ∈ M the
cumulated vector is denoted by v̄j =

∑
i∈Cj

vi. Typically, we will not modify the embedding
on the linear subspace spanned by the vectors of the separator,

L = spanS.

Modifications will be restricted to its orthogonal complement L⊥, so mostly our illustrations
are given with respect to the embedding obtained by projecting the vi onto L⊥. In the
projected embedding pL⊥(vi) (i ∈ V ), all nodes i ∈ S are embedded in the origin and, like
in the case of the star, the projected cumulated vectors pL⊥(v̄j), j ∈ M , pointing out of
the origin in various directions, are in equilibrium, i.e.,

∑
j∈M pL⊥(v̄j) = 0 by feasibility.

We note for later use that in any such configuration, none of the vectors may be longer
than the sum of the others. Indeed, set δ̄j = ‖pL⊥(v̄j)‖ (j ∈ M), then

∑
j∈M pL⊥(v̄j) = 0

implies ∑

j∈M\{̂}

δ̄j ≥ δ̄̂ for ̂ ∈M. (7)

The following fundamental fact will be used repeatedly (the equilibrium constraint may
get violated initially but this will be taken care of later). For each j ∈ M the vector
pL⊥(v̄j) can be rotated around the origin freely within L⊥ while preserving all distances
between nodes in Cj ∪ S by applying to all pL⊥(vi), i ∈ Cj, an orthogonal transformation
Qj with L contained in its invariant subspace (i.e., Qj restricted to L is the identity).
Furthermore, such transformations do not influence the objective value, as distances to
0 ∈ L are preserved. We complete step one by showing that the vectors pL⊥(v̄j) with their
lengths δ̄j = ‖pL⊥(v̄j)‖ can always be rotated into at most three normalized directions d1,
d2, d3 so that the equilibrium constraint holds again in L⊥ (by definition, the equilibrium
constraint stays valid within L).

Observation 14 Given scalars δ̄j ≥ 0 for j ∈ M = {1, . . . , m}, m ≥ 2, so that, for each
̂ ∈ M ,

∑
j∈M\{̂} δ̄j ≥ δ̄̂. There exist vectors d1, d2, d3 ∈ R

2 with ‖d1‖ = ‖d2‖ = ‖d3‖ = 1

and an assignment κ : M → {1, 2, 3} so that
∑

j∈M δ̄jdκ(j) = 0. This also holds if in
addition |{j ∈M : κ(j) = 1}| = 1 is required.

Proof. If |M | = 2 then δ̄1 = δ̄2 and the claim holds for d1 = −d2 and κ correspondingly.
Otherwise let ̂ ∈ M be the smallest number so that

∑̂−1
j=1 δ̄j <

1
2

∑
j∈M δ̄j ≤

∑̂

j=1 δ̄j , set

κ(̂) = 1, κ(j) = 2 for ̂ > j ∈ M and κ(j) = 3 for ̂ < j ∈ M . Set δ̂h =
∑

j∈M,κ(j)=h δ̄j ,

h ∈ {1, 2, 3}. Note that δ̂1 ≤ δ̂2 + δ̂3, δ̂2 ≤ δ̂1 + δ̂3, δ̂3 ≤ δ̂1 + δ̂2. Assume, w.l.o.g., that
δ̂1 ≤ δ̂2 ≤ δ̂3. Set d1(α) = (cosα,− sinα)T for 0 ≤ α ≤ π, d2(α) = (cos γ(α), sin γ(α))T

where γ(α) is defined implicitly by δ̂2 sin γ(α) = δ̂1 sinα, and d3 = (−1, 0)T . Then b(α) =
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Figure 8: Initial setting before the transformation of C in Obs. 15-19.
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Figure 9: ϕ folds C into the halfspace specified by b (Obs. 15).

δ̂1d1(α) + δ̂2d2(α) + δ̂3d3 satisfies [b(α)]2 = 0 for all 0 ≤ α ≤ π, [b(0)]1 ≥ 0 and [b(π)]1 ≤ 0,
so by continuity of b(α) there is an α̂ ∈ [0, π] with b(α̂) = 0.

Let us now turn towards reducing the dimension of the node sets. If span {vi : i ∈ Cj} ⊆ L
for j ∈ M then the embedding is good enough for our purposes. Assume therefore that
there is some j ∈M with span {vi : i ∈ Cj} 6⊆ L. In manipulating the embedding of Cj we
will again only apply orthogonal transformations (sometimes we will simultaneously use
separate ones for each point in Cj) that contain L in their invariant subspace. Therefore all
distances of points in Cj will preserve their distance to the origin and to the embedding of
S. In consequence, optimality is guaranteed if feasibility can be maintained. In particular,
feasibility of the distance constraints is ensured whenever distances within Cj are not
increased. Our manipulations may, however, increase the length of pL⊥(v̄j) and thus δ̄j .
But by Obs. 14 it suffices that condition (7) is satisfied at the end in order to restore the
equilibrium constraint, as well.

The goal is to squeeze the entire embedding of component Cj into the flat halfspace
spanned by L and one additional direction bj ∈ H ∩ L⊥ with ‖bj‖ = 1. This works as
follows. We first fold all nodes into the flat halfspace {x ∈ H : bTx ≥ 0} via Obs. 10 (put
b = bj and β = 0), see figures 8 and 9; this leaves L ⊆ B untouched as required. Then we
collapse this flat halfspace into the even flatter halfspace cone(L∪{bj}) as if collapsing an
umbrella by rotating the ribs towards its handle. These two operations are concatenated
to a continuous transformation ui(t) of the embedding for t ∈ [0, 1] and we will see that the
norm δ̄j(t) = ‖pL⊥(ūj(t))‖ of the cumulated vector ūj(t) =

∑
i∈Cj

ui(t) is nondecreasing
throughout, so that we can easily stop the transformation at an appropriate t to ensure
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b0, L C

ψ

Figure 10: ψ collapses C into the flat halfspace spanned by L and direc-
tion b (Obs. 17).

condition (7). We start with the folding operation.

Observation 15 (Transformation Part 1, Folding) Given j ∈ M , bj ∈ H ∩ L⊥ with
‖bj‖ = 1, define ϕi : [0, 1]→ R

n for i ∈ Cj by

ϕi(t) =

{
vi − (vT

i bj)bj + (vT
i bj)[bj cos tπ + h sin tπ] if vT

i bj < 0
vi if vT

i bj ≥ 0.

Then, for i ∈ Cj,
(i) ϕi(0) = vi,
(ii) ϕi(1) ∈ {x ∈ H : bTx ≥ 0},

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ϕi(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ϕi(t))‖,
(iv) ‖ϕi(t)− v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ϕi(t)− ϕk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj.

Proof. (i,ii) follow from direct calculation and vi ∈ H, (iii,iv,v) from Obs. 10(i,ii,iii) using
b = bj , β = 0, ϕi(t) = ϕ(vi, tπ), and the fact that S ⊆ L ⊆ B.

Next, we show that the length of the projected cumulated vector increases throughout this
first transformation.

Observation 16 For ϕi (i ∈ Cj) as defined in Obs. 15, define ϕ̄j : [0, 1]→ R
n by

ϕ̄j(t) =
∑

i∈Cj

ϕi(t).

The length ‖pL⊥(ϕ̄j(t))‖ is nondecreasing in t ∈ [0, 1].

Proof. The choice of bj ensures B = {x ∈ H : bTj x = 0} ⊇ L and B⊥ = span {h, bj}. By
definition of the ϕi in Obs. 15 we obtain

‖pL⊥(ϕ̄j(t))‖
2 = ‖pL⊥(pB(ϕ̄j(0)))‖2 + ‖pB⊥(ϕ̄j(t))‖

2

= ‖pL⊥(pB(ϕ̄j(0)))‖2 +
∥∥∥∥

∑

i∈Cj ,vT
i

bj<0

(vT
i bj)[bj cos tπ + h sin tπ] +

∑

i∈Cj ,vT
i

bj≥0

(vT
i bj)bj

∥∥∥∥
2

.
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As bj and h are orthogonal it remains to study the monotonicity of
[ ∑

i∈Cj ,vT
i

bj<0

vT
i bj cos tπ +

∑

i∈Cj ,vT
i

bj≥0

vT
i bj

]2

+

[ ∑

i∈Cj ,vT
i

bj<0

vT
i bj sin tπ

]2

=

=

[ ∑

i∈Cj ,vT
i

bj<0

vT
i bj

]2

(cos2 tπ + sin2 tπ) +

[ ∑

i∈Cj ,vT
i

bj≥0

vT
i bj

]2

+

2

[ ∑

i∈Cj ,vT
i

bj<0

vT
i bj

][ ∑

i∈Cj ,vT
i

bj≥0

vT
i bj

]

︸ ︷︷ ︸
≤0

cos tπ

The last term is clearly nondecreasing.

The collapsing transformation starts from the points ϕi(1) and runs as follows.

Observation 17 (Transformation Part 2, Collapsing)
Given the setting of Obs. 15. For i ∈ Cj, set δi = ‖pL⊥(ϕi(1))‖, determine 0 ≤ γi ≤

π
2

and qi ∈ L⊥, qT
i bj = 0, ‖qi‖ = 1 so that pL⊥(ϕi(1)) = δi(qi cos γi + bj sin γi) and define

ψi : [0, 1]→ R
n by

ψi(t) = pL(ϕi(1)) + δi

[
qi cos(γi + t[

π

2
− γi]) + bj sin(γi + t[

π

2
− γi])

]
.

Then, for i ∈ Cj,
(i) ψi(0) = ϕi(1),
(ii) ψi(1) = pL(vi) + ‖pL⊥(vi)‖bj ∈ L+ {βbj : β ≥ 0}

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ψi(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ψi(t))‖,
(iv) ‖ψi(t)− v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ψi(t)− ψk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj.

Proof. First note that Obs.15(iii) implies pL(vi) = pL(ϕi(1)) and δi = ‖pL⊥(vi)‖. Now (i)
and (ii) follow from direct calculation and (iii) and (iv) are proved in the same way as (i)
and (ii) of Obs. 10. It remains to prove (v).

Because of Obs. 15(v) it suffices to prove ‖ψi(t) − ψk(t)‖2 ≤ ‖ϕi(1) − ϕk(1)‖2 for
i, k ∈ Cj. For this we need to show ψi(t)

Tψk(t) ≥ ϕi(1)Tϕk(1) which leads to the condition

fik(t) = (qT
i qk)[cos(γi + t[

π

2
− γi]) cos(γk + t[

π

2
− γk])] + (8)

sin(γi + t[
π

2
− γi]) sin(γk + t[

π

2
− γk])

≥ (qT
i qk)[cos γi cos γk] + sin γi sin γk = fik(0).

We prove that fik(t) is nondecreasing in t ∈ [0, 1]. In the case qT
i qk < 0 both cosine terms

in fik(t) are non increasing and the sine terms are non decreasing. In the remaining case
we use the angle addition formulas to find

fik(t) = qT
i qk cos((1− t)[γi − γk]) + (1− qT

i qk) sin(γi + t[
π

2
− γi]) sin(γk + t[

π

2
− γk]).
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But 0 ≤ qT
i qk ≤ 1 and so the cosine and sine terms are non decreasing.

Again, we continue with showing that during this transformation the length of the projected
cumulated vector is nondecreasing.

Observation 18 For ψi (i ∈ Cj) as defined in Obs. 17, define ψ̄j : [0, 1]→ R
n by

ψ̄j(t) =
∑

i∈Cj

ψi(t).

The length ‖pL⊥(ψ̄j(t))‖ is nondecreasing in t ∈ [0, 1].

Proof. Using the functions fik introduced in (8) we may write
∥∥ ∑

i∈Cj

pL⊥(ψi(t))
∥∥2

=
∑

i∈Cj

‖pL⊥(ψi(t))‖
2 +

∑

i,k∈Cj ,i<k

2(pL⊥(ψi(t)))
T (pL⊥(ψk(t)))

=
∑

i∈Cj

‖pL⊥(ψi(t))‖
2 +

∑

i,k∈Cj ,i<k

δiδkfik(t)

and we have shown in the proof of Obs. 17 that each fik(t) is nondecreasing in t ∈ [0, 1].

We concatenate both transformations into one and summarize our findings on this collaps-
ing transformation.

Observation 19 (Collapsing Transformation)
Given j ∈M , bj ∈ H ∩ L⊥ with ‖bj‖ = 1 define ui : [0, 1]→ R

n for i ∈ Cj by

ui(t) =

{
ϕi(2t) for t ∈ [0, 1

2
],

ψi(2[t− 1
2
]) for t ∈ (1

2
, 1],

(9)

with ϕi and ψi as given in Obs. 15 and Obs. 17. Then, for i ∈ Cj,
(i) ui(0) = vi,
(ii) ui(1) = pL(vi) + ‖pL⊥(vi)‖bj ∈ L+ {βbj : β ≥ 0},

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ui(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ui(t))‖,
(iv) ‖ui(t)− v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ui(t)− uk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj.

Furthermore, for

ūj(t) =
∑

i∈Cj

ui(t)

the length ‖pL⊥(ūj(t))‖ is nondecreasing in t ∈ [0, 1] and ‖pL⊥(ūj(1))‖ =
∑

i∈Cj
‖pL⊥(vi)‖.

Proof. The result follows from Obs. 15, 17 and Obs. 16, 18.

Suppose that the lengths δ̄j =
∑

i∈Cj
‖pL⊥(vi)‖ (j ∈ M) of the collapsed sets satisfy (7).

Then, in order to obtain an embedding that is also in equilibrium with respect to the
subspace L⊥, we only have to choose the collapsing direction bj of each component Cj

according to the vectors dk (embedded in L⊥) with the assignment κ of Obs. 14, bj = dκ(j).
This will yield an optimal embedding of dimension at most dimL + 2 as described in
following lemma.
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Lemma 20 Let vi ∈ R
n for i ∈ N be an optimal solution of (4) for a connected graph

G = (N,E) and let S ⊂ N with 0 ∈ S = conv{vs : s ∈ S} be a separator in G giving
rise to disconnected sets Cj ⊂ N , j ∈ M = {1, . . . , m}. Put L = spanS and, for j ∈ M ,
δ̄j =

∑
i∈Cj
‖pL⊥(vi)‖.

If δ̄̂ ≤
∑

j∈M\{̂} δ̄j for all ̂ ∈M then there exist vectors d1, d2, d3 ∈ L⊥, ‖d1‖ = ‖d2‖ =

‖d3‖ = 1 with dim span {d1, d2, d3} ≤ 2, bj ∈ {d1, d2, d3}, j ∈M , so that the embedding v′i,
i ∈ N , with

v′i =

{
vi for i ∈ S,
pL(vi) + ‖pL⊥(vi)‖bj for i ∈ Cj.

is also an optimal embedding of (4). Furthermore, such an embedding exists with bj = d1

for at most one j ∈M .

Proof. Choose h and H as specified in Obs. 9. If δ̄j = 0 for all j ∈M then the statement
holds for d1 = d2 = d3 = h because v′i = vi ∈ L for i ∈ N . So we may assume δ̄j > 0 for
at least two j ∈ M . In the case dim(H ∩ L⊥) = 1 we must have |S| = n− 2, m = 2, and
|C1| = |C2| = 1, so b1 = d1 = −b2 = −d2 = −d3 with d1 = pL⊥(vi)/‖pL⊥(vi)‖ satisfies all
requirements. It remains to consider the case dim(H ∩ L⊥) ≥ 2.

By Obs. 14 we find three vectors d1, d2, d3 ∈ H ∩ L⊥ of norm one and an assignment
κ : M → {1, 2, 3} satisfying

∑
j∈M δ̄jdκ(j) = 0 and {j ∈ M : κ(j) = 1} = 1. For j ∈ M

set bj = dκ(j) and let ui(t), i ∈ Cj, be the transformations of Obs. 19 for the respective bj .
Then v′i = ui(1) for i ∈ Cj, j ∈ M by Obs. 19(ii). The distance constraints are satisfied
for the new embedding because for {i, k} ∈ E either

i, k ∈ S : ‖v′i − v
′
k‖ = ‖vi − vk‖ by definition,

i ∈ Cj for some j ∈M, k ∈ S : ‖v′i − v
′
k‖ = ‖vi − vk‖ by Obs. 19(iv),

i, k ∈ Cj for some j ∈M : ‖v′i − v
′
k‖ ≤ ‖vi − vk‖ by Obs. 19(v).

The equilibrium constraint is satisfied on L, because pL(vi) = pL(v′i) for all i ∈ N (by
definition for i ∈ S and by Obs. 19(iii) otherwise). It is also satisfied on L⊥, because

∑

i∈N

pL⊥(v′i) =
∑

i∈S

pL⊥(v′i)︸ ︷︷ ︸
=0

+
∑

j∈M

∑

i∈Cj

pL⊥(v′i) =
∑

j∈M

∑

i∈Cj

‖pL⊥(vi)‖bj =
∑

j∈M

δ̄jdκ(j) = 0

by construction of the dj . Finally, the objective value has not changed because ‖vi‖ = ‖v′i‖
for all i ∈ N (by definition for i ∈ S and by Obs. 19(iii) otherwise).

If one set ̂ ∈ M is ‘heavier’ than the other sets, δ̄̂ >
∑

j∈M\{̂} δ̄j , the need to recover
feasibility in the equilibrium constraint will not allow to collapse ̂ in full. We can, however,
collapse all other sets and compensate this by carrying through the transformation in ̂
up to the t̂ ∈ [0, 1] when ‖pL⊥(ū̂(t̂))‖ =

∑
j∈M\{̂} δ̄j . Even though this may lead to a

slight increase in the overall dimension if t̂ <
1
2
, it will help later to reduce the number of

components we have to worry about.
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Lemma 21 Given the setting of Lemma 20 assume that there is a ̂ ∈ M with δ̄̂ >∑
j∈M\{̂} δ̄j. There exists an h ∈ span {vi : i ∈ N}⊥ and an optimal embedding v′i (i ∈ N)

of (4) with
v′i ∈ span {h, vi : i ∈ C̂} for i ∈ C̂,
v′i = vi for i ∈ S,
v′i = pL(vi) + ‖pL⊥(vi)‖b̄ for i ∈ Cj with j ∈M \ {̂},

where b̄ = −
p
L⊥(v̄′

̂
)

‖p
L⊥(v̄′

̂
)‖

if v̄′̂ =
∑

i∈C̂
v′i /∈ L and b̄ = 0 otherwise.

Furthermore, if there is some direction b̂ ∈ span {vi : i ∈ C̂} ∩ L⊥ \ {0} with b̂T vi ≥ 0
for i ∈ C̂, then such an embedding exists with v′i ∈ span {vi : i ∈ C̂} for i ∈ C̂.

Proof. If
∑

j∈M\{̂} δ̄j = 0 then we may choose h = b̄ = 0 and not transform the embedding

at all to obtain the result. Therefore assume
∑

j∈M\{̂} δ̄j 6= 0. Choose h and H as specified

in Obs. 9. Since δ̄̂ > 0 we can find a b̂ ∈ L
⊥ ∩ span {vi : i ∈ C̂} with ‖b̂‖ = 1. Let

ui(t) (i ∈ C̂) denote the transformations of Obs. 19 for this b̂, set ū̂(t) =
∑

i∈C̂
ui(t). By

Obs. 19, the function ‖pL⊥(ū̂(t))‖ is continuous and nondecreasing. As the equilibrium
constraint is satisfied for the vi (i ∈ N), we have

‖pL⊥(ū̂(0)))‖
Obs.19(i)

=
∥∥ ∑

i∈C̂

pL⊥(vi)
∥∥ equilib.

=
∥∥ ∑

i∈N\C̂

pL⊥(vi)
∥∥

p
L⊥(vi)=0 (i∈S)

=
∥∥ ∑

j∈M\{̂}

∑

i∈Cj

pL⊥(vi)
∥∥

≤
∑

j∈M\{̂}

∥∥ ∑

i∈Cj

pL⊥(vi)
∥∥ (by def.)

=
∑

j∈M\{̂}

δ̄j

and, by assumption, ‖pL⊥(ū̂(1))‖ = δ̄̂ >
∑

j∈M\{̂} δ̄j . So there is a t̂ ∈ [0, 1] with

‖pL⊥(ū̂(t̂))‖ =
∑

j∈M\{̂}

δ̄j . (10)

Set v′i = ui(t̂) for i ∈ C̂ and put

v̄′̂ =
∑

i∈C̂

v′i = ū̂(t̂) and b̄ = −pL⊥(v̄′̂)/‖pL⊥(v̄′̂)‖. (11)

For j ∈ M \ {̂} set bj = b̄ and let ui(t), i ∈ Cj, be the transformations of Obs. 19 for
the respective bj . Then, by Obs. 19 (ii), v′i = ui(1) for i ∈ Cj with j ∈ M \ {̂}. The
equilibrium constraint is satisfied for the embedding v′i, i ∈ N , because it holds on L due
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Figure 11: Optimal two dimensional embedding of two wheels with iden-
tical hub, see Rem. 22. The construction of the proof of Lemma 21 would
yield a three dimensional embedding.

to pL(vi) = pL(v′i) for i ∈ N by Obs. 19 (iii) and it holds on L⊥, because

∑

i∈N

pL⊥(v′i) =
∑

i∈S

pL⊥(v′i)︸ ︷︷ ︸
=0

+
∑

i∈C̂

pL⊥(v′i) +
∑

j∈M\{̂}

∑

i∈Cj

pL⊥(v′i)

(by def.)
= pL⊥(v̄′̂) +

∑

j∈M\{̂}

∑

i∈Cj

‖pL⊥(vi)‖b̄

(11)
=

(
‖pL⊥(v̄′̂)‖ −

∑

j∈M\{̂}

δ̄j

)
pL⊥(v̄′̂)

‖pL⊥(v̄′̂)‖

(10)
= 0.

Feasibility of v′i, i ∈ N , with respect to the distance constraints and optimality follow from
Obs. 19 (iv,v) as in the proof of Lemma 20.

Finally, suppose b̂ exists as described in the statement of the Lemma. Then we may

choose b̂ = b̂

‖b̂‖
and by construction (9) of the ui (i ∈ C̂), ui(t) = vi for t ∈ [0, 1

2
] (see

Obs. 15 for ϕi) and ui(t) ∈ L+span {b̂, vi} for t ∈ [1
2
, 1] (see Obs. 17 for ψi). This completes

the proof.

Remark 22 A solution corresponding to the modified solution of this lemma is not neces-
sarily an optimal embedding of minimal dimension. Consider, e.g., the graph consisting of
two wheels with identical hub and rims of k and k + 1 nodes with k ≥ 6, see Fig. 11.

Lemma 21 does not provide a bound on the dimension of the embedding but will tell us
which component we have to think about next in order to get to such a bound. The case
discussed in Lemma 20, on the other hand, yields a bound of |S| + 1, because dim(L) ≤
|S| − 1 due to 0 ∈ S = conv{vi : i ∈ S}. In order to arrive at the result of Theorem 5,
however, we will need a further refinement of Lemma 20 in the case dim(L) = |S| − 1. In
order to set up the scene, assume that the vi (i ∈ N) are already embedded in dimension
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Figure 12: Transformation in the proof of Lemma 25.

θ

0, L

g

b

C

Figure 13: θ squeezes C spanned by L′+span {g} and nonnegative d into
the boundary halfspace spanned by L and nonnegative g. (Obs. 23).

|S| + 1 as described in Lemma 20 with each node set Cj collapsed to some flat halfspace
L+ {δdκ(j) : δ ≥ 0} and denote by H1 the set Cj that is the only one assigned to direction
d1. We are interested in the case that H1 is not connected to some ŝ ∈ S, so S ′ = S \ {ŝ}
is a separator for H1 in G. By Theorem 3 we must have 0 ∈ S ′ = conv{vi : i ∈ S ′}
with L′ = spanS ′ a linear subspace of dimension dim(L′) = dim(L) − 1 and vŝ 6= 0
(otherwise the dimension of the embedding would be |S| already). Figure 12 depicts the
situation when projected onto L′⊥ with Hi =

⋃
j∈M :κ(j)=iCj the set of nodes which are

embedded in direction di, i = 1, 2, 3. It will turn out, that the transformation indicated
in this illustration will yield an optimal embedding of dimension at most |S|, so we can
get rid of one more dimension. For this purpose we introduce yet another transformation
comparable to closing a fan, see Fig. 13. In the following observation think of vector
g = ±pL′⊥(vŝ))/‖pL′⊥(vŝ)‖ as spanning the missing direction in L and d as the additional
direction dj for spanning the embedding of some node set C = Hj.

Observation 23
Given a linear subspace L′ ⊂ R

n, d, g ∈ L′⊥ with ‖d‖ = ‖g‖ = 1, dTg = 0 and vi ∈
{x ∈ L′ + span {d, g} : dTx ≥ 0} (i ∈ C ⊆ N). For i ∈ C, set δi = ‖pL′⊥(vi)‖, determine
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γi ∈ [0, π] so that pL′⊥(vi) = δi(g cos γi+d sin γi) and define continuous maps θi : [0, 1]→ R
n

θi(t) = pL′(vi) + δi [g cos(γi − tγi) + d sin(γi − tγi)] .

Then, for i ∈ C,
(i) θi(0) = vi,
(ii) θi(1) = pL′(vi) + ‖pL′⊥(vi)‖g,

and for all t ∈ [0, 1] it holds that
(iii) pL′(vi) = pL′(θi(t)) and ‖pL′⊥(vi)‖ = ‖pL′⊥(θi(t))‖,
(iv) ‖θi(t)− v‖ ≤ ‖vi − v‖ for v ∈ L′ + {βg : β > 0},
(v) ‖θi(t)− θk(t)‖ ≤ ‖vi − vk‖ for k ∈ C.

Furthermore, for θ̄C(t) =
∑

i∈C θi(t),

(vi) pL′⊥(θ̄C(t)) ∈ span {g}+ {βd : β ≥ 0} for t ∈ [0, 1],
(vii) gT θ̄C(t) is strictly increasing in t ∈ [0, 1] if γi ∈ (0, π] and δi > 0 for some i ∈ C,
(viii) θ̄C(1) =

∑
i∈C pL′(vi) + g

∑
i∈C δi.

Proof. (i,ii,iii) follow from direct calculation and by exploiting that g, d ∈ L′⊥ are or-
thonormal vectors. In order to prove (iv), apply the same arguments used in the proofs of
Obs. 10(ii,iii) to v ∈ L′ and to v ∈ L′ + {βg : β ≥ 0}, respectively.

For proving (v), i.e., ‖θi(t)− θk(t)‖2 ≤ ‖vi − vk‖2 for i, k ∈ C, it suffices to show that

fik(t) = θi(t)
T θk(t) ≥ vT

i vk
(i)
= θi(0)T θk(0) = fik(0),

or, as g, d ∈ L′⊥ are orthonormal vectors, that the function

fik(t) = pL′(vi)
TpL′(vk) + δiδk[cos(γi − tγi) cos(γk − tγk) + sin(γi − tγi) sin(γk − tγk)]

is nondecreasing in t ∈ [0, 1]. By the angle addition formulas and since the cosine is an
even function,

cos(γi − tγi) cos(γk − tγk) + sin(γi − tγi) sin(γk − tγk) = cos((1− t)|γi − γk|).

The right hand side is non decreasing and, thus, fik is nondecreasing.
(vi) and (viii) follow from direct computation and for (vii) it suffices to observe that

gT θ̄C(1) =
∑

i∈C

δi cos(γi − tγi)

is strictly increasing because δi ≥ 0 for all i ∈ C and cos(γi − tγi) is strictly increasing in
t ∈ [0, 1] whenever γi ∈ (0, π].

The next observation will serve to find the correct balancing of the parameters for each
Hj in order to guarantee the equilibrium constraint on the subspace spanned by g and
appropriately chosen dj .
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Observation 24 Given continuous functions λj : [0, 1] → R
2 (j ∈ {1, 2, 3}) and σ ∈ R

with
(i) [λ1(t)]1 is strictly decreasing, [λ2(t)]1 and [λ3(t)]1 are strictly increasing,
(ii) [λi(t)]2 ≥ 0 for t ∈ [0, 1] and i = 1, 2, 3,
(iii) [λ1(0)]1 + [λ2(0)]1 + [λ3(0)]1 + σ = 0,
(iv) [λi(0)]2 < [λj(0)]2 + [λk(0)]2 for pairwise distinct i, j, k ∈ {1, 2, 3},
(v) [λ1(1)]2 = [λ2(1)]2 = [λ3(1)]2 = 0.

There exist t1, t2, t3 ∈ [0, 1] and pairwise distinct ı̂, ̂, k̂ ∈ {1, 2, 3} satisfying
(vi) [λ1(t1)]1 + [λ2(t2)]1 + [λ3(t3)]1 + σ = 0,
(vii) [λı̂(tı̂)]2 = [λ̂(t̂)]2 + [λk̂(tk̂)]2.

Proof. Due to continuity, the monotonicity property (i), and the initial condition (iii)
there exists a continuous nondecreasing function τ : [0, τ̄ ]→ [0, 1] defined implicitly via

[λ1(t)]1 + [λ2(τ(t))]1 + [λ3(τ(t))]1 + σ = 0,

where

τ̄ = max{t ∈ [0, 1] : [λ1(t)]1 + [λ2(t
′)]1 + [λ3(t

′)]1 + σ = 0 for some t′ ∈ [0, 1]}.

By definition, (t′1, t
′
2, t

′
3) = (τ̄ , τ(τ̄ ), τ(τ̄)) satisfies (vi) and by monotonicity at least one

of t′1, t
′
2, t

′
3 is equal to one. Then (v) and (ii) imply that there are pairwise distinct

i, j, k ∈ {1, 2, 3} with [λi(ti)]2 ≥ [λj(tj)]2 + [λk(tk)]2. By the initial condition (iv) and the
continuity of the λj and τ , there must be a smallest t1 ∈ (0, 1] so that t2 = t3 = τ(t1)
satisfy (vi) and (vii).

Lemma 25 Given the setting of Lemma 20 assume that δ̄̂ ≤
∑

j∈M\{̂} δ̄j holds for all
̂ ∈ M and let ̄ ∈ M be the only index with b̄ = d1 within the new embedding of Lemma
20. If at most |S| − 1 nodes of S are adjacent to nodes in C̄, then there is an optimal
embedding of dimension at most |S|.

Proof. Let vi, i ∈ N be the optimal embedding resulting from Lemma 20 with normalized
vectors d1, d2, d3 ∈ L⊥ satisfying dim span {d1, d2, d3} ≤ 2 and an assignment κ : M →
{1, 2, 3} with bj = dκ(j) for j ∈M . Set Hk =

⋃
j∈M :κ(j)=k Cj for k ∈ {1, 2, 3}. Then,

vi ∈ L+ {βdj : β ≥ 0} for i ∈ Hj, j ∈ {1, 2, 3}. (12)

Together with L = spanS and 0 ∈ S = conv{vs : s ∈ S} the dimension of this embedding
is bounded by dimL + dim span {d1, d2, d3} and dimL ≤ |S| − 1. If dimL < |S| − 1 or
dim span {d1, d2, d3} < 2 then the statement holds, so we may assume dimL = |S| − 1 and
dim span {d1, d2, d3} = 2. Next suppose there is a j ∈ {1, 2, 3} with vT

i dj = 0 for all i ∈ Hj,
w.l.o.g. assume this to hold for j = 1. Then the equilibrium constraint on L⊥ simplifies
to

∑
i∈H2
‖pL⊥(vi)‖d2 =

∑
i∈H3
‖pL⊥(vi)‖d3. Thus, the embedding on L⊥ is restricted to a
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one dimensional subspace and the dimension of the embedding is again bounded by |S|.
So it remains to consider the case

for each j ∈ {1, 2, 3}, vT
i dj > 0 for some i ∈ Hj. (13)

By assumption there is a node ŝ ∈ S not adjacent to any node in H1 = C̄. Put S ′ =
S \ {ŝ}. This set S ′ separates H1 from G. We have 0 ∈ S ′ = conv{vs : s ∈ S ′}, because
otherwise the Separator-Shadow Theorem 3 would imply vi ∈ L′ = spanS ′ for i ∈ H1, in
contradiction to (13). Now 0 ∈ S ′ yields dimL′ = |S ′| − 1 and as dimL = |S| − 1 we find
a vector ĝ with

0 6= ĝ =
pL′⊥(vŝ)

‖pL′⊥(vŝ)‖
∈ L ∩ L′⊥ and ĝTvs = 0 for s ∈ S ′. (14)

Set g1 = −ĝ and g2 = g3 = ĝ, then by (12)

for each j ∈ {1, 2, 3}, vi ∈ {x ∈ L
′ + span {dj, gj} : dT

j x ≥ 0} for all i ∈ Hj .

Therefore we may use Obs. 23 for j ∈ {1, 2, 3} with C = Hj, d = dj, g = gj to define
transformations θi(t) for i ∈ Hj and θ̄j(t) = θ̄Hj

(t). Observe that S ′ ⊂ L′ and S ⊂
L′ + {βgj : β ≥ 0} for j ∈ {2, 3}, so Obs. 23 (iv,v) establish that for j ∈ {1, 2, 3} and
tj ∈ [0, 1] the distance constraints of edges incident to nodes i ∈ Hj remain satisfied for
embedding θi(tj) and the objective value remains unchanged due to Obs. 23 (iii) by 0 ∈ L′.
Also note, that replacing dj by some other normalized d′j ∈ L

⊥ will not affect distance
constraints but only the equilibrium constraint. So it remains to find appropriate tj ∈ [0, 1]
and normalized d′j ∈ L

⊥ so that the equilibrium constraint holds while the dimension of
the embedding is reduced by at least one. For this purpose, define for j ∈ {1, 2, 3} the
function λj : [0, 1]→ R

2 by

λj(t) =

(
ĝT θ̄j(t)
dT

j θ̄j(t)

)
for t ∈ [0, 1].

We show that the λj and σ = ĝTvŝ satisfy the requirements of Obs. 24. Obs. 24(i) holds
because of Obs. 23(vii) and (13). Obs. 24(ii) follows from Obs. 23(vi). Obs. 24(iii) is
implied by the feasibility of equilibrium constraint on the linear subspace spanned by ĝ for
the embedding vi, i ∈ N ; for this, use Obs. 23(i), (14) and the definition of σ. Suppose
Obs. 24(iv) does not hold and assume, w.l.o.g., that λ1(0) ≥ λ2(0) + λ3(0), then by (12)
and Obs. 23(i) this is equivalent to

∑

i∈H1

‖pL⊥(vi)‖ ≥
∑

i∈H2∪H3

‖pL⊥(vi)‖

and together with the equilibrium constraint

∑

i∈H1

‖pL⊥(vi)‖d1 +
∑

i∈H2

‖pL⊥(vi)‖d2 +
∑

i∈H2

‖pL⊥(vi)‖d3 = 0
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this implies d1 = −d2 = −d3 in contradiction to dim span {d1, d2, d3} = 2. Thus, Obs. 24(iv)
holds. Finally, Obs. 24(v) follows from Obs. 23(viii). Hence, there exist t1, t2, t3 ∈ [0, 1]
and pairwise distinct ı̂, ̂, k̂ ∈ {1, 2, 3} so that Obs. 24(vi,vii) hold. Now,

choose d̂ ∈ L⊥, ‖d̂‖ = 1, set d′ı̂ = −d′̂ = −d′
k̂

= d̂ (15)

and

v′i =

{
vi i ∈ S,
pL′(vi) + δi[gj cos(γi − tjγi) + d′j sin(γi − tjγi)] i ∈ Hj, j ∈ {1, 2, 3}.

Since only the dj have been replaced by d′j, j ∈ {1, 2, 3}, the distance constraints are still
valid for the new embedding v′i, i ∈ N , and the objective value is unchanged. Furthermore,
setting

θ̄′j(t) =
∑

i∈Hj

pL′(vi) + δi[gj cos(γi − tγi) + d′j sin(γi − tγi)] for j ∈ {1, 2, 3},

we see that the functions λj , j ∈ {1, 2, 3}, also satisfy

λj(t) =

(
ĝT θ̄′j(t)
d′Tj θ̄

′
j(t)

)
for t ∈ [0, 1].

Therefore Obs. 24(vi,vii) still hold for t1, t2, t3 and ı̂, ̂, k̂ yielding

0 = σ + ĝT (θ̄′1(t1) + θ̄′2(t2) + θ̄′2(t2)) = ĝT (vŝ +
∑

j∈{1,2,3}

∑

i∈Hj

v′i)
(14)
= ĝT (

∑

i∈N

v′i)

0 = d′Tı̂ θ̄
′
ı̂(tı̂)− d

′T
̂ θ̄

′
̂(t̂)− d

′T
k̂
θ̄′

k̂
(tk̂)

(15)
= d̂T

∑

j∈{1,2,3}

∑

i∈Hj

v′i
d̂∈L⊥

= d̂T (
∑

i∈N

v′i)

So the equilibrium constraint holds on the linear subspaces spanned by ĝ and d̂. It also
holds on L′ because pL′(vi) = pL′(v′i) for i ∈ N and the embedding vi was feasible. Since
v′i ∈ L

′+span {ĝ, d̂} = L+span {d̂} for i ∈ N , the new embedding satisfies the equilibrium
constraint on the entire space. Therefore it is an optimal embedding of dimension at most
dimL+ 1 = |S|.

5 The proof of the Tree-Width Theorem 5

We will show that for any tree-decomposition T = (N , E) of G (see Def. 4) there is always
an optimal embedding of dimension at most max{|U | : U ∈ N}. As this also holds for a
tree-decomposition giving the tree-width of G, this will prove the theorem.

Note that in a tree decomposition any U ∈ N and any U ∩ U ′ with {U,U ′} ∈ E is a
separator of G (see e.g. Lemma 12.3.1 in [5]). In the proof we will show that for any optimal
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embedding vi, i ∈ N , we can find a separator S of the form U ∈ N or {U,U ′} ∈ E with
0 ∈ conv{vs : s ∈ S} so that either Lemma 20 or Lemma 25 yield an optimal embedding
of dimension at most |S|.

The first step asserts, that for any optimal embedding any tree-decomposition has
“zero-nodes” containing the origin in their convex hull.

Lemma 26 Given a tree decomposition T = (N , E) of a connected graph G = (N,E) and
an optimal embedding vi ∈ R

n (i ∈ N) of (4). There is an S ∈ N with 0 ∈ conv{vs : s ∈
S}.

Proof. Consider a subtree T ′ = (N ′, E ′) of T with |N ′| minimal so that 0 ∈ conv{vi :
i ∈

⋃
U∈N ′ U}. Such a tree exists since the condition holds for T ′ = T by the equilibrium

constraint. Let the convex combination giving the origin be described by C =
⋃

U∈N ′ U
and α ∈ R

C
+ with αT e = 1 so that

∑
i∈C αivi = 0.

Assume, for contradiction, that |N ′| > 1. Then there is an edge {U,U ′} ∈ E ′ and
S ′ = U ∩U ′ is a separator of G. Deleting edge {U,U ′} from T ′ splits T ′ into two nonempty
subtrees T ′

j = (N ′
j , E

′
j) for j ∈ {1, 2} with 0 /∈ conv{vi : i ∈

⋃
U∈N ′

j
U} by assumption. Set

N ′
j =

⋃
U∈N ′

j
U . Because S ′ ⊆ N ′

j for j ∈ {1, 2} we obtain 0 /∈ S ′ = conv{vi : i ∈ S ′}.

Thus, the Separator-Shadow Th. 3 applied to S ′ implies that, w.l.o.g., for all i ∈ N ′
1,

conv{vi, 0} ∩ S ′ 6= ∅. But then the origin must be contained in the convex hull of subtree
T ′

2 as we show next. Put C1 = N ′
1−S

′, C2 = N ′
2 and set, for j ∈ {1, 2}, ᾱj =

∑
i∈Cj

αi and

v̄j = 1
ᾱj

∑
i∈Cj

αivi ∈ conv{vi : i ∈ N ′
j}. Then 0 = ᾱ1v̄1 + ᾱ2v̄2 ∈ conv{v̄1, v̄2} (by definition

of the αi) and ∅ 6= S ′ ∩ conv{v̄1, 0} ⊂ conv{v̄1, v̄2} (by the separator-shadow property),
so there is a p ∈ S ′ ⊂ conv{vi : i ∈ N ′

2} with 0 ∈ conv{p, v̄2} ⊂ conv{vi : i ∈ N ′
2}, a

contradiction to the minimality of |N ′|. Hence, T ′ consists of only one node.

We will call a node U ∈ N a zero-node (with respect to the embedding vi, i ∈ N) if
0 ∈ conv{vi : i ∈ U} and an edge {U,U ′} ∈ E a zero-edge (with respect to the embedding
vi, i ∈ N) if 0 ∈ conv{vi : i ∈ U ∩U ′}. Note, for a zero-edge both endpoints are zero-nodes.

Observation 27 The subgraph T ′ = (N ′, E ′) of T = (N , E) induced by the zero-nodes of
an optimal embedding vi (i ∈ N) of (4) is a tree and E ′ is the set of zero-edges.

Proof. Suppose that there are two zero-nodes U and U ′ that are not connected in T ′ or
that they are connected in T ′ by an edge that is not a zero-edge. In both cases there is an
edge {S, S ′} ∈ E with 0 /∈ S = conv{vi : i ∈ S ∩ S ′} on the path connecting U and U ′ in
T . But then the Separator-Shadow Th. 3 implies, w.l.o.g., that conv{vi, 0} ∩ S 6= ∅ for all
i ∈ U . This can be worked out to contradict the assumption that U is a zero-node.

Hence, for a given tree-decomposition any optimal embedding induces a zero-tree (with
respect to the embedding vi, i ∈ N) consisting of the zero-nodes and zero-edges.

The algorithmic idea is to pick a zero-node U , transform the embedding for S = U as
suggested in lemmas 20, 21, 25 and to check whether the resulting dimension is at most
|U |. If it is not, it will turn out that in the zero-tree of the new optimal embedding, U has
a unique incident zero-edge {U,U ′} leading to the that part of the graph whose embedding
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cannot yet be flattened out sufficiently with respect to U . We then go on transforming
the new optimal embedding with respect to the separator U ∩U ′ which may again lead to
a sufficiently flat optimal embedding or, in failing to find one, lead on to U ′ via the the
part that is not flat enough. Now, at some point this algorithm might turn back in U ′ and
try to cross this last edge a second time. Happily, this will immediately allow to produce
an optimal embedding that is sufficiently flat. As going on in one direction will only be
possible for a finite number of times, this will complete the proof.

We start with the convenient case, where all parts can be flattened out sufficiently.

Lemma 28 Given a tree decomposition T = (N , E) of a connected graph G = (N,E), an
optimal embedding vi ∈ R

n (i ∈ N) of (4), and a zero-node S ∈ N whose deletion splits T
into m subtrees Tj = (Nj, Ej) (j ∈M = {1, . . . , m}). Put

L = span {vs : s ∈ S},

Cj =
⋃

U∈Nj

U \ S,

δ̄j =
∑

i∈Cj

‖pL(vi)‖ (j ∈M).

If δ̄̂ ≤
∑

j∈M\{̂} δ̄j for ̂ ∈M then there is an optimal embedding v′i (i ∈ N) of dimension

at most |U ′| for some U ′ ∈ {S, U : {S, U} ∈ E}.

Proof. We distinguish two cases. In the first case assume that S has a neighbor U ′ in
T with |U ′| > |S| and apply Lemma 20 with respect to S and the Cj (j ∈ M). The
resulting optimal embedding v′i has dimension at most dimL+2 and since dimL ≤ |S|−1
(0 ∈ conv{vs : s ∈ S}) the dimension is at most |U ′|.

In the second case all neighbors U of S in T satisfy |U | ≤ |S|. By definition, no two
nodes in N are identical, so each set Cj is separated from S by a subset Sj = S ∩ Uj

induced by an edge {S, Uj} ∈ E with |Sj| < |S|. Therefore we may apply Lemma 25 with
respect to S and the Cj (j ∈ M) and obtain an optimal embedding of dimension at most
|S|.

If, however, one of the sets is too big to be flattened out, we can find a unique edge that
leads us towards a more balanced center in the big set.

Lemma 29 Given the setting of Lemma 28, assume that δ̄̂ >
∑

j∈M\{̂} δ̄j for a ̂ ∈ M .

Let v′i (i ∈ N) be an optimal embedding arising from Lemma 21 for this S and the Cj

(j ∈ M). The (unique) edge {S, Û} ∈ E with Û ∈ N̂ is a zero-edge with respect to this
new optimal embedding.

Proof. Since δ̄̂ > 0 neither the subtree T̂ nor C̂ are empty, so there is an edge {S, Û} ∈ E

with Û ∈ N̂. Suppose, for contradiction, that it is not a zero edge with respect to the

embedding v′i (i ∈ N). Then S ′ = S ∩ Û separates G into C̂ and N \ (S ′ ∪ C̂). By
assumption, 0 /∈ conv{vs : s ∈ S ′} and 0 ∈ conv{vs : s ∈ S}, so the Separator-Shadow
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Th. 3 applied with respect to the separator S ′ implies that vi ∈ cone{vs : s ∈ S ′} ⊂ L for
i ∈ C̂. But then δ̄̂ = 0.

Note that Û is a zero-node of the embedding v′i and we could continue with transforming

v′i with respect to Û ending up in Lemma 28 or Lemma 29 again. However, in order to
ensure that no edge is crossed twice, we need to look at the zero-edge itself first.

Lemma 30 Given the setting of Lemma 29 with {S, Û} ∈ E being the zero-edge with

respect to embedding v′i (i ∈ N) satisfying Û ∈ N̂. Deleting this edge in T splits T into

two subtrees T ′
j = (N ′

j , E
′
j) with j ∈M ′ = {S, Û} so that S ∈ N ′

S and Û ∈ N ′
bU
. Put

S ′ = S ∩ Û ,

L′ = span {vs : s ∈ S ′},

C ′
j =

⋃

U∈N ′
j

U \ S ′,

δ̄′j =
∑

i∈Cj

‖pL′(v′i)‖ (j ∈M ′).

If δ̄′S ≥ δ̄′
bU

then there is an optimal embedding v′′i (i ∈ N) of dimension at most |S|.

Proof. If δ̄′S = δ̄′
bU

then Lemma 20 applied to embedding v′i with respect to S ′ and C ′
j for

j ∈M ′ yields an optimal embedding

v′′i =






v′i for i ∈ S ′,
pL′(vi) + ‖pL′⊥(vi)‖b for i ∈ C ′

S

pL′(vi)− ‖pL′⊥(vi)‖b for i ∈ C ′
bU
.

for some normalized b ∈ L′⊥ and the dimension is bounded by dimL′ + 1 ≤ |S ′| ≤ |S|.
For δ̄S > δ̄bU

remember that the v′i were constructed via Lemma 21. So with the
definitions of b̄ and the v′i given there, we have

v′i = pL(vi) + ‖pL⊥(vi)‖b̄ for i ∈ C ′
S =

⋃

j∈M\{̂}

Cj ∪ S \ S
′.

If b̄ = 0 then all these v′i lie in L and by applying Lemma 21 to v′i with respect to S ′ and
C ′

j for j ∈ M ′, the space of the new optimal embedding v′′i , i ∈ N , will be L enlarged by
some direction h at most, so its dimension is bounded by dimL+ 1 ≤ |S|.

If b̄ 6= 0, then pL⊥(vi) 6= 0 for some i ∈ C ′
S and using b̄ ∈ L⊥ , ‖b̄‖ = 1, we get

b̄Tv′i = b̄TpL(vi) + ‖pL⊥(vi)‖b̄
T b̄ = ‖pL⊥(vi)‖ ≥ 0 for i ∈ C ′

S.

Since L′ ⊆ L we obtain b̄ ∈ span {v′i : i ∈ C ′
S} ∩ L

′⊥ \ {0} and b̄Tv′i ≥ 0 for i ∈ C ′
S. So

we are in the special case of Lemma 21. Thus, applying Lemma 21 to v′i with respect to
S ′ and C ′

j for j ∈ M ′ yields a new optimal embedding v′′i , i ∈ N , with v′′i ∈ span {v′i :
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i ∈ C ′
S} ⊆ L + span {b̄} for i ∈ C ′

S and therefore v′′i ∈ L + span {b̄} for all i ∈ N . The
dimension of this new embedding is again bounded by |S|.

In proving finiteness of the algorithm below we will see that the values δ̄′j of Lemma 30

do not change if the algorithm turns back in Û to cross the same edge again, so that the
condition δ̄′S ≥ δ̄′

Û
will be met the second time at the latest.

Algorithm 31
Input: a connected graph G = (V,E), a tree decomposition T = (N , E) of G, an optimal
embedding vi, i ∈ N , of (4).
Step 0: Set S to a zero-vertex of T with respect to the embedding.
Step 1: Using the notation of Lemma 28 with respect to S, determine δ̄j for j ∈M .
Step 2: If δ̄̂ ≤

∑
j∈M\{̂} δ̄j for ̂ ∈ M apply the proof of Lemma 28 to find an optimal

embedding of dimension at most the width of T plus one and stop.
Step 3: Transform, as described in Lemma 29, the optimal embedding to v′i (i ∈ N)

and compute the corresponding zero-edge {S, Û}. Determine δ̄′S and δ̄′
bU

in the notation of
Lemma 30.
Step 4: If δ̄S ≥ δ̄bU

apply the proof of Lemma 30 to find an optimal embedding of dimension
at most the width of T plus one and stop.
Step 5: Set S ← Û , vi ← v′i for i ∈ N and goto Step 1.

Theorem 32 Let G = (N,E) be a connected graph and T = (N , E) a tree decomposition
of G. Algorithm 31 is correct and stops with an optimal embedding for (4) of dimension
at most width of T plus one in at most |N | iterations.

Proof. Step 0 can be carried through by Lemma 26.
If in Step 1 the set M is empty (N = {S}), then the condition in Step 2 is vacuously

satisfied and the transformation of Lemma 28 is the identity. But in this case S = |N | and
any optimal embedding has dimension at most |N | − 1 by Obs. 9, so the algorithm stops
correctly.

We will prove that the algorithm steps over any edge at most once without stopping and
this will yield the iteration bound. Suppose {S, Û} is the first edge of T to be considered a

second time and that the algorithm just stepped from S to Û and now considers stepping
back to S. Then Û transforms, by means of Lemma 29 the embedding v′i that was generated
by S via Lemma 29. By construction (see Lemma 21), both transformations have L′ =

span {v′i : i ∈ S∩ Û} as an invariant subspace. Therefore the numbers δ̄′S and δ̄′
bU

of Lemma
30 computed in Step 3 have identical values in both cases (but with names interchanged),
so the condition of Step 4 is certainly satisfied the second time and the algorithm stops.

The correctness of the statement regarding the dimension of the optimal embedding at
termination is a consequence of the respective lemmas 28 and 30.
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