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Abstract

Given a graph G = (V, E) with node weights ϕv ∈ N ∪ {0}, v ∈ V , and some number
F ∈ N∪{0}, the convex hull of the incidence vectors of all cuts δ(S), S ⊆ V with ϕ(S) ≤ F
and ϕ(V \ S) ≤ F is called the bisection cut polytope. We study the facial structure of
this polytope which shows up in many graph partitioning problems with applications in
VLSI-design or frequency assignment. We give necessary and in some cases sufficient
conditions for the knapsack tree inequalities introduced in [9] to be facet-defining. We
extend these inequalities to a richer class by exploiting that each cut intersects each cycle
in an even number of edges. Finally, we present a new class of inequalities that are based
on non-connected substructures yielding non-linear right-hand sides. We show that the
supporting hyperplanes of the convex envelope of this non-linear function correspond to
the faces of the so-called cluster weight polytope, for which we give a complete description
under certain conditions.

1 Introduction

Let G = (V,E) be an undirected graph with V = {1, . . . , n} and E ⊆ {{i, j} : i, j ∈ V, i < j}.
For given vertex weights ϕv ∈ N∪{0} for all v ∈ V and edge costs w{i,j} ∈ R for all {i, j} ∈ E,
a partition of the vertex set V into two disjoint clusters S and V \S with sizes ϕ(S) ≤ F and
ϕ(V \S) ≤ F for fixed F ∈

[

1
2ϕ(V ), ϕ(V )

]

∩(N∪{0}) is called a bisection. Finding a bisection
such that the total cost of edges in the cut δ(S) := {{i, j} ∈ E : i ∈ S, j ∈ V \ S} is minimal
is the minimum bisection problem (MB). Its decision form is known to be NP-complete [11].

In this paper we investigate the bisection cut polytope PB associated with MB. To define PB

note that a cut δ(S) can be described by its incidence vector χδ(S) with respect to the edge
set E. Then

PB := conv{ y ∈ R
|E| : y = χδ(S), S ⊆ V, ϕ(S) ≤ F, ϕ(V \ S) ≤ F }.

MB as well as PB are related to other problems and polytopes in the literature. Obviously,
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the bisection cut polytope is contained in the cut polytope [3, 7]

PC := conv
{

y ∈ R
|E| : y = χδ(S), S ⊆ V

}

. (1)

If F = ϕ(V ) then MB is equivalent to the maximum cut problem (using the negative cost
function) and PB = PC. For F = ⌈1

2ϕ(V )⌉ MB is equivalent to the equipartition problem [6]
and the bisection cut polytope equals the equipartition polytope [4, 5, 15]

PE := conv{ y ∈ R
|E| : y = χδ(S), S ⊆ V, |ϕ(S) − ϕ(V \ S)| ≤ 1 }

Furthermore, MB is a special case of the minimum node capacitated graph partitioning
problem (MNCGP) [9] where two or more clusters are available for the partition of the node
set and each cluster has a limited capacity. The objective in MNCGP is the same as in MB,
i.e., to minimize the total cost of edges having endpoints in distinct clusters. Finally, we
mention the knapsack polytope [19]

PK := conv

{

x ∈ {0, 1}|V | :
∑

v∈V

ϕvxv ≤ F

}

. (2)

PK plays a fundamental role in the inequalities which we derive for the bisection cut polytope.

Graph partitioning problems in general have numerous applications, for instance in numer-
ics [13], VLSI-design [17], compiler-design [16] and frequency assignment [8].

The main contributions of this paper are threefold. First, in [9] the so-called knapsack tree
inequalities have been introduced. These inequalities relate the knapsack conditions on the
nodes with the edge variables defining the cuts and turn out to be computationally very
effective. However, no theoretical justification has been found so far for this behavior. In this
paper, we give necessary conditions for the knapsack tree inequality to be facet-defining, which
turn out to be also sufficient in certain cases. Second, we can generalize the knapsack tree
inequalities in the case of bisections by exploiting the well-known fact that any cut intersects
a cycle an even number of times. This new class of inequalities, called bisection knapsack
walk inequalities, subsume the knapsack tree inequalities and yield computationally more
flexibility in finding strong inequalities. The third class of inequalities, called capacity reduced
bisection knapsack walk inequalities, extends both classes of inequalities to non-connected
substructures. The idea is to exploit the weights of the nodes that are not end-nodes of
walks to reduce the capacity of the corresponding knapsack inequality yielding this way
stronger right-hand sides for the knapsack tree and bisection knapsack walk inequalities.
These stronger conditions result in non-linear right-hand sides. We consider the convex
envelope of this non-linear function and show that the supporting hyperplanes are in one-
to-one correspondence to the faces of a certain polytope, called cluster weight polytope. For
the case of a star without capacity restriction we are able to give a complete description of
the cluster weight polytope yielding in this case the tightest strengthening possible for the
capacity reduced bisection knapsack walk inequalities.

The outline of the paper is as follows. In Section 2 we introduce an integer programming
formulation for MB building on the formulation of MNCGP given in [9]. Section 3 treats the
known knapsack tree inequalities valid for both MB and MNCGP while Section 5 introduces
the new bisection knapsack walk inequalities which are only valid for MB and which subsume
the knapsack tree inequalities. Section 4 shows a strengthening only applicable to knapsack
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tree inequalities. Furthermore, we state necessary and sufficient conditions for knapsack
tree inequalities to define facets of PB. Finally, Section 6 introduces a strengthening of the
bisection knapsack walk inequalities. For this purpose we investigate the facial structure of
the cluster weight polytope on stars.

We frequently denote an edge {i, j} by ij. Let A and B be discrete sets such that

A ⊆ B. The incidence vector of A with respect to B is a vector χA ∈ {0, 1}|B| with

χA
a =

{

1 if a ∈ A
0 if a ∈ B \ A

. For a vector x ∈ R
|B| we define x(A) =

∑

a∈A xa. 0|A| is

the zero vector of dimension |A| and ea is the unit vector of dimension |A|, which is indexed
by the elements of A and has entry 1 in coordinate a ∈ A. For a graph G = (V,E) the edge
set of the subgraph induced by V̄ ⊆ V will be denoted by E

(

V̄
)

and the node set of the
subgraph induced by Ē ⊆ E by V

(

Ē
)

. The convex hull of a set A ⊆ R
n will be denoted by

conv{A}.

2 An integer programming formulation of MB

The integer programming formulation for MB given below is based on the formulation for
MNCGP presented in [9]. We introduce variables zk

i for each node i ∈ V and each cluster
k = 1, 2 and edge variables yij for each edge ij ∈ E. zk

i is set to 1 if node i is in cluster k
and 0 otherwise. Variable yij is set to 1 if edge ij is in the cut, i.e., i and j are not in the
same cluster. Then MB can be written as

(MB)

min
∑

e∈E

weye

s.t. z1
i + z2

i = 1 ∀i ∈ V
∑

i∈V

ϕiz
k
i ≤ F k = 1, 2

yij ≥ z1
i − z1

j ∀ij ∈ E

yij ≥ z1
j − z1

i ∀ij ∈ E

yij ≤ 2 − z1
i − z1

j ∀ij ∈ E

yij ≤ 2 − z2
i − z2

j ∀ij ∈ E

yij ∈ {0, 1} ∀ij ∈ E

zk
i ∈ {0, 1} ∀i ∈ V, k = 1, 2 .

The first constraints assure that each node i is packed into exactly one cluster k. The second
constraints enforce the capacity restriction on each cluster k. The next four constraints
transmit for each edge ij ∈ E the values of variables z1

i and z1
j to the edge variable yij in the

sense that yij = 1 if and only if z1
i 6= z1

j and yij = 0 otherwise. The last two constraints are
the binary restrictions on the variables.
Noting that the variables zk

i do not appear in the objective function we can consider model

min
∑

e∈E

weye

s.t. y ∈ YMB,
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where YMB ⊆ R
|E| is the projection onto the y-space of the feasible region of model (MB). It

can be worked out that PB = conv(YMB).

3 Known valid inequalities for MNCGP and MB

A large variety of valid inequalities for the polytope associated to MNCGP is known and, since
MB is a special case of MNCGP, all those inequalities are also valid for PB: cycle inequalities
of the cut polytope [3], tree inequalities [4], star inequalities [4], cycle inequalities of capaci-
tated graph partitioning [5], cycle with tails inequalities [9], suspended tree inequalities [15],
path block cycle inequalities [15], cycle with ear inequalities [9], strengthened cycle with ear
inequalities [9], knapsack tree inequalities [9] and strengthened knapsack tree inequalities [9].

In the remainder of the paper we specialize and improve the knapsack tree inequality for MB.
First we recall its definition for MNCGP from [9].

Definition 1 (Knapsack tree inequality [9]). Let
∑

v∈V avxv ≤ a0 be a valid inequality for
the knapsack polytope PK with av ≥ 0 for all v ∈ V . For a fixed node r ∈ V and a subtree
(T,ET ) of G rooted at r we define the knapsack tree inequality

∑

v∈T

av

(

1 −
∑

e∈Prv

ye

)

≤ a0 (3)

where for each v ∈ T the edge set of the path joining node v to root r in (T,ET ) is denoted
by Prv.

If (T,ET ) is a star rooted at r, i.e., ET = {{r, t} : t ∈ T, t 6= r}, then we call the inequality (3)
knapsack star inequality.

In general, there is an exponential number of these knapsack tree inequalities, since for each
combination of a valid knapsack inequality with a choice of a rooted tree there is one knapsack
tree inequality.

Proposition 2. [9] The knapsack tree inequality (3) is valid for the polytope PB.

The above statement follows from the fact that MB is a special case of MNCGP.

It will be useful to write the inequality (3) in the form

∑

e∈ET

(

∑

v:e∈Prv

av

)

ye ≥
∑

v∈T

av − a0 . (4)

The term on the right-hand side may be interpreted as the excess if all vertices v ∈ T are
packed into the cluster containing the root node r while we are only allowed to pack a total
weight of a0. The left-hand side has to compensate for this, i.e., it has to force some edges
into the cut so that not all vertices are placed into the same cluster as the current root.
We use this reformulation to apply a folklore approach to strengthen coefficients in general
binary programs and obtain

∑

e∈ET

min

{

∑

v:e∈Prv

av,
∑

v∈T

av − a0

}

ye ≥
∑

v∈T

av − a0 . (5)
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We call this inequality truncated knapsack tree inequality.

Remark 3. Note that this strengthening was already proposed in Proposition 3.12 in [9]
applied to the knapsack tree inequality for MNCGP. For MNCGP those authors also proposed
a second case of strengthening, namely (in our notation) to reduce αe to a0. However, for
MB we always have α0 ≤ a0 due to the following reason. In the bisection case if x̄ =
(x̄1, . . . , x̄n)T ∈ PK ∩ {0, 1}n then also x̃ = (1 − x̄1, . . . , 1 − x̄n)T lies in PK ∩ {0, 1}n. This
follows from the fact that the total node weight of each of the clusters {v ∈ V : x̄v = 1}
and {v ∈ V : x̄v = 0} cannot exceed F . If

∑

i∈V avx̄v ≤ a0, then also
∑

v∈V avx̃v =
∑

v∈V av(1 − x̄v) ≤ a0. Summing up these two inequalities yields
∑

v∈V av ≤ 2a0 and thus
α0 =

∑

v∈V av − a0 ≤ a0.

4 Minimum root strengthening of knapsack tree inequalities

Given a knapsack inequality
∑

v∈V avxv ≤ a0 with av ≥ 0, v ∈ V , let a corresponding
knapsack tree inequality be defined on a tree (T,ET ) rooted at r. If we replace r by another
node from T the paths change. The corresponding change of the coefficients of the inequality
will be exploited in the strengthening of the truncated knapsack tree inequality presented in
this section. Our strengthening aims at reducing the coefficients of the left-hand side while
keeping the value of the right-hand side. We are going to show that the strongest or in some
cases even facet-defining inequality is achieved if r enforces a sort of balance with respect
to the cumulated node weights on the paths to r. To emphasize that the coefficients in (5)
depend on the root node r we introduce the notation

α0 :=
∑

v∈T

av − a0, αr
e := min{

∑

v:e∈Prv

av, α0}, e ∈ ET , (6)

and consider (5) in the form
∑

e∈ET

αr
eye ≥ α0. (7)

Note that if we change the root of (T,ET ) the right-hand side of (7) remains the same, since
by this operation we do not eliminate nodes of (T,ET ).

At first we derive some relations based on the definition of the coefficients αr
e, r ∈ T, e ∈ ET ,

which we will exploit in the proofs of the results presented in this section. The following
lemma states that along a path from the root to some node the coefficients cannot increase.

Lemma 4. Let (T,ET ) be a tree in G rooted at node r and let e and f be two edges on a
path to r such that e is closer to r than f with respect to the number of edges. Then

αr
e ≥ αr

f . (8)

Proof. It suffices to consider incident edges e and f . Setting e := ij and f := jk we obtain

∑

v:e∈Prv

av =
∑

v:f∈Prv

av + aj +
∑

ē∈Ē

(

∑

v: ē∈Prv

av

)

≥
∑

v:f∈Prv

av,

where Ē contains edges incident to j except e and f . Hence if αr
f = α0, then also αr

e = α0,
otherwise αr

f ≤ min{
∑

v:e∈Prv
av, α0} = αr

e. �

5



In the next lemma we investigate the change of coefficients if the root is moved from a node
r to an adjacent node s.

Lemma 5. Let (T,ET ) be a tree in G and r, s ∈ T two adjacent nodes with ē = rs. We have

(a) αr
e = αs

e for all e ∈ ET such that e 6= rs,

(b) αr
ē = min{as +

∑

e∈δ({s})\{ē} αs
e, α0},

(c) if αr
ē ≤ αs

ē then αr
e ≤ αv̄

e for all v̄ ∈ V r
ē := {v ∈ T : ē ∈ Prv} and all e ∈ ET .

Proof. (a) For e 6= rs we have {v : e ∈ Prv} = {v : e ∈ Psv} and thus
∑

v:e∈Prv
av =

∑

v:e∈Psv
av.

(b) Using the notation from (6) we have:

∑

v:ē∈Prv

av = as +
∑

e∈δ({s})\{ē}

(

∑

v:e∈Psv

av

)

.

(c) Consider a v̄ ∈ T with ē on the path Π = Prv̄ with VΠ = {v1, . . . , vp}, p ≥ 2, where v1 = r,
v2 = s, vp = v̄ and vk, vk+1, 1 ≤ k ≤ p − 1 are adjacent in T . Applying (a) recursively to
nodes vi, vi+1, i = 1, . . . , p − 1 we obtain

αr
e = αv̄

e ∀ e ∈ ET \ EΠ. (9)

As ē is outside the path from s to v̄, the same argument for root s and the assumption yield

αv̄
ē = αs

ē ≥ αr
ē. (10)

By Lemma 4, coefficients cannot increase along paths from the root, so

αv̄
v̄vp−1

≥ αv̄
vp−1vp−2

≥ . . . ≥ αv̄
v3v2

≥ αv̄
v2r = αv̄

ē ,

αr
ē = αr

rv2
≥ αr

v2v3
≥ . . . ≥ αr

vp−2vp−1
≥ αr

vp−1v̄.
(11)

Thus, putting (9)-(11) together the claim is proved. �

This allows to characterize exactly the set of roots giving the best coefficients.

Lemma 6. Let (T,ET ) be a tree in G. The set of minimal roots

R := {r ∈ T : αr
e ≤ αv

e for all v ∈ VT and e ∈ ET }

is nonempty and induces a connected subtree in T . A node r ∈ T satisfies r ∈ R if and only
if αr

e ≤ αs
e for all e = rs ∈ ET .

Proof. To see that R is nonempty, orient the edges e = uv ∈ T with αu
e < αv

e towards u,
do not orient edges with αu

e = αv
e . As T contains no cycle, there must be a node r ∈ T

so that all incident edges are either not oriented or point towards r, i.e., αr
e ≤ αs

e for all
e = rs ∈ ET . By Lemma 5(c) and using the notation defined there, this r is in R, because
V =

⋃

rs∈ET
V r

rs ∪ {r}.

Next, we show connectedness for r, s ∈ R. These satisfy αr
e = αs

e for all e ∈ ET . Assume
there is some inner vertex v̄ ∈ T on the path between r and s. Apply Lemma 5(a) on the
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edges outside the paths Prv̄ and Psv̄ to see that αr
e = αv̄

e for all e ∈ ET and so v̄ ∈ R.

The characterization of the elements of R is obtained via Lemma 5(c) directly. �

For each choice of a roots out of R we obtain the same coefficient for each edge. Thus, the
strongest truncated knapsack tree inequality is independent of the choice of r ∈ R.

Theorem 7. Let (T,ET ) be a tree in G and R as defined in Lemma 6. The strongest
truncated knapsack tree inequality, with respect to the knapsack inequality

∑

v∈V avxv ≤ a0,
av ≥ 0, v ∈ V , defined on (T,ET ) is obtained for a root r ∈ R, i.e., if r ∈ R, then

∑

e∈ET

αs
eye ≥

∑

e∈ET

αr
eye ≥ α0 (12)

holds for all s ∈ T and all y ∈ PB. In particular,

∑

e∈ET

αr
eye =

∑

e∈ET

αs
eye (13)

holds for all r, s ∈ R and all y ∈ PB.

Proof. Directly by Lemma 6. �

In the sequel the elements of the set R will be called minimal roots of a given tree (T,ET ). In
order to obtain the strongest truncated knapsack tree inequality it is sufficient, by Theorem 7,
to identify any minimal root. Given a tree (T,ET ) rooted at some node r one can find a
minimal root along the lines of the proof of Lemma 6 by proceeding iteratively as follows.
Select a node s ∈ T adjacent to r such that αr

rs = max{αr
rv : rv ∈ ET }. If αr

rs > αs
rs, then

also
∑

e∈ET
αr

e >
∑

e∈ET
αs

e by Lemma 5 (c). Hence r can be discarded and s is marked as
next root of (T,ET ). Otherwise

∑

e∈ET
αr

eye ≥ α0 is the strongest truncated knapsack tree
inequality with respect to all possible choices of roots in (T,ET ).

In the remainder of this section we show that the assumption on r to be a minimal root is
not only a necessary condition for a truncated knapsack tree inequality to be facet-defining
for the polytope PB, which follows from Theorem 7, but in some cases also sufficient.

For this purpose we assume that G = (T,ET ) is a tree and ϕv = 1 for all v ∈ T . Then
the knapsack polytope PK is defined by the inequality

∑

v∈T xv ≤ F and the corresponding
knapsack tree inequality (3) defined on (T,ET ) takes the form

∑

v∈T

(1 −
∑

e∈Prv

ye) ≤ F.

Applying the strengthening (5) and notation (6) we obtain α0 = |T | − F and αr
e =

min{|V r
e |, |T | − F} for all e ∈ E, where V r

e is the set of nodes, whose path to r ∈ T
contains the edge e, see e.g. Figure 3. To emphasize the special case that we treat in the
sequel we set κr

e := αr
e, F̄ := α0 and consider the inequality

∑

e∈ET
κr

eye ≥ F̄ or (κr)T y ≥ F̄
for short. For ease of exposition we call κr

e the knapsack weight of e ∈ E with respect to the
root r of (T,ET ). If κr

e = F̄ and F̄ < |V r
e | we say that e has the reduced knapsack weight.

Furthermore, we introduce the term branch-less path, which is a path in (T,ET ), whose inner
nodes are all of degree 2. We consider a path consisting of an edge and both its end-nodes as
a trivial case of a branch-less path. We call an edge a leaf if one of its endpoints is of degree
one.
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Theorem 8. Assume that G = (T,ET ) is a tree rooted at a node r ∈ T , ϕv = 1 for all v ∈ T

and |T |
2 + 1 ≤ F < |T |. The truncated knapsack tree inequality (κr)T y ≥ F̄ is facet-defining

for PB if and only if one of the following conditions is satisfied:

(a) r is a minimal root and (T,ET ) satisfies the following branch-less path condition: each
branch-less path with F nodes has one end-edge that is a leaf in (T,ET ),

(b) F = |T | − 1.

Remark 9. Note that:

(1) Given a graph G = (V,E), PB is full-dimensional under assumptions that ϕv = 1 for

all v ∈ V and F ≥ |V |
2 + 1, see [9]. If F = |V |

2 the bisection cut polytope is not full
dimensional, hence this case needs a special treatment which can be found in [10].

(2) In case F = |V | the knapsack inequality
∑

v∈V xv ≤ F is redundant for PK and thus
the corresponding truncated knapsack tree inequalities are redundant for PB. Therefore
we assume that F < |V |, in particular, F̄ > 0.

Due to the complexity of the proof of Theorem 8 we complete it in several steps. First we
outline the general idea of the sufficiency part. Let F be a face of PB induced by (κr)T y ≥ F̄
and Fb be the facet of PB defined by the inequality bT y ≥ b0 such that F ⊆ Fb. To show
that (κr)T y ≥ F̄ is a facet-defining inequality for PB, we prove that F = Fb, i.e., there exists
γ ∈ R \ {0} such that

be = γκr
e, ∀ e ∈ E

b0 = γF̄ .
(14)

hold.

We introduce now further definitions and lemmas required to prove the above relations. Given
a partition of the node set T we denote by Vr the cluster containing r, see e.g. Figure 3. We
say that two edges e, f ∈ E are related, if there exists a path to the root containing both e
and f . An edge e is related to itself. For an edge e we set Be = {f ∈ E : f is related to
e} and call the graph (

⋃

f∈Be
f,Be) a branch (induced by e); it is a subtree of (T,ET ) and

is said to be incident on r if e and r are incident. If any two edges e and f are incident and
related and such that e is closer to the root than f (with respect to the number of edges),
then f is a child of e. We denote the set of children of e by

Se = {f ∈ ET : f is a child of e}.

With this, the recursive construction rule of Lemma 5 (b) specialized to κr
e reads

κr
e = min{1 +

∑

ē∈Se

κr
ē, F̄}. (15)

We say that a bisection cut δ(Vr) is tight for (κr)T y ≥ F̄ if it satisfies (κr)T χδ(Vr) = F̄ . As
we will show soon, |Vr| = F holds if δ(Vr) is tight for (κr)T y ≥ F̄ and all e ∈ δ(Vr) satisfy
κr

e = |V r
e | ≤ F̄ , i.e., all edges in the cut do not have reduced knapsack weights. In this case

we will call the cut δ(Vr) double-tight for (κr)T y ≥ F̄ .

Next, we derive some properties of bisection cuts tight for (κr)T y ≥ F̄ .

Lemma 10. No two edges in a bisection cut tight for (κr)T y ≥ F̄ are related.
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Proof. Assume, for contradiction, that δ(Vr) is a bisection cut tight for (κr)T y ≥
F̄ containing two related edges e = vj−1vj and f = vk−1vk on some path P r

vk
=

{v1v2, v2v3, . . . , vj−1vj, . . . , vk−1vk} with r = v1 and 1 < j < k. W.l.o.g., we may assume that
vj−1 ∈ Vr and no further edge vi−1vi is in the cut for j < i < k. Then {vj , . . . , vk−1} ⊂ T \Vr

and vk ∈ Vr. The cut induced by V̄r = Vr ∪ {vj} \ {vk} is again a bisection cut with
δ(V̄r) ⊆ (δ(Vr) \{e, f})∪Se ∪Sf ; we know e /∈ δ(V̄r) (this will not hold for f if f ∈ Se). Note
that e and f must be unreduced because δ(Vr) is tight, (κr)T χδ(Vr) = F̄ . Thus, by (15),

(κr)T χδ(Vr) − (κr)T χδ(V̄r) ≥ κr
e + κr

f −
∑

ē∈Se∪Sf

κr
ē ≥ 1,

and that yields (κr)T χδ(V̄r) + 1 ≤ (κr)T χδ(Vr) = F̄ . This contradicts (κr)T χδ(V̄r) ≥ F̄ , which
holds because δ(V̄r) is a bisection cut and (κr)T y ≥ F̄ is feasible for PB . �

Lemma 11. Let (T,ET ) be rooted at r ∈ T . A bisection cut δ(Vr) is double-tight for (κr)T y ≥
F̄ if and only if |Vr| = F and (Vr, E(Vr)) is connected.

Proof. Assume first that δ(Vr) is double-tight for (κr)T y ≥ F̄ . By Lemma 10 any two edges
in δ(Vr) are not related. This implies that Vr induces a connected subgraph of (T,ET ). Hence
T \ Vr =

⋃

e∈δ(Vr) V r
e and V r

e ∩ V r
f = ∅ for any e, f ∈ δ(Vr). Furthermore, κr

e = |V r
e | holds for

each e ∈ δ(Vr) and we obtain |T \ Vr| =
∑

e∈δ(Vr) κr
e = F̄ , i.e., |Vr| = F .

Now consider a bisection (Vr, T \ Vr) such that (Vr, E(Vr)) is connected and |Vr| = F (i.e.,
|T \ Vr| = F̄ ). We show first that δ(Vr) contains only edges, whose knapsack weights are not
reduced. Assume for contradiction that δ(Vr) contains an edge f with a reduced knapsack
weight. Since κr

f = F̄ , this is the only edge in δ(Vr), otherwise δ(Vr) is not tight for (κr)T y ≥

F̄ . Hence δ(Vr) = {f} and since f has a reduced knapsack weight, |T \ Vr| = |V r
f | > F̄ holds

contradicting the assumption that |Vr| = F . To show that δ(Vr) is tight for (κr)T y ≥ F̄ , we
use the assumption that (Vr, E(Vr)) is connected. We have

∑

e∈δ(Vr)

κr
e =

∑

e∈δ(Vr)

|V r
e | = |

⋃

e∈δ(Vr)

V r
e | = F̄ .

Hence δ(Vr) is double-tight for (κr)T y ≥ F̄ . �

Next, we provide some results following from the assumption that (T,ET ) is rooted at a
minimal root. As we will show in the following lemmas, this assures the existence of bisection
cuts tight for (κr)T y ≥ F̄ , which we will consider in the proof of further lemmas preceding
the proof of Theorem 8.

Lemma 12. Let B = (VB , EB) ⊆ (T,ET ) be a branch incident on root r ∈ T . If r is a
minimal root of (T,ET ), then |VB \ {r}| ≤ F .

Proof. Let B = (VB , EB) be a branch incident on r and assume that |VB \ {r}| > F .
We are going to show that in this case r cannot be a minimal root. Let s be the node
in VB adjacent to r, and let f = rs ∈ EB , see Figures 1 and 2. Note that V r

f ∪̇V s
f = T .

Since |V r
f | = |VB \ {r}| > F > F̄ , we have κr

f = F̄ , on the one hand. On the other hand,

κs
f = min{|T \ V r

f |, F̄} < F̄ . Hence κs
f < κr

f and by Lemma 6, r is not a minimal root. �

Lemma 13. Assume (T,ET ), rooted at a minimal root r, has an edge e ∈ ET such that
κr

e = F̄ . The cut δ(V r
e ) = {e} is a bisection cut tight for (κr)T y ≥ F̄ .

9
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Figure 1: Node set VB .
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f

Figure 2: Node sets V r
f and V s

f .

Proof. Note that in the considered case we have Vr = T \ V r
e . We show that the cut δ(Vr),

which is obviously tight for (κr)T y ≥ F̄ , is also a bisection cut. Assume that δ(Vr) is not a
bisection cut. Then either |Vr| < F̄ or |T \Vr| < F̄ . In the first case, let s be a node incident
to e such that the path Πrs = (Vrs, Ers) joining r and s contains e, see Figure 3. For all
f ∈ ET \ Ers holds κr

f = κs
f due to Lemma 5 (a). For f ∈ Ers we obtain by Lemma 4 that

κr
f ≥ κr

e = F̄ > |Vr| ≥ |V s
f | = κs

f . By Lemma 6 this contradicts the assumption that r is a

minimal root. One can show in a similar way that |T \ Vr| < F̄ not possible, either. �

V r
e V s

f

s r
fe

Vr

Figure 3: Node sets Vr, V r
e and V r

f .

Vr

r
e

f

s

v

V̄r

Figure 4: Node sets Vr and V̄r, Lemma 15 (b).

The following result exhibits the central structural property required for cross connecting
double-tight cuts of which one contains edge e and the next contains its children Se.

Lemma 14. Given (T,ET ) with minimal root r. For each unreduced e ∈ ET that is not a
leaf there exists a double-tight cut δ(Vr) that contains e, Sf and Sg for two further unreduced
edges f and g with {e, f, g} unrelated if and only if (T,ET ) satisfies the branch-less path
condition.

Proof. First suppose that in (T,ET ) the branch-less path condition does not hold, so there
is a branch-less path on nodes V̄ = {v1, . . . , vF } with {vi, vi+1} ∈ ET for 1 ≤ i < F and
neither {v1, v2} nor {vF−1, vF } are leaves. By the minimality of r and Lemma 12 we must
have r ∈ V̄ . One of the edges {v1, v2} and {vF−1, vF } must be unreduced (otherwise one of
them would cut the graph into two parts, one containing more than F and one at least F̄ +1
nodes). W.l.o.g., let e = {v1, v2} be unreduced and satisfy κr

e ≤ κr
vF−1vF

. For this e there
exist no further two unrelated edges f and g satisfying the requirements, because at least
one of them must be located on the path (by Lemma 11 we need |Vr| = F ) and must thus
be related either to e or to the other edge.
Now suppose that (T,ET ) satisfies the branch-less path conditions. Let e be an unreduced
edge that is not a leaf. Edge e is contained in some branch incident on r, call this branch
B = (VB , EB). By lemmas 11 and 12 we may construct a bisection (Vr, T \Vr) with e ∈ δ(Vr)
and δ(Vr) double-tight by extending VB \ V r

e to Vr via successively adding adjacent points
from V \ VB so that |Vr| = F and the subgraph T̄ = (Vr, Er) induced by Vr is a tree. Note
that by Lemma 12 root r can only be a leaf of T̄ if it is incident to e. First suppose T̄ has two
leaves so that the corresponding nodes of degree 1 are not incident to e, then take these for

10



f and g. Otherwise T̄ forms a path {v1, . . . , vF } with vi adjacent to vi+1 in T̄ for 1 ≤ i < F
with e incident to one of its endpoints, say v1 ∈ e. By the branch-less path condition at
least one of the nodes vi, 1 ≤ i < F − 1, has degree at least three in T (otherwise one can
find a branch-less path with F nodes not having one end edge a leaf), pick one and call it v̄.
Incident to this v̄ there is an edge f ∈ δ(Vr) with f 6= e. Now observe that, by Lemma 11,
δ(Vr ∪ f \ {vF }) is a double-tight cut that contains e, Sf and Sg for g = {vF−2, vF−1} and e,
f , and g are unrelated. �

Lemma 15. Given (T,ET ) satisfying the branch-less path condition and a minimal root
r ∈ T . Let F ,Fb be faces of PB defined by (κr)T y ≥ F̄ and bT y ≥ b0, respectively, such that
F ⊆ Fb. For each branch B = (VB , EB) in (T,ET ) incident on r there is a γB ≥ 0 such that

(a) be = b0 holds for any edge e ∈ ET with κr
e = F̄ ,

(b) be = bf =: γB holds for any two leaves e, f ∈ EB of T ,

(c) be = γBκr
e holds for unreduced e ∈ EB,

(d) γB = b0/F̄ and be = γBκr
e holds for e ∈ EB.

Proof. (a) Let e be an edge in ET with κr
e = F̄ . By Lemma 13 the cut δ(V r

e ) = {e} is a
bisection cut tight for (κr)T y ≥ F̄ . Since χ{e} is in Fb, we obtain be = b0.

(b) Let e and f be leaves in EB and denote by s, v their respective end-nodes of degree
1. |VB \ {s}| ≤ F follows from Lemma 12. Hence there exists a bisection (Vr, T \ Vr)
with Vr connected such that VB \ {s} ⊆ Vr, s /∈ Vr and |Vr| = F . Then, by Lemma 11,
V̄r = Vr ∪ {s} \ {v} also yields a double-tight bisection cut, so b0 =

∑

ē∈δ(Vr) bē =
∑

ē∈δ(V̄r) bē

and therefore be = bf =: γB.

(c) We use induction by distance of the edges in EB to the deepest leaves in their induced
branches. By (b) the claim holds for the leaves. Let e be an unreduced edge in EB that
is not a leaf. By Lemma 14 there exists a double-tight cut δ(Vr) and unreduced edges f, g
unrelated to e and to each other so that e ∈ δ(Vr), Sf ⊂ δ(Vr) and Sg ⊂ δ(Vr). Pick some
h ∈ Se. Lemma 4 implies that h is unreduced and hence (15) combined with the induction
hypothesis yields

bh −
∑

ē∈Sh

bē = γB(κr
h −

∑

ē∈Sh

κr
ē) = γB . (16)

Denote by ve (vf , vg, vh) that node of e (f , g, h) whose distance to r is greater. Then by
Lemma 11

V̄f = Vr ∪ {ve} \ {vf}, V̄g = Vr ∪ {ve} \ {vg} and V̄h = Vr ∪ {ve, vh} \ {vf , vg},

see Figure 5, also yield double-tight cuts with edge sets (for appropriately chosen D ⊂ ET )

δ(Vr) = {e} ∪̇Sf ∪̇Sg ∪̇D,

δ(V̄f ) = Se ∪̇ {f} ∪̇Sg ∪̇D,

δ(V̄g) = Se ∪̇Sf ∪̇{g} ∪̇D,

δ(V̄h) = (Se \ {h}) ∪̇ Sh ∪̇ {f} ∪̇ {g} ∪̇D.

Exploiting

b0 =
∑

ē∈δ(Vr)

bē =
∑

ē∈δ(V̄f )

bē =
∑

ē∈δ(V̄g)

bē =
∑

ē∈δ(V̄h)

bē

11



r
V̄f

h

f

e

Vr

g r
h

f

e g

V̄h

V̄g

Figure 5: Node sets Vr, V̄f , V̄g and V̄h.

one obtains after a few rearrangements together with (16)

be −
∑

ē∈Se

bē = bf −
∑

ē∈Sf

bē = bg −
∑

ē∈Sg

bē = bh −
∑

ē∈Sh

bē = γB .

By induction, bē = γBκr
ē for all ē ∈ Se, so be = γB(1 +

∑

ē∈Se
κr

ē) = γBκr
e.

(d) We first show γB̄ = γB for all branches B̄ incident on r with respect to a special branch
B incident on r. Observe that there is always a branch B = (VB , EB) incident on r with
|VB \ {r}| < F (because there exist at least two branches by minimality of r and because
|T | ≤ 2F ), so let B be this branch. Let B̄ = (V̄ , Ē) be some other branch incident on r.
Denote by S̄ ⊂ Ē the set of unreduced edges in Ē that have no unreduced predecessors, i.e.,

S̄ = {ē ∈ Ē : |V r
ē | = κr

ē and if ē ∈ Se′ for some e′ ∈ Ē then |V r
e′ | > |F̄ |}.

Next, the set V̂ = VB ∪ V̄ \
⋃

ē∈S̄ V r
ē induces a tree T̂ = (V̂ , Ê) with |V̂ | ≤ F (|VB | ≤ F by

construction and removing any leaf v ∈ V̂ \ VB corresponds to cutting a reduced edge f in
B̄ so that |V̂ \ {v}| ≤ |T | − |V r

f | < |T | − F̄ = F ). Thus, we may extend V̂ by nodes from

V \ (VB ∪ V̄ ) to a set Vr with |Vr| = F so that δ(Vr) is a double-tight cut with S̄ ⊆ δ(Vr) and
EB ∩ δ(Vr) = ∅. Take a leaf e ∈ EB, an edge f ∈ S̄ and denote by ve and vf those of the two
nodes of e and f whose distance to r is greater. Then Ve = Vr ∪ {vf} \ {ve} yields another
double-tight cut δ(Ve) = δ(Vr) ∪ {e} ∪ Sf \ {f}, therefore γB = be = bf −

∑

ē∈Sf
bē = γB̄.

As γB̄ = γB for all branches B̄ and B, any double-tight cut δ(Vr) yields with (c)

b0 =
∑

e∈δ(Vr)

be = γB

∑

e∈δ(Vr)

κr
e = γBF̄ .

Thus, γB = b0
F̄

. �

Proof of Theorem 8. (a) Because of (b) we require F̄ ≥ 2 within the proof of (a). For
sufficiency assume that the branch-less path condition is satisfied. Given a face Fb of PB

defined by bT y ≥ b0 that contains all roots of (κr)T y ≥ F̄ , Lemma 15 shows that bT y ≥ b0 is
a nonnegative multiple of (κr)T y ≥ F̄ , so the latter is facet inducing.
Necessity of the minimal root condition is a consequence of Theorem 7, so consider the case
that r is a minimal root but the branch-less path condition does not hold. In this case (T,ET )
contains a path on nodes V̄ = {v1, . . . , vF } with {vi, vi+1} ∈ ET for 1 ≤ i < F and neither
{v1, v2} nor {vF−1, vF } are leaves. By the minimality of r and Lemma 12 there must be some
k ∈ {1, . . . , F} with r = vk. Split (T,ET ) at r into two edge disjoint subtrees (V1, E1) and
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(V2, E2) with V1 ∩ V2 = {r}, ET = E1 ∪ E2 and set

S1 := δ({v1}) \ {v1v2},

S2 := δ({vF }) \ {vF−1vF },

P1 := {vivi+1 : 1 ≤ i < k},

P2 := {vivi+1 : k ≤ i < F},

Di := Ei \ Pi for i ∈ {1, 2},

ni :=
∑

e∈Si

|V r
e | for i ∈ {1, 2}.

Note that 1 ≤ ni < F̄ for i ∈ {1, 2}, because otherwise the cut Si would induce a partition
requiring at least ni +F +1 > F̄ +F = |T | nodes. Furthermore, n1 +n2 = F̄ because S1∪S2

induces a double-tight cut by Lemma 11. We show that all roots of (κr)T y ≥ F̄ also satisfy
the equation

n2

∑

e∈D1

κr
eye + n1

∑

e∈P1

(F̄ − κr
e)ye − n2

∑

e∈P2

(F̄ − κr
e)ye − n1

∑

e∈D2

κr
eye = 0. (17)

Indeed, let Vr be a node set inducing a bisection cut tight for (κr)T y ≥ F̄ and consider the
number of times the path can be cut in view of Lemma 10:

|δ(Vr) ∩ (P1 ∪ P2)| = 0 : This implies δ(Vr) = S1 ∪ S2 by Lemma 11 and (17) holds.

|δ(Vr) ∩ (P1 ∪ P2)| = 1 : By symmetry it suffices to consider the case δ(Vr) ∩ P1 = {f}. By
Lemma 10 we have δ(Vr) ∩ D1 = ∅ and as the cut is tight,

∑

e∈D2
κr

eye = F̄ − κr
f , so

(17) holds.

|δ(Vr) ∩ (P1 ∪ P2)| ≥ 2 : By Lemma 10 it cannot be greater than two, but even two is impos-
sible for a tight cut. Indeed, Lemma 10 ensures δ(Vr)∩ (P1) = {e1}, δ(Vr)∩ (P2) = {e2}
and δ(Vr) ∩ (D1 ∪ D2) = ∅. Since ni < F̄ we obtain κr

ei
≥ ni + 1 for i ∈ {1, 2}, so

(κr)T χδ(Vr) = κr
e1

+ κr
e2

≥ n1 + n2 + 2 > F̄ yields the desired contradiction.

As (17) is not a scalar multiple of (κr)T y ≥ F̄ , the latter cannot be a facet if F̄ ≥ 2 and the
branch-less path condition is not fulfilled.
(b) If F̄ = 1 then κr

e = 1 for all e ∈ ET and each e alone forms a bisection cut that is tight for
(κr)T y ≥ F̄ . As these are |ET | affinely independent roots, the inequality is facet inducing. �

Remark 16. The statements of Theorem 8 cannot be easily carried forward for graphs denser
than trees. So far, we observed that if there are cycles in the graph, then not all trees in
this graph yield a facet defining truncated knapsack tree inequality, even if conditions (a) in
Theorem 8 are satisfied. Some additional assumptions must be figured out. For instance, it
can be shown that if F = |T | − 1 (condition (b) in Theorem 8) and the graph G contains at
least one cycle, then (κr)T y ≥ F̄ does not define a facet of PB.

5 The bisection knapsack walk inequalities for MB

In this section we exploit the special structure of MB in order to derive an improved ver-
sion of the knapsack tree inequality. Note that in the MNCGP case with K > 2 a walk
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{e1 = {v1, v2} , e2 = {v2, v3}} with ye1
= ye2

= 1 does not imply any relation between nodes
v1 and v3 while in the MB case where K = 2 it follows from ye1

= ye2
= 1 that v1 and v3

belong to the same cluster.

More generally, whenever there is a walk (for ease of exposition we assume throughout that
a walk traverses an edge at most once; for the general case, see [1]) between two nodes of the
graph with an even number of edges in the cut we know in the case of MB that the two end
nodes of the walk have to be in the same cluster. We may therefore replace the indicator
term 1 −

∑

e∈Prv
ye of (3) by

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) (18)

where Hv ⊆ Prv with even cardinality. So if y ∈ {0, 1}|E| is a valid solution of MB and Prv

is a walk from r to v in G with Hv = {e ∈ Prv : ye = 1} and |Hv| even, then expression (18)
is equal to one, indicating that r and v belong to the same cluster. If, however, Hv 6=
{e ∈ Prv : ye = 1} the value of (18) is less than or equal to zero.

Lemma 17. Given a root node r ∈ V , walks Prv ⊆ E and even subsets Hv ⊆ Prv for all
v ∈ V . Let y = χδ(S) for some S ⊆ V with r ∈ S and put z = χS. Then for all v ∈ V

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) ≤ zv . (19)

Proof. For v ∈ S we have zv = 1 and inequality (19) is satisfied, because ye ≥ 0 and
1− ye ≥ 0 for all e ∈ E. If v /∈ S1, the set C = {e ∈ Prv : ye = 1} must be of odd cardinality
(otherwise r and v would be together in S1). Since Hv is of even cardinality and both C and
Hv are subsets of Prv, there exists an e ∈ Prv with e ∈ C \ Hv or e ∈ Hv \ C. If e ∈ C \ Hv,
then ye = 1 and the left-hand side of (19) is smaller or equal to 1−ye = 0 = zv. If e ∈ Hv \C,
then ye = 0 and the left-hand side of (19) is smaller or equal to 1 − (1 − ye) = 0 = zv. �

Now we are ready to sum up all the evaluation terms.

Definition 18 (Bisection knapsack walk inequality). Let
∑

v∈V avxv ≤ a0 be a valid inequal-
ity for the knapsack polytope PK with av ≥ 0 for all v ∈ V . For a subset V ′ ⊆ V , a fixed root
node r ∈ V ′, walks Prv ⊆ E, and sets Hv ⊆ Prv with |Hv| even, the bisection knapsack walk
inequality reads

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye)



 ≤ a0 . (20)

Lemma 17 directly implies

Proposition 19. The bisection knapsack walk inequality (20) is valid for the polytope PB.

Note that knapsack tree inequalities are a special case of the bisection knapsack walk inequal-
ities where the walks Prv form a tree, all nodes on these walks are contained in V ′ and all
Hv = ∅. Again, we may rewrite the bisection knapsack walk inequality so as to pronounce
its strength in forcing cut variables to increase:

∑

e∈E





∑

v∈V ′:e∈Prv

av −
∑

v∈V ′:e∈Hv

2av



 ye ≥
∑

v∈V ′

av − a0 −
∑

v∈V ′

av|Hv| .
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Remark 20. For y = χδ(S) with r ∈ S ⊆ V , z = χS, and Uv ⊆ Prv with |Uv| odd (v ∈ V \{r})
one can show

∑

e∈Prv\Uv
ye +

∑

e∈Uv
(1 − ye) ≥ zv for v ∈ V \ {r}. In case of (MB), a valid

knapsack inequality
∑

v∈V avxv ≤ a0 implies validity of
∑

v∈V ′ avzv ≥ a(V ′) − a0 for all
V ′ ⊆ V . Thus the so-called odd bisection knapsack walk inequality

ar +
∑

v∈V ′\{r}

av





∑

e∈Prv\Uv

ye +
∑

e∈Uv

(1 − ye)



 ≥ a(V ′) − a0

is valid for PB, too. Due to their close relation to the (even) bisection knapsack walk inequal-
ities (20) we will not treat these inequalities further in this paper but refer the interested
reader to [1].

Remark 21. The bisection knapsack walk inequalities are closely linked to the cycle inequal-
ities [3] which are defined for cycles C = (VC , EC) in G and subsets U ⊆ EC with |U | odd
by

∑

e∈EC\U

ye −
∑

e∈U

ye ≥ 1 − |U | .

Indeed, consider the case that in a bisection knapsack walk inequality a path Prv with even
subset Hv can be shortcut by the edge rv, put EC = Prv ∪ {rv} and U = Hrv ∪ {rv} and
rewrite the corresponding cycle inequality in the form

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) ≤ 1 − yrv . (21)

If 1 − yrv is interpreted as zv (indicating whether v is in the same set as the root r) this
is just (19). Thus, whenever all cycle inequalities are enforced and a direct edge rv exists
between root r and v then Prv = {rv} is always the best possible choice. It is, however, not
true in general that in the presence of all cycle inequalities a shorter path (with respect to
the number of edges) dominates longer paths, see Example 22.

Example 22. Let G be the cycle on five nodes of Figure 6. The solution y =
(y12, y23, y34, y45, y15)

T = (0.5, 0.5, 0, 0, 0)T fulfills all cycle inequalities because it is a con-
vex combination of the two cuts (0, 0, 0, 0, 0)T and (1, 1, 0, 0, 0)T . Now look at the bisection
knapsack walk inequalities with V ′ = {1, 3} and r = 1. The shorter path P s

13 from root
node 1 to node 3 uses the edge set {{1, 2} , {2, 3}} with Hs

3 = ∅ or Hs
3 = {{1, 2} , {2, 3}}, the

longer path P l
13 uses the edge set {{3, 4} , {4, 5} , {1, 5}} with H l

3 = ∅, H l
3 = {{3, 4} , {4, 5}},

H l
3 = {{3, 4} , {1, 5}} or H l

3 = {{4, 5} , {1, 5}}. For the shorter path of the two possible bi-
section knapsack walk inequalities the left-hand side value is a3 · 0 whereas the best possible
bisection knapsack walk inequality on the longer path uses H l

3 = ∅ and yields left-hand side
value a3 · 1.

1

0.00.0 0.0

0.50.5

45

3

2

Figure 6: Graph for the counter example of Ex. 22
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6 Capacity improved bisection knapsack walk inequalities and

the lower envelope for stars

To motivate another strengthening for bisection knapsack walk inequalities consider the case
of a disconnected graph with two components, one of them being a single edge {u, v}, the
other connected one being V ′ = V \ {u, v}. Even though one cannot include the edge {u, v}
directly in a bisection knapsack walk inequality rooted at some r ∈ V ′, one can at least
improve the inequality if yuv = 1. In this case u and v belong to different clusters and
therefore the capacity F of both clusters can be reduced by min {ϕu, ϕv}. Since F is the
right-hand side of the inequality

∑

v∈V ϕvxv ≤ F used to define the knapsack polytope PK,
this reduction may help to derive stronger bisection knapsack walk inequalities. For instance,
one can look at a given valid inequality

∑

v∈V avxv ≤ a0 for the original knapsack polytope
with capacity F and in case yuv = 1 we are allowed to reduce the right-hand side a0 by
min {au, av}, thus also improving the bisection knapsack walk inequality.

To generalize this idea we define for Ḡ ⊆ G with V̄ ⊆ V , Ē ⊆ E(V̄ ) and a ∈ R
|V̄ |
+ a function

βḠ : {0, 1}|Ē| → R ∪ {∞} with

βḠ(y) = inf
{

a(S), a(V̄ \ S) : S ⊆ V̄ ,max
{

a(S), a(V̄ \ S)
}

≤ a0, y = χδḠ(S)
}

. (22)

Now we look at the lower convex envelope β̌Ḡ : R
|Ē| → R ∪ {∞} of βḠ(y), i.e.,

β̌Ḡ(x) = sup
{

β̆(x) : β̆ : R
|Ē| → R, β̆ convex, β̆(y) ≤ βḠ(y), y ∈ {0, 1}|Ē|

}

. (23)

Notice that β̌Ḡ is a piecewise linear function on its domain. We will see that given a bisection
knapsack walk inequality (20) on some V ′ ⊆ V and V̄ ⊆ V \ V ′ subtracting any affine
minorant c0 +

∑

e∈Ē ceye of β̌Ḡ, i.e.,

c0 +
∑

e∈Ē

ceye ≤ β̌Ḡ(y), (24)

on the right-hand side of (20) yields again a valid inequality for PB. It yields an improvement
with respect to a given y if the minorant is positive for this y. For convenience, the next
proposition states this for several disjoint subsets V̄ .

Proposition 23. Let
∑

v∈V avxv ≤ a0 with av ≥ 0 for all v ∈ V be a valid inequality for the
knapsack polytope PK. Choose a non-empty V ′ ⊆ V and subgraphs

(

V̄l, Ēl

)

= Ḡl ⊂ G with
V̄l ∩ V ′ = ∅, Ēl ⊆ E(V̄l) for l = 1, . . . , L and pairwise disjoint sets V̄l. Find for each l an
affine minorant cl

0 +
∑

e∈Ēl
ceye for the convex envelope β̌Ḡl

so that (24) holds for all y in
PB. Then the capacity reduced bisection knapsack walk inequality

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Prv∩Hv

(1 − ye)



 ≤ a0 −
L
∑

l=1



cl
0 +

∑

e∈Ēl

ceye



 (25)

is valid for PB.

Proof. Let y ∈ PB such that y = χδ(S) with S ⊆ V , then ϕ(S) ≤ F and ϕ(V \ S) ≤ F .
W.l.o.g., let r ∈ S and put z = χS . Then for all l = 1, . . . , L

cl
0 +

∑

e∈Ēl

ceye ≤ β̌Ḡl
(y) ≤ βḠl

(y) = min
{

a(V̄l ∩ S), a(V̄l \ S)
}

≤
∑

v∈V̄l∩S

av =
∑

v∈V̄l∩S

avzv .
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Furthermore, by Lemma 17 we have 1−
∑

e∈Prv\Hv
ye−

∑

e∈Hv
(1 − ye) ≤ zv for v ∈ V ′. Thus

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye)



+

L
∑

l=1

∑

e∈Ēl

ceye

≤
∑

v∈V ′

avzv +

L
∑

l=1

∑

v∈V̄l

avzv ≤
∑

v∈V

avzv ≤ a0 . �

Example 24. For the graph G displayed in Figure 7 with ϕv = 1 for all v ∈ V the polytope
PB has 74 facets (computed by polymake [12]). Among these are 14 trivial facets, only 2 pure

3

1 y13

y232

4 5 6

7

8

y67

y68

y34 y45 y56 V̄1

V ′

Figure 7: Graph considered in Example 24 (1). F = 4, ϕi = 1 for all i ∈ V ,
∑

i∈V xi ≤ 4.

bisection knapsack walk facets, 19 truncated bisection knapsack walk facets, 16 capacity
reduced bisection knapsack walk facets (some truncated), 4 capacity reduced odd bisection
knapsack walk facets and 19 facets for which we are not yet able to recognize a construction
rule. Here we want to give a first simple example for a capacity reduced bisection knapsack
walk inequality. Two more involved examples will follow at the end of this section. We use
the knapsack inequality

∑

v∈V xv ≤ 4 in all three examples, thus av = 1 for all v ∈ V :

(1) For V ′ = {1, 3, 4, 5}, root node r = 3 and Hv = ∅ for all v ∈ V ′ the bisection knapsack
walk inequality is 1 + (1 − y13) + (1 − y34) + (1 − y34 − y45) ≤ 4. We choose Ḡ =
(

V̄ , Ē
)

with V̄ = {6, 7} and Ē = {67}. We will see that the unique best minorizing

function for β̌Ḡ is y67, thus the bisection knapsack walk inequality can be strengthened
to 1 + (1 − y13) + (1 − y34) + (1 − y34 − y45) ≤ 4 − y67. Now rewrite this inequality to
y13 + 2y34 + y45 − y67 ≥ 0 and observe that, like in (5), the coefficient of y34 can be
strengthened to 1 in order to find the facet y13 + y34 + y45 − y67 ≥ 0 of PB.

To find inequalities (24) to apply in Proposition 23 we take a closer look at the lower envelope
defined in (23). In certain cases, e.g., for the case of Ḡ =

(

V̄ , Ē
)

being a star with a
(

V̄
)

≤ a0,

we are able to give a full description of β̌Ḡ by giving a complete description of the cluster
weight polytope defined below. This will provide the tightest improvement possible in (25).

Definition 25. Given a graph G = (V,E) with node weights av ≥ 0 for v ∈ V . For a set
S ⊆ V we define the following point in R

|E|+1

hS
G =

(

a(S)

χδ(S)

)

.

With respect to a given non-negative a0 ∈ R we define

PCW(G) = conv{hS
G : S ⊆ V, a(S) ≤ a0, a(V \ S) ≤ a0 }

and call this set the cluster weight polytope.
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As usual, we will drop G in hS
G and PCW(G) if the graph is clear from the context. The purpose

of studying PCW(Ḡ) is that its polyhedral description immediately yields the epigraph of β̌Ḡ

via epi(β̌Ḡ) = PCW(Ḡ) + {λ(1, 0T )T : λ ≥ 0}. This is the content of the next proposition.

Proposition 26. Given a subgraph Ḡ = (V̄ , Ē) of G with node weights av ≥ 0 for v ∈ V , an
inequality of the form y0 +

∑

e∈Ē γeye ≥ γ0 is valid for PCW

(

Ḡ
)

if and only if γ0−
∑

e∈Ē γeye

is an affine minorant of β̌Ḡ.

Proof. y0 +
∑

e∈Ē γeye ≥ γ0 is valid for PCW

(

Ḡ
)

if and only if

y0 +
∑

e∈Ē

γeye ≥ γ0 for

(

y0

y

)

∈
{

hS
Ḡ

: S ⊆ V̄ , a(S) ≤ a0, a(V̄ \ S) ≤ a0

}

if and only if

y0 ≥ γ0 −
∑

e∈Ē

γeye for

{(

min{a(S), a(V̄ \ S)}

χδḠ(S)

)

: S ⊆ V̄ , max{a(S), a(V̄ \ S)} ≤ a0

}

if and only if βḠ(y) ≥ γ0 −
∑

e∈Ē γeye for y ∈ {0, 1}|Ē| (by (22), recall that inf ∅ = ∞ by

definition) if and only if β̌Ḡ(y) ≥ γ0 −
∑

e∈Ē γeye for y ∈ R
|Ē| (see (23)). �

Hence, the “lower” facets of PCW are in one to one correspondence to the linear components
of β̌. For a star Ḡ =

(

V̄ , Ē
)

we are able to exhibit facets of PCW

(

Ḡ
)

, which in certain
problems enable us to strengthen bisection knapsack walk inequalities of PB to facet-defining
inequalities of PB (see Example 40 at the end of this section).

Let us first look at a symmetry of PCW for general graphs G = (V,E), a property which we
will later use frequently to cut down our efforts in the proofs.

Proposition 27. PCW is symmetric to the hyperplane { y ∈ R
|E| : 2y0 = a(V ) }.

Proof. Observe that for any point hS used in the definition of PCW the point hV \S is
contained in PCW, too. Since χδ(S) = χδ(V \S), we have for all those pairs

(

hS , hV \S
)

(

1
2a(V )

χδ(S)

)

− hS = hV \S −

(

1
2a(V )

χδ(S)

)

. �

Another useful result for a star G = (V,E) is the following

Lemma 28. Let G = (V,E) be a star with center r ∈ V , av ≥ 0 for all v ∈ V and
av′ = a(V \ {v′}) for at least one v′ ∈ V \ {r}. Then a(S) = a(V \ S) for all S ⊆ V with
v′ ∈ S and r ∈ V \ S if and only if av′ = ar and av = 0 for all v ∈ V \ {v′, r}.

Proof. The sufficiency is obvious. We will show necessity: Suppose a(S) = a(V \ S) for all
S ⊆ V with v′ ∈ S and r ∈ V \ S. Then, in particular, this is true for V \ S = {r}, i.e.,
ar = a(V \ {r}) = av′ + a(V \ {v′, r}) = a(V \ {v′}) + a(V \ {v′, r}) = ar + 2a(V \ {v′, r}).
Thus, av = 0 for all v ∈ V \ {v′, r} and av′ = ar. �

In the remaining part of the section we will look into PCW for stars G = (V,E) with center
node r ∈ V and the constraint

∑

v∈V avxv ≤ a0. At first we determine the dimension of the
polytope.
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Proposition 29. For a star G = (V,E) with center r ∈ V and a ≥ 0 with a(V ) ≤ a0 the
polytope PCW has full dimension |E| + 1 for a 6= 0|E| and dimension |E| = |V | for a = 0|E|.

Proof. Since G is a star and by assumption a(V ) ≤ a0, the 1+ |E| points h∅ and h{v} for all
v ∈ V \{r} are contained in PCW and affinely independent. Thus the dimension of PCW is at
least |E|. If a 6= 0|E|, then hV is affinely independent from all points listed previously, thus
PCW is full-dimensional with dimension |E|+ 1. For a = 0|E| all points lie on the hyperplane
y0 = 0. �

For G = (V,E) a star with center r ∈ V , weights av = 0 for all v ∈ V and a0 ≥ 0 it can easily
be worked out that PCW is completely described by the equality y0 = 0 and the inequalities
0 ≤ yrv ≤ 1 for all v ∈ V \ {r}. So from now on we assume av > 0 for at least one v ∈ V .
Let us first state trivial valid inequalities and facets of PCW.

Proposition 30. For a star G = (V,E) with center r ∈ V , a ≥ 0 with a 6= 0|E| and
a(V ) ≤ a0 the trivial inequalities

0 ≤ yrv ≤ 1, ∀ v ∈ V \ {r} (26)

are facet-inducing for PCW except for one particular case: if there is exactly one v′ ∈ V \ {r}
with av′ = ar = 1

2a(V ), then yrv′ ≤ 1 does not induce a facet.

Proof. The validity of the inequalities yrv′ ≥ 0 and yrv′ ≤ 1 for all v′ ∈ V \ {r} follows
from the definition of PCW. In general, to prove that a valid inequality defines a facet of
PCW we have to find dim(PCW) affinely independent points of PCW which fulfill it with
equality. From Proposition 29 we know that dim(PCW) = |V | if a 6= 0|E| . For yrv′ ≥ 0 we
choose the |V | points h∅, hV and h{v} for all v ∈ V \ {r, v′}. For yrv′ ≤ 1 the accumulation
of affinely independent points on the inequality is a bit more involved: If av′ 6= a(V \ {v′})
we can choose the |V | points h{v′}, hV \{v′} and h{v′,v} for all v ∈ V \ {r} with v 6= v′. If
av′ = a(V \ {v′}) we look at two cases:

1. ar 6= av′ : Then there is a ṽ ∈ V \ {r, v′} with aṽ > 0. Furthermore, since av′ =
a(V \ {v′}), we have av′ = 1

2a(V ). Together with aṽ > 0 this implies a({v′, ṽ}) 6=

a(V \ {v′, ṽ}), i.e., h{v′,ṽ} 6= hV \{v′,ṽ}. Thus we can choose the |V | points h{v′}, h{v′,v}

for all v ∈ V \ {r, v′} and hV \{v′,ṽ}.

2. ar = av′ : The set of points contained in the definition of PCW which fulfill yrv′ = 1
is
{

hS , hV \S : S ⊆ V, v′ ∈ S, r ∈ V \ S
}

. Lemma 28 implies for every pair (hS , hV \S) in
this set that a(S) = a(V \ S). Since a(S) + a(V \ S) = a(V ), we get a(S) = 1

2a(V ) for

all S with y = χδ(S) and yrv′ = 1. Thus all vertices of PCW fulfilling yrv′ = 1 live in
the hyperplane {y ∈ R

|E|+1 : y0 = 1
2a(V )}. Therefore, yrv′ ≤ 1 cannot induce a facet of

PCW. �

In the following two propositions we look into non-trivial facets of PCW. Proposition 31 deals
with the case a(V \ {r}) > ar and Proposition 32 with the case a(V \ {r}) ≤ ar.

Proposition 31. Given a star G = (V,E) with center r ∈ V , a ≥ 0 with a 6= 0|E|, a(V ) ≤ a0

and a(V \ {r}) > ar. We call a triple (Vp, v̄, Vn) feasible if it fulfills V = {r, v̄} ∪̇ Vp ∪̇ Vn

and a(Vp) ≤
1
2a(V ) < a(Vp) + av̄. For all feasible triples (Vp, v̄, Vn) the inequalities

y0 +
∑

v∈Vp

avyrv + (a(V ) − 2a(Vp) − av̄) yrv̄ −
∑

v∈Vn

avyrv ≤ a(V ) (27)
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y0 −
∑

v∈Vp

avyrv − (a(V ) − 2a(Vp) − av̄) yrv̄ +
∑

v∈Vn

avyrv ≥ 0 (28)

are facet-inducing for PCW.

Note, that it is possible that either Vp or Vn of feasible triples (Vp, v̄, Vn) might be empty, but
for a(V \ {r}) > ar there always is the special element v̄.

Proof of Proposition 31. To cut down our efforts in this proof and the ones to follow
observe that for each feasible triple (Vp, v̄, Vn) the corresponding pair of inequalities (27)
and (28) is symmetric to the hyperplane { y ∈ R

|E| : 2y0 = a(V ) }. To see this, subtract the
equation 2y0 = a(V ) from (27) to obtain (28). Thus, by Prop. 27, it suffices to show that (27)
is valid and facet-defining. Furthermore, to show the validity of (27) it is sufficient to only
look at the “upper” points defining PCW, i.e., if w.l.o.g., S ⊆ V such that a(S) ≥ a(V \ S),
then we only need to check validity of (27) for hS = (a(S), χδ(S))T .
Consider an arbitrary S ⊆ V such that a(S) ≥ a(V \ S). Let V 1 = {v ∈ V : rv ∈ δ(S)}. We
discern the following four cases:

1. v̄ ∈ V 1 = S: For

(

a(S)

χδ(S)

)

the left-hand side of (27) equals

a(V 1) + a(Vp ∩ V 1) + a(V ) − 2a(Vp) − av̄ − a(Vn ∩ V 1) =
2a(Vp ∩ V 1) + a(V ) − 2a(Vp) =

a(V ) − 2a(Vp \ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩ V 1) + av̄ + a(Vn ∩ V 1) and the inequality
is due to a(Vp \ V 1) ≥ 0.

2. v̄ /∈ V 1 = S: For

(

a(S)

χδ(S)

)

the left-hand side of (27) equals

a(V 1) + a(Vp ∩ V 1) − a(Vn ∩ V 1) = 2a(Vp ∩ V 1) ≤ 2a(Vp) ≤ a(V )

where the equality uses a(V 1) = a(Vp ∩ V 1) + a(Vn ∩ V 1) and the last inequality is due
to a(Vp) ≤

1
2a(V ) by the definition of Vp.

3. v̄ ∈ V 1 = V \ S: For

(

a(S)

χδ(S)

)

the left-hand side of (27) equals

a(V ) − a(V 1) + a(Vp ∩ V 1) + a(V ) − 2a(Vp) − av̄ − a(Vn ∩ V 1) =
2a(V ) − 2a(Vp) − 2av̄ − 2a(Vn ∩ V 1) <

2a(V ) − a(V ) − 2a(Vn ∩ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩V 1)+av̄ +a(Vn ∩V 1), the strict inequality
is due to a(Vp) + av̄ > 1

2a(V ) by the definition of Vp and v̄ and the inequality holds
since a(Vn ∩ V 1) ≥ 0.

4. v̄ /∈ V 1 = V \ S: For

(

a(S)

χδ(S)

)

the left-hand side of (27) equals

a(V ) − a(V 1) + a(Vp ∩ V 1) − a(Vn ∩ V 1) = a(V ) − 2a(Vn ∩ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩V 1) + a(Vn ∩V 1) and the inequality is due
a(Vn ∩ V 1) ≥ 0.
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In order to show that (27) is also facet-defining, let Vp = {vp
1 , . . . , vp

|Vp|
} and Vn =

{vn
1 , . . . , vn

|Vn|
}. Then the |V | points

hV , hV \{vp
1
}, . . . , h

V \{vp
1
,...,v

p

|Vp|
}
, h

{vp
1
,...,v

p

|Vp|
,v̄}

, h
{vp

1
,...,v

p

|Vp|
,v̄,vn

1
}
, . . . , h

{vp
1
,...,v

p

|Vp|
,v̄,vn

1
,...,vn

|Vn|
}

fulfill the inequality (27) with equality and are affinely independent, thus (27) is a facet-
inducing inequality. �

In the case of a(V \ {r}) ≤ ar the set Vn is empty, there is no v̄ and the inequalities (27)
and (28) take the following form.

Proposition 32. For a star G = (V,E) with root r ∈ V and a ≥ 0 with a 6= 0|E| , a(V ) ≤ a0

and a(V \ {r}) ≤ ar the inequalities

y0 +
∑

v∈V \{r}

avyev ≤ a(V ) (29)

y0 −
∑

v∈V \{r}

avyev ≥ 0 (30)

are facet-inducing for PCW.

Proof. We start again by observing the symmetry of the inequalities (29) and (30) to the
hyperplane { y ∈ R

|E| : 2y0 = a(V ) }. To see this, subtract the equation 2y0 = a(V ) from
inequality (29) to obtain inequality (30). Thus, by Prop. 27, it suffices to prove the validity

and facet-induction of (29). Take an S ⊆ V with a(S) ≥ a(V \ S). Then hS =

(

a(S)

χδ(S)

)

is

one of the points defining PCW. We see that V \ S = {v ∈ V : rv ∈ δ(S)}. Now plug hS into

the left-hand side of (29) to get a(S) + a(V \ S) = a(V ). The point hV \S =

(

a(V \ S)

χδ(V \S)

)

can also not violate (29) since a(V \ S) ≤ a(S), thus (29) is valid for PCW.

In order to show that (29) is facet-inducing let v1, . . . , v|V |−1 be an arbitrary ordering of the
nodes in V \ {r}. Since a(S) + a(V \ S) = a(V ) holds, the dim(PCW) = |V | points

hV , hV \{v1}, . . . , hV \{v1,...,v|V |−1}

fulfill the inequality (29) with equality and are affinely independent. �

All possible facets of PCW fall into one of the following three classes:

y0 +
∑

v∈V \{r}

γvyrv ≤ γ0 (31)

∑

v∈V \{r}

γvyrv ≤ γ0 (32)

−y0 +
∑

v∈V \{r}

γvyrv ≤ γ0 (33)

In the next two lemmas we will look closer into coefficients of facets of the form (31). The
following three propositions state that we have found all facets of PCW of the forms (31),
(32) and (33), respectively. Finally, Theorem 38 summarizes the results. The section is
accompanied by two small examples on how to apply the inequalities to derive capacity
reduced bisection knapsack walk inequalities.
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Lemma 33. For an arbitrary facet of PCW of the form (31) we have for all v ∈ V \ {r}

−av ≤ γv ≤ av .

Proof. We give the proof for the case γṽ > 0 (the case γṽ < 0 can be proved by analogous

arguments). The facet has a root
(

ŷ0, ŷ
T
)T

with ŷrṽ = 0, because otherwise all roots ŷ
would lie on the equation ŷrṽ = 1, thus (31) could not induce a facet. Let S ⊆ V be the
corresponding subset satisfying ŷ = χδ(S) and ŷ0 = a(S) ≥ a(V \ S). To bound γṽ we look
at ȳ = ŷ + erṽ, i.e., the cut δ(S) ∪ {rṽ}. We discern three cases concerning the location of
node ṽ and the size of the bigger cluster:

1. ṽ ∈ V \ S: Because a(S) ≥ a(V \ S) we obtain a(S ∪ {ṽ}) ≥ a(V \ (S ∪ {ṽ})). Set

ȳ0 = a(S ∪ {ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= hS∪{ṽ} ∈ PCW. In order for (31) to be feasible for
(

ȳ0, ȳ
T
)T

we need γ0 ≥ ȳ0 +
∑

v∈V \{r} γvȳrv. Since
(

ŷ0, ŷ
T
)T

is a root of (31), we
have γ0 = ŷ0 +

∑

v∈V \{r} γvŷrv. Thus, ŷ0 +
∑

v∈V \{r} γvŷrv ≥ ȳ0 +
∑

v∈V \{r} γvȳrv, i.e.,
ŷ0 ≥ ȳ0 + γṽ. Therefore, γṽ ≤ ŷ0 − ȳ0 = −aṽ. This contradicts our assumption γṽ > 0,
thus the case ṽ ∈ V \ S is not possible.

2. ṽ ∈ S and a(S \ {ṽ}) ≥ a((V \S)∪{ṽ}): Set ȳ0 = a(S \ {ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= hS\{ṽ} ∈

PCW. As
(

ȳ0, ȳ
T
)T

is feasible for (31) we derive, as in the previous case, ŷ0 ≥ ȳ0 + γṽ,
hence γṽ ≤ ŷ0 − ȳ0 = a(S) − a(S \ {ṽ}) = aṽ.

3. ṽ ∈ S and a(S \ {ṽ}) < a((V \ S) ∪ {ṽ}): This implies a(S \ {ṽ}) < 1
2a(V ). Set

ȳ0 = a((V \ S) ∪ {ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= h(V \S)∪{ṽ} ∈ PCW. From the feasibility of (31)
we conclude ŷ0 ≥ ȳ0 + γṽ. Therefore, γṽ ≤ ŷ0 − ȳ0 = a(S) − a((V \ S) ∪ {ṽ}) =
aṽ + 2a(S \ {ṽ}) − a(V ) < aṽ, where the last inequality uses a(S \ {ṽ}) − 1

2a(V ) < 0.

�

Lemma 34. For an arbitrary facet of PCW of the form (31) we have γ0 = a(V ) and
∑

v∈V \{r} γv ≤ ar.

Proof. In order for (31) to be valid for hV =
(

a(V ), (χδ(V ))T
)T

∈ PCW we get γ0 ≥ a(V ).
We discern two cases regarding the weight of the root node r.

ar < a(V \ {r}) : (31) has to be valid for
(

a(V \ {r}), (χδ(V \{r}))T
)T

= hV \{r} ∈ PCW, thus
∑

v∈V \{r} γv ≤ γ0 − a(V \ {r}).

ar ≥ a(V \ {r}) : (31) has to be valid for
(

ar, (χ
δ({r}))T

)T
= h{r} ∈ PCW, thus

∑

v∈V \{r} γv ≤
γ0 − ar ≤ γ0 − a(V \ {r}).

Thus in any case we have
∑

v∈V \{r}

(av + γv) ≤ γ0 . (34)

Now use av +γv ≥ 0 (by Lemma 33) and yrv ∈ [0, 1] for all
(

y0, y
T
)T

∈ PCW to conclude that

∑

v∈V \{r}

(av + γv)yrv ≤ γ0 (35)
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is a valid inequality for PCW. Additionally, ar = a(V )−a(V \{r}), thus it is sufficient to show
that γ0 = a(V ) if (31) induces a facet of PCW, because then (34) implies

∑

v∈V \{r} γv ≤ ar.

So assume, for contradiction, that γ0 > a(V ) with (31) facet defining. In search for roots of
(31) let S ⊆ V be such that ỹ0 = a(S) ≥ a(V \ S), put ỹ = χδ(S) and consider the following
two cases.

r ∈ S : Then ỹ0 +
∑

v∈V \{r} γvỹrv = a(S) +
∑

v∈V \S γv ≤ a(V ) < γ0, where the ≤-inequality

is due to γv ≤ av by Lemma 33. Therefore,
(

ỹ0, ỹ
T
)T

cannot lie on the facet.

r ∈ V \ S : We show that all such roots also satisfy (35) with equality and so (31) cannot

not be a facet. Indeed, if it is a root,
(

ỹ0, ỹ
T
)T

satisfies ỹ0 +
∑

v∈V \{r} γvỹrv = γ0. Since
ỹ0 =

∑

v∈V \{r} avỹrv, we obtain γ0 =
∑

v∈V \{r}(av + γv)ỹrv.

Hence, any facet inducing inequality (31) has γ0 = a(V ). �

Proposition 35. For a star G = (V,E) with root r ∈ V , a ≥ 0 with a 6= 0|E| and a(V ) ≤ a0

all facets of the form (31) for PCW are defined by (27) if a(V \ {r}) > ar and by (29) if
a(V \ {r}) ≤ ar.

Proof. We have shown in Lemma 33 that each coefficient γv for all v ∈ V \ {r} in all facets
of PCW of the form (31) fulfills

−av ≤ γv ≤ av . (36)

Lemma 34 tells us that for each individual facet of PCW of the form (31) the coefficients fulfill
∑

v∈V \{r}

γv ≤ ar (37)

and
γ0 = a(V ) . (38)

For any given y ∈ [0, 1]|E| we will now determine the best γ0 and γ subject to the con-
straints (36), (37) and (38) so that the right hand side of y0 ≤ γ0 −

∑

v∈V \{r} γvyrv is as
small as possible. If we can always exhibit an optimal solution γ∗

0 , γ∗ that corresponds to the
coefficients of (27) if a(V \ {r}) > ar or of (29) if a(V \ {r}) ≤ ar, then the proof is complete.
At first note that (38) directly fixes γ0 to a(V ) which corresponds to the right-hand sides
of (27) and (29). Now look at the problem

min a(V ) −
∑

v∈V \{r}

yrvγv

s.t.
∑

v∈V \{r}

γv ≤ ar

−av ≤ γv ≤ av ∀v ∈ V \ {r} .

(39)

In case a(V \ {r}) ≤ ar, the optimal solution sets γv = av for all v ∈ V \ {r} and we have
determined inequality (29). So assume a(V \ {r}) > ar. Using the variable transformation
γ̃v = γv + av, problem (39) is equivalent to

max
∑

v∈V \{r}

yrvγ̃v −
∑

v∈V \{r}

yrvav

s.t.
∑

v∈V \{r}

γ̃v ≤ a(V )

0 ≤ γ̃v ≤ 2av ∀v ∈ V \ {r} .

(40)
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Problem (40) is the canonical continuous bounded knapsack problem (see Sections 3.2 and
3.3.1 in [14]) with continuous variables γv, profits yrv, weights 1 and upper bound 2av for
all items v ∈ V \ {r} and knapsack capacity a(V ). An optimal solution can be found by
sorting the items v with respect to non-increasing profit-to-weight ratios yrv/1, w.l.o.g., let
this ordering be 1, 2, . . . , |V | − 1, and by using this ordering to pack the knapsack in the
following way: γ̃v = 2av for all v = 1, . . . , v̄ − 1 with v̄ so that 2a({1, . . . , v̄ − 1}) ≤ a(V )
and 2a({1, . . . , v̄ − 1}) + 2av̄ > a(V ), γ̃v̄ = a(V ) − 2a({1, . . . , v̄ − 1}), and γ̃v = 0 for all
v = v̄ +1, . . . , |V |−1. The item v̄ is called the critical item. Note that if one v̄ can be chosen
as the critical item, then so can all v 6= v̄ with yrv = yrv̄.
Backsubstitution of γ̃v = γv + av yields the optimal solution of problem (39): γv = av for all
v = 1, . . . , v̄ − 1 with a({1, . . . , v̄ − 1}) ≤ 1

2a(V ) and a({1, . . . , v̄ − 1}) + av̄ > 1
2a(V ), γv̄ =

a(V )−2a({1, . . . , v̄−1})−av̄, and γv = −av for all v = v̄ +1, . . . , |V |−1. Finally we observe
that we have determined a feasible triple (Vp = {1, . . . , v̄ − 1}, v̄, Vn = {v̄ + 1, . . . , |V | − 1}),
i.e., we have found an inequality of (27). �

Proposition 36. For a star G = (V,E) with root r ∈ V , a ≥ 0 with a 6= 0|E| and a(V ) ≤ a0

all facets of the form (33) for PCW are defined by (28) if a(V \ {r}) > ar and by (30) if
a(V \ {r}) ≤ ar.

Proof. Use the symmetry of PCW, of pairs (31) and (33) with the same γv and γ0, of
pairs (27) and (28) and of pairs (29) and (30) to the hyperplane { y ∈ R

|E| : 2y0 = a(V ) }
and apply Proposition 35. �

Proposition 37. For a star G = (V,E) with root r ∈ V , a ≥ 0 with a 6= 0|E| and a(V ) ≤ a0

all facets of the form (32) for PCW are defined by (26).

Proof. It is trivial to show that facets of a polytope with coefficient zero for a fixed variable
are also facets of the projection of this polytope if one projects out this variable. Since
the hyperplanes defined by inequalities of the form (32) have coefficient zero for variable
y0, we have to look at the projection of PCW onto the space R

|E| and have to show that

this projection only has facets of the form (26). A point
(

a(S), (χδ(S))T
)T

∈ R
|E|+1 used to

define PCW is projected to χδ(S) ∈ R
|E|, and since a(V ) ≤ a0 the polytope PCW contains

the points
(

a(S), (χδ(S))T
)T

∈ R
|E|+1 for all S ⊆ V , thus its projection contains all possible

points {0, 1}|E|. Furthermore, the projection of any other point of PCW can be written as
the convex combination of points {0, 1}|E|. Thus the projection of PCW is exactly the |E|-
dimensional hypercube. To finish the proof we note that the |E|-dimensional hypercube is
completely described by the projection of the inequalities (26). �

Theorem 38. For a star G = (V,E) with root r ∈ V , a ≥ 0 with a 6= 0|E| and a(V ) ≤ a0

we have

PCW = { y ∈ R
|E|+1 : y fulfills (26), (27) and (28) } =: Y, if a(V \ {r}) > ar, and

PCW = { y ∈ R
|E|+1 : y fulfills (26), (29) and (30) } =: Y r, if a(V \ {r}) ≤ ar.

Proof. If a(V \ {r}) > ar, propositions 30 and 31 show that Y ⊇ PCW, and to show
Y ⊆ PCW we can use propositions 35, 36 and 37. If a(V \ {r}) ≤ ar, propositions 30 and 32
show that Y r ⊇ PCW and to prove Y r ⊆ PCW we can use again propositions 35, 36 and 37.
�
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Remark 39. Note that in all assertions of this section we have assumed a(V ) ≤ a0. This
assumption guarantees that every S ⊆ V contributes its point hS to PCW. If we reduce a0

below a(V ) the facial structure of PCW becomes much more complicated, because suddenly
the whole complexity of the knapsack polytope PK comes into play. So far a complete
description of PCW with a(V ) > a0 seems out of reach for non-trivial graphs, even if we
assume av = 1 for all v ∈ V .

Example 40. We continue Example 24. For the choice of the subgraphs Ḡl compare Figure 8.

(2) The bisection knapsack walk inequality on V ′ = {1, 2, 3} with root node r = 3 and
Hv = ∅ for all v ∈ V ′ is 1 + (1 − y13) + (1 − y23) ≤ 4. With Ḡ1 and Ḡ2 such that
V̄1 = {4, 5}, V̄2 = {6, 7}, Ē1 = {45} and Ē2 = {67} the capacity reduced bisection
knapsack walk inequality reads 1 + (1 − y13) + (1 − y23) ≤ 4 − y45 − y67 and is a facet
of PB.

3

1 y13

y232

4 5 6

7

8

y67

y68

y34 y45 y56 V̄2

V̄1

V ′

Figure 8: Graph for Example 40 (2). F = 4,
ϕi = 1 for all i ∈ V ,

∑

i∈V xi ≤ 4.

3

1 y13

y232

4 5 6

7

8

y67
y34 y45 y56

V ′ V̄1

y68

Figure 9: Graph for Example 40 (3). F = 4,
ϕi = 1 for all i ∈ V ,

∑

i∈V xi ≤ 4.

(3) For V ′ = {1, 2, 3, 4}, r = 3 and Hv = ∅ for all v ∈ V ′ the bisection knapsack walk
inequality is 1 + (1 − y13) + (1 − y23) + (1 − y34) ≤ 4. Proposition 31 establishes that
for Ḡ with V̄ = {5, 6, 7, 8} and Ē = {56, 67, 68} one of the best minorizing functions
for β̌Ḡ is y56 + y67 − y68. Thus the resulting capacity reduced bisection knapsack walk
inequality reads 1 + (1 − y13) + (1 − y23) + (1 − y34) ≤ 4− y56 − y67 + y68. It is a facet
of PB.

7 Conclusion

We investigated the bisection cut polytope PB associated with the minimum graph bisection
problem MB. In particular, we exploited the knapsack condition (f(S) ≤ F and f(V \S) ≤ F ,
S ⊆ V ) in the formulation of the problem, which makes it NP-hard. As one would expect,
inequalities basing on this knapsack constraint define high dimensional faces of PB. In the first
part of the paper we showed that in case the underlying graph G is a tree the knapsack tree
inequalities define facets of PB. The situation becomes more complicated if one considers
a denser graph. We suppose, that also in this case there are facet-defining knapsack tree
inequalities for PB. However, so far we have not been able to identify sufficient conditions
which must be fulfilled by the tree supporting the inequality. Here there is certainly room for
further research. In the second part of the paper we worked out a version of knapsack related
inequalities – the bisection knapsack walk inequalities – which exploit the special bisection
case. We took a closer look at their strengthening resulting in capacity reduced bisection
knapsack walk inequalities. The right-hand sides of these inequalities may be reduced by
exploiting weights of nodes that are not endpoints of walks within the respective inequality.
The best possible reduction of the right-hand side is achieved by applying facets of the newly
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introduced cluster weight polytope PCW. As one would expect, the facial structure of PCW

is not trivial due to its relation to the knapsack polytope. We gave the full description of
PCW for the case that the complement of the walk in G is a star, all whose nodes fit into the
knapsack. Even though this simple case was already challenging we encourage to investigate
PCW on more complex graphs than a star and on graphs with an active capacity restriction
on the node weight. The practical value of the strengthenings will be investigated in a follow
up paper, that also features extensive results on a comparison of semidefinite versus pure
linear branch and cut approaches for bisection problems on large sparse graphs.
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