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Aufgabenstellung

Die Arbeit befasst sich mit folgender Problemstellung:

Ein transitiver Digraph sei gegeben. Einen series-parallelen Minor welcher
Grofle kann man finden? Probleme dieser Art treten im Zusammenhang mit
Datenbanken auf.

Das Problem soll insbesondere fiir geeignete Kantengewichtungen betrachtet
werden. Nach Sichtung der relevanten Literatur soll ein entsprechender Algo-
rithmus zum Auffinden grofler series-paralleler Minoren im Rahmen der Arbeit
entwickelt und analysiert werden.
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Abstract

This work deals with the problem to find large series-parallel minors in tran-
sitive digraphs. In this context, different suitable edge weight functions for
the given digraphs are discussed. To tackle this task, various algorithms are
examined, both already known and specifically designed for this problem.

The relevance and strategies of related literature on similar problems and ap-
plications are studied and evaluated.

This issue arises in the context of reconstructing structures from multidimen-
sional databases from relational data. Here, the required objects can be repre-
sented as series-parallel minors of certain digraphs, which hold the information
about relationships between attributes of a database relation.

An important aspect of this work lies in the derivation and calculation of a
specific possible edge weight function, that models the database structure well.
Relevant properties of this weight function are discussed.

Zusammenfassung

Die Arbeit befasst sich mit der Bestimmung grofler series-paralleler Mino-
ren in transitiven Digraphen. Hierbei wird die Problemstellung insbesondere
fiir verschiedene geeignete Kantengewichtungen betrachtet. Es werden sowohl
bekannte als auch speziell fiir diese Aufgabe entworfene Algorithmen und Heu-
ristiken diskutiert.

Dabei werden auch Arbeiten iiber verwandte Problemstellungen herangezogen
und im Hinblick auf ihre Anwendbarkeit untersucht.

Die Aufgabenstellung ergibt sich im Zusammenhang mit der Rekonstruktion
mehrdimensionaler Datenbankstrukturen aus relationalen Datenbanken. Die
gesuchten Elemente konnen hier als series-parallele Minoren von Digraphen, die
die Attributstruktur der relationalen Datenbank abbilden, aufgefasst werden.

Ein weiterer Aspekt der Arbeit besteht in der Herleitung und Konstruktion
einer moglichen konkreten Kantengewichtung, die sich aus der Struktur der
relationalen Datenbank ergibt. Relevante Eigenschaften dieser Gewichtung im
gegebenen Kontext werden erortert.
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Introduction

1 Introduction

During the last years, multidimensional database systems have increasingly
gained in importance in business intelligence applications [1]. Consequently,
multidimensional concepts are very commonly used in practice, for example
in data warehouse applications. However, quite often these concepts are not
implemented as multidimensional databases, but instead are designed as rela-
tional databases [2, p. 352]. One of the reasons for this is that the relational
model is well formalized at a conceptual level [3], whereas, on the other hand,
there is still no concensus on mutidimensional data modeling [4]. This brought
forth a variety of different relational database systems with a similar range of
features and high interoperability. In addition, a lot of research effort has
been put into relational database technology over the last decades, which led
to great improvements in usability and performance of modern commercial
tools for relational databases.

A main drawback of modeling multidimensional data as a relational data-
base is that it is often not possible to represent the entire semantics inherent
in those data. The explicite hierarchies, for example, which are incorporated
in multidimensional databases, are often dismissed in favor of performance
enhancements. However, such databases tend to be extremely large, expres-
sive hierarchies become more and more important tools for database users for
understanding the data. Likewise, hierarchies are also needed for meaningful
data aggregation and it is not trivial to restore them if they are not available
as part of the structure of the database [5].

The goal of this work is to find solutions to the hierarchy problem, i.e.
reconstructing attribute hierarchies only from the data and structure of a single
database relation. The main tool for the presented approaches is the FD-graph,
a special transitive digraph that represents all the available information. This
knowledge is retrieved by evaluating relationships between different attributes.
It is shown that certain minors of this digraph can be regarded as hierarchies
of the original relation. The hierarchy problem is therefore modeled as finding
such minors in the FD-graph.

In order to assess how well these minors actually represent attribute hierar-
chies of the given relation, some kind of measure is needed. The here proposed
idea is the introduction of an edge weight function for the FD-graph which
rates the relevance of the attribute dependencies for any possible hierarchy.
It is not obvious how such a weight function has to be modeled and what its
characteristics should be. Therefore, it is not only important to discuss the
problem for abstract weight functions with certain special properties, but also
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to give close attention to the explicite design of a particular weight function
that is able to express the above mentioned attribute dependencies properly.

The focus of the following considerations lies on series-parallel minors,
which correspond to generalized hierarchies, including also simple and mul-
tiple independent hierarchies as special cases. These are the most relevant
attribute hierarchies occuring in practice. Both well-known and specifically
designed algorithmic approaches to find series-parallel minors with large ag-
gregate weight are discussed.

In chapter 2 necessary terms and notations from graph theory and data-
base theory are introduced. A formal model of the hierarchy problem that
introduces the FD-graph is developed in chapter 3 together with methods
for cycle-removal and a way for reducing the problem to a subclass of the
FD-graphs. Chapter 4 discusses a paper by Bein et al. [6], which examines a
related issue. Solutions for two special cases of weight functions are deduced in
chapter 5, completed by an evaluation of the Greedy Algorithm for this prob-
lem with general weight functions. A special weight function is motivated and
derived in chapter 6. Finally, chapter 7 concludes this work and summarizes
results and open problems.
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2 Preliminaries

This chapter contains most of the definitions that are the basis for the pre-
sented ideas, their formal analysis and the argumentations. After some basic
notations, there is a section introducing general terms from graph theory, fol-
lowed by section 2.2 focussing solely on series-parallel digraphs because of their
special relevance to this work. Section 2.3 deals with concepts from relational
database theory and section 2.4 introduces attribute hierarchies, which are
fundamental structures in multidimensional databases.

For the cardinality of a set S the notation |S| is used. The power set of
a set S, i.e. the set of all subsets of S, is denoted by 2°. A partition of S is
a non-empty set P = {Py,... P} such that P; # ) and P; N P; = () for all
i,j € {1,...k} with i # j and such that

k
Ua:&
=1

Note that a partition of S is a subset of the power set of S.

The set of natural numbers is denoted by N, the set of real numbers by R
and the positive real numbers together with 0 by R .

The falling factorial z2 is defined by
2=z(x—1)...(r—n+1)
forx € Rand n € N [7, p. 7].

Let S be a non-empty set with a weight function ¢ : 25 — R... A property
over S is a set P C 25. An element A € P is maximal w.r.t. P if there
is no B € P such that A C B. An element A € P is maximum w.r.t.
P if for every B € P it holds that ¢(A) > ¢(B). If no weight function is
provided, it is implicitly assumed that ¢(A) = |A| for all A € P. Conversely,
an element A € P is minimal w.r.t. P if there is no B € P such that B C A.
An element A € P is minimum w.r.t. P if for every B € P it holds that
c(A) < ¢(B). An optimal element of P denotes either a maximal or a minimal
element, depending on whether a maximization or a minimization problem is
considered, respectively. Analogously, an optimum element is either maximum
or minimum, depending on the context.

The terms from the previous paragraph are used rather informally through-
out this work without explicitly indicating S and P, e.g. a maximal matching
in a digraph G denotes a maximal element w.r.t. P, where P is just the set of
all matchings in G, and S is the edge set of G.
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2.1 Graph Theory

This work follows mostly the definitions from [8], but some notations from [9]
and [10] are also used.

A digraph is an ordered pair G = (V| FE) where V is a set of vertices and
E is a set of edges together with two incidence functions init : £ — V and
ter : E — V| assigning to every edge e an initial vertex init(e) and a terminal
vertex ter(e), its two end-vertices. The vertex set and edge set of G is also
denoted by V(G) and E(G), respectively. In the following it is always tacitly
assumed that vertex set and edge set are disjoint. Edges in F and vertices
in V are said to be contained in G or just in G. The digraph (0, ) is called
empty; if at least V' # () then G is non-empty.

Edges with the same initial and the same terminal vertex are called mul-
tiple. An edge whose end-vertices are identical is called a loop. This work
does not permit multiple edges and loops in a digraph unless stated otherwise.
Therefore it can be stated that £ C V x V and an edge e can be written as
an ordered pair (init(e), ter(e)) of two different vertices.

A digraph is commonly depicted by drawing dots for its vertices and arrows
between those dots representing the edges. Here, the actual positions of the
dots are irrelevant; only the incidence relations between the pictured vertices
and edges are of interest [9, p. 2]. An example of a digraph with 11 vertices
and 13 edges can be seen in figure 2.1. The vertices and edges are labeled with
v; and ej, respectively.

.Ul
€1 v7 g
/UQ- 69
2
e e
V3 e 3 A 13
€4\ eg U8/
“ 04 6\1()‘%110
Ve €7 el
€sg Vlle
[ ]
Vg

Figure 2.1 A digraph

The end-vertices of an edge e = (v,w) € E are said to be incident to e
and e is an edge from v to w or between v and w. The initial vertex v of e
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is an in-neighbor of the terminal vertex w and conversely w is out-neighbor
of v. The edge e leaves v and enters w. Two vertices in G are adjacent, or
neighbors, if there is an edge between them in G. Two edges are adjacent if
they share a common end-vertex. The edge (w,v) is the opposite edge of e.

The sets N (v) and N (v), defined by
NG () = {ue V\{v}: (u,v) € B},
Ngw) = {u e V\ {v} : (v.u) € B},
are the in-neighborhood and out-neighborhood of v in G, respectively. The

neighborhood of v in G is Ng(v) = N (v) UN/ (v). These neighborhoods can
analogously be defined for sets of vertices. For a set U C V let

Ng(U) = | Ng)\U, N&U)= [ Ni(w)\U
welU wel
and Ng(U) = Ng (U) UNZ, (U). Here and in following definitions, the indices
specifying the considered graph may be omitted if no ambiguities arise.

Let E;(v) = {(w,v) € E} and E/(v) = {(v,w) € E} denote the sets of
edges incident to v. Note that because of the exclusion of parallel edges and
loops it holds that |Eg(v)| = |Ng (v)] and |EZ(v)| = |NZ (v)].

The in-degree d(v) = |Eg(v)| of a vertex v € V in G is the number of
edges in E with v as their terminal vertex and the out-degree d,(v) = |E/, (v))
of v in G is the number of edges with v as their initial vertex. The degree of v
in G is dg(v) = dg(v) + d5(v). A vertex v € V is called a subdividing vertex
if dg(v) = df;(v) = 1. Furthermore, v € V is a source in G if dg(v) = 0 and
df(v) > 0 and contrarily, it is a sink in G if dg(v) > 0 and df,(v) = 0. A
digraph is two-terminal if it has exactly one source and exactly one sink.

Example 2.1 The vertex v3 of the digraph in figure 2.1 is a subdividing
vertex. Examples for the degrees of vertices are d™ (ve) = 2 and d*(vg) = 3.
The in-neighborhood of vy is N7 (ve) = {v1,v4}. The in-neighborhood of
U = {v1,va,v6} is N~ (U) = {vg,v5}. The only source is v; and the digraph
has three sinks, namely vg, v19 and v17.

Let G’ = (V', E') be another graph. If V/ C V and E' C EN (V' x V') then
G’ is a subdigraph of G and G is a superdigraph of G’, written as G’ C G. In
this case G contains G’ or G' is in G. If E' = EN (V' x V'), then G’ is called
an induced subdigraph of G, denoted by G’ = G[V’]. In this case, V' is said
to induce G" in G. A subdigraph G’ of G is spanning if V' = V.

For a given set of vertices U, the digraph G[V \ U] may be denoted by
G —U,i.e. G—U results from G by deleting all vertices in U NV and all their
incident edges from G. The term G —V’ may also be written as G — G’ instead.
If U = {u} is a singleton then G — {u} may be abbreviated to G — u. For a

10
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given set of edges F' C V x V the term G — F' denotes the digraph (V, E \ F)
and G + F is the graph (V, EUF'). Analogously, G—{f} and G+ {f} may be
shortened to G — f and G+ f, respectively, if this does not lead to ambiguities.
The union G UG’ of G and G’ is the graph (VU V' EUE").

Let P be a non-empty digraph with V(P) = {vo,..., v}, v; # v; for all
i,j € {0,...,n} with ¢ # j, and E(P) = {e1,...,en}. If v;_; = init(e;) and
v; = ter(e;) for all ¢ € {1,...,n} then P is a (directed) path. The vertex vy is
the initial vertex and v, is the terminal vertex of P and P is said to be a path
from vy to v, or a vg-vy-path. The edges and vertices of P lie on P and the
length of P is the number of its edges |E(P)| =n > 0.

The concatenation of a v-z-path P; and an x-w-path P, which have only x
in common is the v-w-path P, U P», abbreviated by P; P». If P is a v-w-path
with z,y € V(P), then the notations P, Py and xPy denote the unique
r-w-path, v-y-path and x-y-path in P, respectively.

An undirected path P’ results from a path P by replacing any number of
edges (v, w) € E(P) by the inverse edge (w,v). The end-vertices of P’ are said
to be linked by P’

A digraph G is connected if for every pair of vertices in G there is an
undirected path in G that links them. The maximal connected subdigraphs of
G are called components of G. A vertex set S C V with |S| = k is called a
k-separator in G if G is connected and G— S is not. A digraph G is k-connected
if |V| > k and there is no k — 1-separator in G. The maximal k-connected
subdigraphs of G are called k-connected components of G.

Example 2.2 The digraph in figure 2.1 contains the path
P = ({Ul, U2, V3, Vs, UG}) {61a €2, €5, 68})-

However, the depicted digraph is not connected, because there is, for ex-
ample, no undirected path between v; and wg; the subdigraph induced by
{v1,...,v6} is connected and also a component of this digraph. Let P’ =
({vs,v4},{e7}). The concatenation of v3Pvs and P’ is the path v3Pus P’ =

({vs, vs,v4}, {e5,e7}).

A cycle C' is a digraph P + e, where P is a path and e is an edge from the
terminal vertex of P to its initial vertex. The length of C' is defined as the
number of its edges. Note that because of the exclusion of loops, cycles have at
least length 2. A digraph is cyclic if it contains a cycle, otherwise it is acyclic.

An s-t-DAG G’ is a two-terminal acyclic digraph with source s and sink ¢,
s # t. Tt is easy to see that for every vertex v € V(G’) there is an s-t-path that
contains v, otherwise s and ¢ would not be unique source and sink, respectively.

11
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An edge (v,w) € E is transitive in G if there is a v-w-path in G not
containing (v, w). If G does not contain any transitive edges it is intransitive.
If for every v-w-path in G of length at least 1 the edge (v, w) is also in G, then
G is transitive. The transitive closure of a digraph G is the digraph T" with
V(T) = V that contains the edge (v,w) for v,w € V, v # w if and only if
there is a v-w-path in G.

A transitive reduction R of G is an intransitive subdigraph of G such that
the transitive closures of R and G coincide. The transitive reduction is unique
if G is acyclic [8, pp. 37f.], therefore it is possible to denote the transitive
reduction for an acyclic digraph G by TR(G).

l .
74
N AN

Figure 2.2 A transitive digraph 7" and an intransitive digraph R

Example 2.3 Figure 2.2 depicts a transitive digraph 7" and an intransitive
digraph R. In addition, 7" is the transitive closure of R and R is the transitive
reduction of 7.

Let e € E be an edge in G. By G/e the digraph that results from the con-
traction of e = (v, w) to a new vertex v, ¢ V U E is denoted. It is defined by
G/e= (V' E') with V' = (V\ {v,w}) U {v.} and

E'={(z,y) € E:{v,w} n{z,y} =0} U {(ve, ) : v € Nt ({v,w})}

U {(z,ve) : v € Ng ({v,w})}.
A digraph that is obtained from G by a series of vertex deletions, edge deletions
and contractions of edges is a minor of G [9, pp. 18-20].

A matching M C FE in (G is a set of pairwise not adjacent edges. A set of
vertices U C V' is matched by M if all v € U are incident to an edge in M. In
this case M is said to be a matching of U.

A vertex cover S C V of a digraph is a subset of its vertices, such that
every edge of the digraph is incident to at least one vertex in S.

The complement of the digraph G, denoted by G, is defined by V(G) =V
and E(G) = {(v,w) : v,w € V,v # w, (v,w) € E}.

Two graphs G = (V, E) and G' = (V' E') are called isomorphic if there
exists a bijective function ¢ : V' — V' such that (v,w) € FE if and only if
(p(v), p(w)) € E' for all v,w € V, v # w.

12
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The digraph G is complete or a clique if it contains all possible edges, i.e. if
E ={(v,w) :v,w € V,v# w}. For a given number n of vertices the complete
digraph is unique up to isomorphisms, therefore this digraph can be denoted
by K™. The digraph consisting of exactly two vertices and one edge between
them is denoted by K2

2.2 Series-Parallel Digraphs

This section introduces the class of series-parallel digraphs and some basic
properties of those digraphs.

A series-parallel digraph, sometimes called edge or arc series-parallel [6,
8] in contrast to vertex series-parallel digraphs, can be recursively defined as
follows [8, p. 48]. The digraph K2 is series-parallel. Let G and G be two
series-parallel digraphs with V(G1) NV(G2) = (0. Then the digraphs obtained
by any of the following operations are also series-parallel.

e Parallel composition: Choose a source s; and a sink ¢; from G; fori = 1, 2.

Identify s; with so and ¢; with ¢5.
e Series composition: Choose a sink ¢ from (G7 and a source s from Go and
identify ¢ with s.
Note that the parallel composition of two K2 is again K? because multiple
edges are not allowed in the here presented context.

A series-parallel digraph is two-terminal because the two different compo-
sitions keep the number of sources and sinks constant [8]. These digraphs are
also acyclic, as the operations do not create cycles [11]. An example for a
series-parallel digraph is shown in figure 2.3.

AN

/N ./\
\\//

Figure 2.3 A series-parallel digraph

Observation 2.4 A series-parallel digraph G that is not isomorphic to K2
always contains a subdividing vertex.

13
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Proof.  Since G is not isomorphic to K2 it has at least two edges. If |[E(G)| = 2

then G is a series composition of two K 2 and the vertex in G that is neither
sink nor source is a subdividing vertex. Now let |F(G)| = k > 3 and assume
that the claim is true for all G’ with |E(G’)| < k. Clearly, G is the result
of either a parallel composition or a series composition of two series-parallel
digraphs, say GG1 and G, of which at least one is not isomorphic to I?Q; w.l.o.g.
let G1 be that digraph. By induction hypothesis, G; has a subdividing vertex
v. The two compositions only change the degrees of source and sink of G; and
G2, so v is still a subdividing vertex in G. O

The following definition, which has been shown to be equivalent to the above
in [11, lemma 2, p. 302], is based on the notion of parallel and series reduction
which can in this form also be found in [6, p. 3].

e Parallel reduction: Replace any number of edges ey, ..., e; from v to w
with a single edge (v, w).

e Series reduction: Replace two edges (u,v) and (v, w), with v being a
subdividing vertex, by the edge (u,w) and remove v.

Now a digraph G is called series-parallel if it can be turned into the digraph
K2 by a sequence of parallel and series reductions. Note that the intermediate
result of any of those reductions may contain multiple edges. The reductions
have the Church-Rosser property, i.e. the order of those reductions in the
sequence does not influence the final outcome [6, p. 3].

It is also possible to characterize series-parallel digraphs by means of
the forbidden minors [11, p. 311] [12], a characterization that receives
special attention in chapter 4, as proposition 2.5 shows. The interdic-
tive digraph, or IG, is the s-t-DAG with vertices {s,v,w,t} and edges
{(s,v), (s,w), (v,w), (v,t), (w,t)}. It is depicted in figure 2.4.

Proposition 2.5 A two-terminal acyclic digraph is series-parallel if and only
if it does not contain an IG as minor.

.S
\\.w
/
.
Figure 2.4 The interdictive digraph

14
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2.3 The Relational Data Model

This section introduces some terms and notations from relational database
theory adapted from definitions by Levene and Loizou [5, pp. 28f.] and by
Lausen [13, pp. 44f.].

Let S = {S1,...,S,} be a non-empty, finite set of non-empty, pairwise
disjoint sets. The domain of S is defined as

domS:{{31,...,sn}:siGSZ-WE{l,...,n}}.

The elements of dom S are well defined sets with cardinality n because of the
elements of S being disjoint.

A relation schema R = {Aj,...,An}, m > 1, is a non-empty, finite set
of non-empty, finite, pairwise disjoint sets, called attributes’. An R-tuple is a
member of dom R. A relation® r over R is a set of R-tuples, thus » C dom R.
Note that any two R-tuples in r are distinct and that r is finite because dom R
is finite.

Let 7 be an R-tuple and let X C R be a set of attributes. The projection of
7 onto X is the set 7[X] C 7 defined as 7[X] = {rNA: A€ X}. It obviously
holds that 7[R] = 7.

A key k = (R,X), X C Rand X # (), over R is an ordered pair of a
relation schema R and a set of attributes X in R. A relation r over R satisfies
k if V7r,v € r it holds that

T X]=v[X]=T1T=wv.

Following [5, definition 2.5, p. 229], a functional dependency over the re-
lation schema R is a statement of the form X — Y, where X UY C R. The
functional dependency is said to be trivial if Y C X. A functional dependency
is satisfied by the relation r over R if V7, v € r it holds that

7IX] =v[X] = 7[Y] = v[Y].

Satisfiability of functional dependencies is reflexive, i.e. r always satisfies X —
X, and transitive, i.e. if r satisfies the functional dependencies X — Y and
Y — Z then it also satisfies X — Z.

2.4 Hierarchies in Relations

A Hierarchy is a concept known from the theory of multidimensional databases
[4, 14, 15] used to group multidimensional data. It is not very common to

15
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introduce hierarchies in the context of relational databases, but it can be done
without further problems and is very useful for the purpose of this work, as
it eliminates the necessity to introduce the full theory of multidimensional
databases.

The following definitions are mostly adapted from basic ideas of the works
by Abell6 et al. [16, 17], in which an extensible conceptual model for multidi-
mensional databases was developed.

Let R be a relation schema. A hierarchy over R is an intransitive two-ter-
minal acyclic digraph H = (V| F) with source Ly € V and sink Ty € V, a
notation proposed in [14, p. 394], where V' \ {T g} is a partition of R. The
vertices of H are called hierarchy levels, | i is the atomic hierarchy level of H
[16, p. 4-5] and T g is the top hierarchy level of H. A relation r over R is said
to satisfy H if for every edge (v, w) € E the functional dependency v — w is
satisfied by r.

The reason for defining hierarchies as intransitive is a natural consequence
of the properties of functional dependencies. Transitive edges don’t hold any
additional information for the hierarchy, because the satisfiability of the func-
tional dependencies they represent already completely depends on other edges.

Hierarchies can be classified and categorized based on their structure. The
following hierarchy types are derived from [2, pp. 353-366]. Not all proposed
hierarchies are presented here because some of them are not relevant in the
context of this work.

A hierarchy H is simple if it is a Ly-T g-path. A hierarchy H is inde-
pendent multiple if it is the union of more than one 1 p-T g-paths that are
pairwise vertex-disjoint besides 1z and Tp. A series-parallel hierarchy that
is neither simple nor independent multiple is called generalized. Finally, if a
hierarchy is none of the three aforementioned types, then it is complex.

16
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3 The Hierarchy Problem

The first main question is how the problem of constructing a hierarchy H,
which is satisfied by a given relation r over a relation schema R, can be for-
mulated as a graph minor problem. A digraph which has a hierarchy over R
as a minor should have two properties. First, its set of vertices should con-
tain a different vertex for every attribute in R, as to allow any granularity
in H, and second, it should model as much information about the functional
dependencies satisfied by r as possible, providing data for the edges of H.

These requirements are met by the FD-graph, which is introduced in sec-
tion 3.1 together with the formal objectives of this work. In general, this
FD-graph may be cyclic, so section 3.2 shows approaches to cycle elimina-
tion. In section 3.3 it is demonstrated that, for general acyclic FD-graphs,
the given problem can be reduced to the same problem for 3-connected acyclic
FD-graphs.

3.1 The FD-Graph

Let 7 be a relation over R. The FD-graph of r is a digraph G = (V, E), where
V =2Fand E = {(v,w) : v,w € V A r satisfies v — w}, together with a
weight function ¢ : £ — Ry called the information content of e. A similar
idea has been used in [18, definition 5.5, p. 426]. The actual values of ¢ are
discussed in chapter 6.

It is easy to see that G is connected and has a unique sink ) € V' and at
most one source R € V. If G is acyclic then R € V' is indeed a unique source of
G. In addition, G is transitive because satisfiability of functional dependencies
is transitive, as discussed in section 2.3.

It is clear from the definition of the FD-graph that it is not useful to add
vertices or edges to the FD-graph to obtain a hierarchy. The preliminary goal
can thus be formulated as follows.

Objective 3.1 For a given relation r over R, find a minor M of the FD-graph
of r with maximum information content, such that

(1) M is acyclic two-terminal and
(2) the set of vertices V(M) \ {0} is a partition of R.

So far, it is not clear what the information content of a minor M is, which
is very problematic. It is not obvious how the information content of edges
created by contractions could be derived or computed based on the information
content of edges in E. Hence, it would be necessary to extend c explicitly to
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take arguments from 2V x 2" rather than F, as sets of vertices of G correspond
to vertices in a minor of G.

Contracting the edge (v, w), however, can be conceived as merging its two
end-vertices. In the given context, it is therefore reasonable to identify the
new vertex that emerges from the contraction with the vertex v U w, which
is already in V. This operation may create new edges, namely edges from
N7 (w) \ N7 (v) to v Uw, if (w,v) ¢ E, for which no justification in terms
of functional dependencies satisfied by r exist because they are not in E.
Therefore, instead of contracting (v,w), it is a better option to delete the
vertices v and w, which results in the same digraph but without any additional
edges.

These observations motivate the consideration of subdigraphs of G instead
of minors of GG as candidates for a hierarchy over R. Extending the information
content to subdigraphs of GG is not hard. Recall that hierarchies are defined as
intransitive. With this in mind, the information content of subdigraph M of
the FD-graph can be defined by

> c(e) if M is acyclic,
(M) = {eeE(TR(M))

—00 otherwise.
Hence, the following adjustion to objective 3.1 can be made.

Objective 3.2 For a given relation r over R, find a subdigraph M of the
FD-graph of r with maximum information content ¢(M), such that

(1) M is acyclic two-terminal and
(2) the set of vertices V(M) \ {0} is a partition of R.

Note that property (1) is equivalent to M being an arbitrary hierarchy. More
relevant than objective 3.2 is the following special case. It restricts the possible
solutions M to hierarchies that are not complex. Note that a complex hierarchy
is very general and not desirable in practice.

Objective 3.3 For a given relation r over R, find a subdigraph M of the
FD-graph of r with maximum information content ¢(M), such that

(1) M is series-parallel and
(2) the set of vertices V(M) \ {0} is a partition of R.

The objective function o can now be defined for any digraph GG with the infor-
mation content ¢ as above, by o(G) := ¢(M), with M being a subdigraph of
G with maximum information content satisfying objective 3.3.

Section 3.2 deals with the question of achieving (1) from objective 3.2.
Finding a large series-parallel subdigraph in terms of ¢, i.e. objective 3.3 (1),
is considered in chapter 5. Discussion of (2) is postponed.
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3.2 Dealing with Cycles

This section discusses how all cycles can be removed from the FD-graph G,
while preserving unique source and unique sink. Hence, the result of this op-
eration is a two-terminal acyclic subdigraph of G. Working with an acyclic
digraph simplifies the considerations in section 3.3 and in chapter 5, but it is
easy to see that this approach also excludes some feasible solutions for objec-
tive 3.3.

Naturally, the following methods aim for a digraph with high information
content. However, the weight of any digraph G’ in this section always denotes
the sum of the weights of all edges in E(G’), rather than only those edges in
the transitive reduction of G’, i.e.

(G = Z c(e).
e€E(G")

The main reason for this definition is that mostly standard approaches are
presented here, which work only with this type of weight function. In addition,
the properties of the weight function ¢ have no influence on the structure of the
resulting digraph, since a maximal acyclic subdigraph of a complete digraph
is unique up to isomorphisms, i.e. there is only one maximal acyclic digraph
on a given number of vertices.

Note that because the FD-graph G is transitive, the vertices of every cycle
in G induce a clique in GG. Thus, the above stated problem can be reformu-
lated as finding all maximal cliques contained in the FD-graph and construct-
ing maximal acyclic subdigraphs in all those cliques. This is outlined in the
following algorithm.

Algorithm 3.4 (Acyclicity Algorithm)

Input: An FD-graph G

Output: A maximal acyclic subdigraph G’ of G

1. Set G' :=G.

2. Find a maximal complete subdigraph K of G'.

3. If [V(K)| > 1 then compute a maximal acyclic subdigraph H of K and go

to 4. Otherwise stop.
4. Remove all edges in F(K) \ E(H) from E(G’) and go to 2.

Essentially, this algorithm searches for maximal cycles in GG and replaces them
by acyclic digraphs with the same number of vertices. It is clear that this
algorithm works correctly because it does not add new edges and step 3 removes
edges until there are no more cycles. The subdigraph G’ is also maximal
acyclic because H in step 3 is maximal acyclic. In the here presented case of a
transitive input digraph G, the algorithm already incorporates the preparation
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step suggested by Berger and Shor [19, remark 1, p. 238], which prevents the
removal of edges not in any cycle.

Before discussing the important steps of the algorithm in detail, some ob-
servations shall be made. They show that the output of algorithm 3.4 satisfies
property (1) of objective 3.2.

Observation 3.5 The result of algorithm 3.4 is a transitive digraph.

Proof. Removing edges in step 4 does not destroy transitivity because H from
step 3 is maximal acyclic and therefore also transitive. 0

Observation 3.6 Let H be a maximal acyclic subdigraph of a complete
digraph. Then H has exactly one source and one sink.

Proof. Because of the acyclicity of H it contains at least one source and one
sink. Now assume that there are two sources s1,s9 € V(H). There is no
s1-sg-path in H, so adding (s9, s1) to E(H) does not create a cycle in H. This
contradicts the maximality of H, so H cannot have two sources. A similar
argumentation shows that H has at most one sink. 0

Observation 3.7 The digraph G’ constructed by algorithm 3.4 has unique
source and unique sink.

Proof. Let the FD-graph G be the input of the algorithm. It was already
stated that, if G is acyclic, then it is also two-terminal and the algorithm
simply returns G’ = G. Otherwise, G has a unique sink ¢ = () that cannot be
part of any K with |V (K)| > 1 in step 2 of algorithm 3.4. By observation 3.6,
a unique sink ¢’ in H is created in step 3, but ¢ is not a sink in G’ because the
edge (¢',0) is in G and never removed by the algorithm.

The argument is the same for the existence of a unique source if G already
has a source, which would be R. However, if G has no source, then there is
a cycle in G that contains R. At some iteration of the algorithm, this cycle
is part of K in step 2 with |V(K)| > 1. Again, by observation 3.6, step 3
produces a new source s in H. After step 4, s is also a source in G’ because,
if there was an edge (v, s) in E(G’) with v € V(K), there would also be the
edges (s, R) € F(K) and (R,v) € E(G"), together forming a cycle in G’, which
contradicts v ¢ V(K). O

Step 2 of algorithm 3.4 can be done by first searching for a complete subdigraph
with two vertices and then successively increasing it by finding vertices that
are both in- and out-neighbors of one of the vertices of the so constructed
subdigraph. This method is correct because of the transitivity of the FD-graph.
The algorithm stops if no complete subdigraph with at least two vertices can
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be found in G’, which is true if and only if G’ is acyclic. Because of the
transitivity of G and because no edge has to be considered twice, the running
time of step 2 is O(| E|) for all iterations of algorithm 3.4, given an algorithmic
representation of G that allows to check for an opposite edge in constant time.

In step 3 the best solution for H would be a maximum acyclic subdigraph
of K. This problem, which is equivalent to finding a maximum linear ordering
of V(K), has unfortunately proven to be NP-hard [20, p. 113] in the general
case, even for unweighted digraphs [21-23]. There is also no efficient a-ap-
proximation algorithm known with a > % and it is unlikely that there is one
[21].

A simple and efficient approach to step 3 is the Greedy Algorithm. This
heuristic is able to find optimum solutions for optimization problems that have
matroid structure, e.g. finding the minimum spanning tree in an undirected
graph [8, p. 342|, and has also proven to be useful as an approximation algo-
rithm for many independence systems. Independence systems and matroids
are introduced on the following pages. Algorithm 3.8 shows the Best-In-Greedy
Algorithm, derived from [24, p. 59], that creates a maximal solution by adding
edges with decreasing weight to an empty digraph.

Algorithm 3.8 (Best-In-Greedy Algorithm)

Input: A complete digraph K with weights ¢ : F(K) — R4

Output: A maximal acyclic subdigraph H of K

1. Set Xo:=0 and j := 0.

2. If E(K')\ X; contains an element e such that X;U{e} does not form a cycle
in K, then choose such an element e;; with maximum weight and go to 3,
otherwise set H := (V(K), X;) and stop.

3. Set Xj41 := X U{ej41} and increase j by 1. Go to 2.

Again, it is obvious that the algorithm correctly yields a maximal acyclic
subdigraph of K. It considers every edge once and has to decide whether this
edge forms a cycle, e.g. by a depth-first search [25, chapter 3|, therefore it has
running time at most O(|E(K)|-(|E(K)|+|V(K)|)) = O(|E(K)|?) if the edges
are already sorted. For further analysis of this algorithm some notions from
matroid theory are required. These definitions are taken from [26, chapter 13].

Let E be a finite set, the ground set, and let F C 2F be a collection of
subsets of F [24, p. 7]. The set system (£, F) is an independence system if the
following two conditions hold.

(M1) 0 € F;

(M2) If X € Fand Y C X then Y € F.
The elements of F are called independent and the elements of 2% \ F are
called dependent. Minimal dependent sets are called circuits and maximal
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independent sets bases. Maximal independent subsets of X C FE are called
bases of X.

An independence system (F, F) is a matroid if

(M3) For all X,Y € F with |X| > |Y] there is an x € X \ Y such that

Yu{z} e F

Now consider £ = E(K) and F = {X C E : (V(K),X) is acyclic}.
It is easy to see that (E,F) is an independence system. To emphasize the
underlying digraph, this independence system is denoted by (F, F)x. Together
with /' = E(H), input and output of algorithm 3.8 can be formulated as
follows.

Algorithm 3.9 (Best-In-Greedy Algorithm [26, p. 303])

Input:  An independence system (E, F)g and weights ¢: E — R
Output: A basis F of (E,F)

Algorithm 3.9 is an algorithm for the maximization problem for (E, F, ¢) |26,
p. 303]. The following well-known theorem, which is provided without proof,
reveals the connection between independence systems and the Greedy Algo-
rithm.

Theorem 3.10 (Edmonds-Rado Theorem [26, theorem 13.20, p. 306])
An independence system (FE, F) is a matroid if and only if the Best-In-Greedy
Algorithm finds an optimum solution for the maximization problem for
(E, F,c) for all weight functions ¢: E — Ry.

Unfortunately, (F,F)g is not guaranteed to be a matroid for |V(K)| > 3 in
the general case, as the following example shows. Let V(K) = {v1, va,v3,v4},

X = {(ve,v3), (v3,0v1), (v3,v4), (vg,v1)} C E  and

Y = {(U17U2>7 (1)2, U3)7 (U3>U4)} CFE
as depicted in figure 3.1. Here, X and Y are independent sets with | X| > |V,
but Y is already maximal independent in X UY', which violates (M3). So
in general the Greedy Algorithm does not compute the optimum solution by
theorem 3.10. The question remains whether there is at least a lower bound
for the approximation quality of the Greedy Algorithm. For this, some more
definitions from [26] are needed.

Let (E, F) be an independence system. For X C E the rank of X is defined

by

r(X) =max{|Y]: Y C XY € F}
and the lower rank of X is defined by

p(X) =min{|Y|: Y CX,)YeFandYU{z} € FVr € X\ Y}
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(] U1
L] L]
., ./ )
Uy Uy
§ ./ ) .
v3 v3

Figure 3.1 Two independent elements of (E, F) 4 violating (M3)

Thus the rank of X is the size of the largest basis in X and the lower rank of
X is the size of the smallest basis in X. Calculated from rank and lower rank,
the rank quotient of (F,F) is defined by

p(X)'

The rank quotient directly gives a lower bound for the approximation qual-
ity of the Greedy Algorithm by the following theorem. Here, let G(E, F, ¢) be
the weight of a solution found by the Greedy Algorithm and let OPT(E, F, ¢)
be the weight of an optimum solution for a given weight function c¢: £ — R.

Theorem 3.11 ([26, theorem 13.19, pp. 304f.]) Let (E,F) be an inde-

pendence system. Then

G(E, F,c)

E < —" 17
a(B, F) < OPT(E, F,c) —

for all ¢ : E — Ry. There is a weight function ¢ where the lower bound is

attained.

Korte and Hausmann [27, p. 70] have already calculated the rank quotient for
the given problem. They have shown that there is no positive lower bound on
the approximation quality, i.e.

lim q(E, F)gn = 0.

n—oo
Their proof uses Fi = {(v;,vi41: 1 <i<n—1}, Iy = {(v,v5) 1 1 <j<i <
n} and S = Fy U Fy» C E, which is also depicted in figure 3.2. Clearly F} and
F5 are bases of S with n — 1 and (g) elements, respectively. Hence

p(X) _p(S) _n—1_2

q(E’]:)Kn :)I(ngl% r(X) = T(S) - (721) = ﬁ:

which yields the above.
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Uz,/U.l Uz./v.\
US.\ /"U5 03.\ /'v5

F U4 I Uy

Figure 3.2 Two independent elements of (E, F) k¢
showing that the rank quotient can become arbitrary low

Consequently, this means that the proposed Greedy Algorithm can find
arbitrary bad solutions compared to the optimum, e.g. for the weight function
ele) = { 14+¢ foree€ Fy,
1 otherwise,
0 < e <« 1, the algorithm 3.9 chooses only edges from F; and therefore yields
G(E,F,c) = (n—1)(1 +¢), while the optimum solution, given by e.g. F5, has
weight OPT(E, F,c) = (5).
This result shows that the Greedy Algorithm is not a good choice to solve
step 3 of algorithm 3.4. Two better approaches are for example the algorithms
from Hassin and Rubinstein [22] and from Berger and Shor [19]. They both

yield (% +Q (\/Z_l))-approximations in the unweighted case and have running
time of O(|E|+A3) and O(|E|-|V|), respectively. However, their technique for
2-cycle removal and reintroduction [19, p. 238], on which these algorithms base,
yields no approximation guarantee for weighted graphs containing 2-cycles.

In the presented case of a complete digraph, those two algorithms have
running time of O(|V|?) and the gain over the %—approximation is very small,
as A is very big. So instead of them the following very easy algorithm is
considered. It can be found in a similar form in [19, pp. 237f.].

Algorithm 3.12 (Simple Subdigraph Acyclicity Algorithm)

Input: A complete digraph K with weights ¢ : F(K) — R4

Output: A maximal acyclic subdigraph H of K

1. Set X :=0 and W := V(K).

2. Choose v € V(K).

3. If «(Ex(v)) < ¢(Ef(v)), then set X := X U Ef(v). Otherwise set X :=
X UEg(v).

4. Remove v and all incident edges from K.

5. If |[V(K)| > 1, then goto 2, otherwise output H = (W, X).
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The resulting subdigraph H is indeed acyclic. Assume there is a directed cycle
C in H. Let v be the first vertex of C' chosen by the algorithm in step 2 and
let (z,v) and (v,y) be the two edges in C' incident with v. Then only one of
(z,v) and (v,y) was added in step 3, so C' cannot be a cycle [19, theorem 2,
p. 238).

Furthermore, the algorithm has n iterations, i.e. steps 2 to 5 are executed n
times, with n = |V(K)|. Step 4 always yields a complete directed subdigraph
of K. Hence, step 3 adds exactly n — ¢ edges to H in the ith iteration. So
when the algorithm stops, it holds that

- L= (- )n n
BE(H)=) (n—i)=) i=—F1—=(,)
i=1 i=1
An acyclic digraph on n vertices cannot have more than (g) edges, so H is
maximal. Hence, the algorithm is correct.

Algorithm 3.12 considers every vertex and every edge once, so it has run-
ning time of O(|V| + |E|) = O(|V|?), which has also been stated in [19, the-
orem 3, p. 238]. The algorithm has a %-approximation guarantee, as the fol-
lowing observation shows [19, theorem 1, p. 238].

Observation 3.13 Let K be a complete digraph with a weight function
¢: E(K) = R4 and let H' be a maximum acyclic subdigraph of K. Let H
be the maximal acyclic subdigraph of K calculated by algorithm 3.12. Then
c(E(H)) > 3¢(E(H")).

Proof. The algorithm considers every edge once and always adds at least half
of the weight of the deleted edges to the weight of X. ([l

There is also a trivial algorithm to compute a maximal acyclic digraph from a
complete digraph. This trivial algorithm just takes an arbitrary ordering of the
vertices and removes all edges not following this ordering. Then it calculates
the weight of the so constructed digraph and of its complement digraph, which
are both maximal acyclic, and outputs the one with the larger weight.

This trivial algorithm has the same worst-case complexity and approxima-
tion guarantee as algorithm 3.12, but the average-case complexity is worse, as
the following shows. Both algorithms are very similar with the main difference
that algorithm 3.12 decides in step 3 in every iteration, how to orient the edges,
without influencing the other iterations. The trivial algorithm only considers
those two possible solutions where always E}-(v) or always Ex(v) is added, so
it cannot do better than algorithm 3.12 and is therefore worse on average.

In conclusion, algorithm 3.12 has a good approximation guarantee and
acceptable performance, which makes it a good choice for step 3 of algo-
rithm 3.4. With this subalgorithm, algorithm 3.4 has a running time of
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O(JE(G)| + [V(G)|?) and clearly also a i-approximation guarantee. It has
been shown in this section that there is a polynomial time %—approximation al-
gorithm for finding a large spanning subdigraph of a given FD-graph G which
is a transitive s-t--DAG. This is important for later sections.

3.3 Problem Reduction

At first a definition from [6] is needed. Let G = (V, E) be an s-t-DAG. A
proper subdigraph G’ of G, with |E(G’)| > 1, is an autonomous sub-DAG in
G if it is an v-w-DAG for v,w € V and if for every s-t-path P in G the set
of edges F(P) N E(G") is either empty or forms a v-w-path in G’. Note that
by this definition the two trivial cases where G’ is a single edge or G’ = G are
excluded. The two vertices v and w are called split vertices in G.

Bein et al. [6] already pointed out that a given problem for G may be
solved independently for each autonomous sub-DAG first. This autonomous
sub-DAG can then be replaced by a new edge in GG that carries all relevant
information. To be able to do so, a weight function ¢ : £ — R4 is needed,
which is provided when considering arbitrary subdigraphs of FD-graphs.

Let ¢ : E — Ry be the information content as in section 3.1. Let G’ be
an autonomous sub-DAG in G with source v and sink w. The reduction of G’
in G, denoted by G/G’, is G but with G’ replaced by a new edge e = (v, w)
with c(e) = o(G’). If the edge ¢’ = (v, w) is already present in '\ E(G’) then
the new edge e also replaces ¢’ and c(e) = max{c(¢'),a(G’)} is assigned to it
instead. Note that G/G’ again is an s-t-DAG. If G is transitive, then G/G’ is
also transitive.

Observation 3.14 Let G be an s-t-DAG containing an autonomous
sub-DAG G’, together with the information content ¢ : E(G) — Ry. Then it
holds that o(G) = o(G/G").

Proof. Let e € E(G/G') be the edge replacing G’ in G/G’. This e may either
be contained in a maximum series-parallel subdigraph H of G/G’ or not. If
e ¢ E(H), then H would also be maximum in G because of the structure of
autonomous sub-DAGs. On the other hand, if e € F(H), then a maximum
series-parallel subdigraph of G can be constructed from H by removing e and
adding a maximum series-parallel subdigraph of G’. U

Because of observation 3.14, determining o(G) for any weighted s---DAG G
can be reduced to calculating o(G’), where G’ is a weighted s-t-DAG without
an autonomous sub-DAG.
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Observation 3.15 Let G be an s-t-DAG having an edge from s to t. If G
is an autonomous sub-DAG in G with source v € V(G) and sink w € V(G),
then {v,w} is a 2-separator of G. Conversely, if S C V(G) is a 2-separator in
G and C' is a component of G — S not containing s or ¢, then G' = G[SUV (C)]
is an autonomous sub-DAG of G.

Proof. Let G' be an autonomous sub-DAG of G as stated above. Assume
{v,w} is not a separator of G. Then there is a vertex u € V(G') \ {v,w}
such that there is an s-u-path P, not containing v or an u-t-path P, not
containing w. As G’ is a v-w-DAG there is a v-w-path P, containing u. Let
P, be an s-v-path and let P, be an w-t-path. Then the path P,P,uP,; or the
path Pg,uP,P, contradict the definition of G’.

Now let S = {v,w} be a 2-separator in G and let C' be a component of
G — S such that s,t € V(C). Let G' = G[SUV(C)]. Tt is clear that w.l.o.g it
holds that d,(v) = 0 and df, (w) = 0, otherwise there would be an additional
source or sink in G/, respectively, which would also be a source or sink in G, or
there would be a cycle in G/, i.e. in G. Thus G’ is a v-w-DAG. In addition, if
P is an s-t-path that has edges in common with G’, then it necessarily enters
G’ at v and leaves at w, i.e. it forms a v-w-path in G’, otherwise S would not
be a separator in G. ([l

It can be assumed that the edge from s to t is present in any s-t-DAG G be-
cause this edge has no influence on whether G is series-parallel or not. If G is
transitive then (s,t) € F anyway. Observation 3.15 implies that the s-t-DAGs
without any autonomous sub-DAGs are exactly the 3-connected s-t-DAGs.
Hopcroft and Tarjan [28] have shown that it is possible to find all 3-connected
components of an arbitrary digraph in linear time based on an idea from pla-
narity testing and a double depth-first search.
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4 The Reduction Complexity

Many graph problems that are NP-hard for general s-t-DAGs have been shown
to be solvable in polynomial time for series-parallel graphs. This observation
motivated Bein et al. [6] to develop the reduction complexity that measures,
informally spoken, how nearly series-parallel a general s-t-DAG is. They note
that for some NP-hard problems, it is possible to derive algorithms that are ex-
ponential only in the reduction complexity of a given s-t-DAG and polynomial
in the actual size of the digraph.

This chapter introduces the reduction complexity and outlines its relation-
ship to a minimum vertex cover in a certain auxiliary digraph, as investigated
in [6]. Concludingly, the applicability of this approach to the problem pre-
sented in chapter 3 is discussed. Within this chapter, let G be an s-t-DAG.

4.1 Node Reductions and the Complexity Graph

The idea of the reduction complexity is the introduction of a third type of re-
duction in addition to the series and parallel reductions described in section 2.2.
Let v € V(G) have either in-degree or out-degree 1. If v has in-degree 1 then
let e = (u,v) be the only edge entering v and let f1 = (v,wy), ..., fr = (v, wg)
be all edges leaving v. A node reduction at v replaces the edges e, fi,..., fx
with the edges g1 = (u,w1),...,9x = (u,wx) and removes v. The case in
which d*(v) = 1 is symmetric to the above with e = (v, w) being the only
leaving edge, f; = (u;,v) being all entering edges and ¢g; = (u;, w) being the
new edges. Let G o v denote the result of a node reduction at v and let [G]
denote the digraph that results from G when all possible series and parallel
reductions have been applied. The s-t-DAG G is called irreducible if [G] = G
6, p. 3].

Now, the reduction complexity of G, denoted by u(G), is defined as the
minimum number k such that there exists a sequence vy, ..., v with [...[[[G] o
v1] o v2]... o vg] being isomorphic to the digraph K2 [6, definition 2.1, p. 3.
This sequence is called reduction sequence.

There is a connection between the reduction complexity and a minimum
vertex cover of a certain auxiliary digraph, the complexity graph, which makes
the calculation of the reduction complexity relatively easy. This connection is
discussed in section 4.2, but the necessary definitions and some basic ideas are
noted here in advance.

Let v,w € V(G). The vertex v dominates w if every s-w-path in G contains
v. Conversely, the vertex w reverse-dominates v if every v-t-path in G contains
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w. If v dominates w and v # w, then v is said to properly dominate w.
Analogously, w properly reverse-dominates v if w reverse-dominates v and
v # w.

The complexity graph of G, denoted by C(G), is a digraph where (v, w) €
E(C(@Q)) if and only if there exists a v-w-path P in G such that for every vertex
u € V(P), u neither properly dominates w nor properly reverse-dominates v
[6, definition 3.1, p. 8]. The set of vertices V(C(G)) is defined such that it
contains only the end-vertices of edges in E(C(G)), thus C'(G) has no isolated
vertices. An example is shown in figure 4.1.
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2
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G / v3 C(G)

/'1)4

t
Figure 4.1 A digraph and its complexity graph [6, p. 10]

The main feature of this auxiliary digraph is that it exposes all IGs in G.
The first important observation is the following, which is based on the fact

that C([G]) = C(G).

Observation 4.1 The complexity graph C(G) is empty if and only if G is
series-parallel.

The following lemma provides an alternative definition for C(G). It states that
an edge (v, w) is in C(G) if and only if G features a certain path constellation
at v and w.

Lemma 4.2 ([6, lemma 3.4, pp. 10-12]) Let G be an s-t-DAG. An edge
(v,w) is in E(C(Q)) if and only if there exists paths P, and P> from v to w,
Py from v to t and Py, from s to w in G such that V(P;) NV (Py) = {v} and
V(P2) NV (Pgw) = {w}. Then either Py = Py or V(P) NV (P) = {v,w}, and
Py, N Py, if not empty, forms a single path.
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A very technical proof of this lemma can be found in [29]. A consequence,
which has been documented in [6, 29], of this lemma is the existence of only
four different minors of G that force the occurence of an edge (v, w) in E(C(G))
and require node reductions at v or w to disappear. These minors are shown
in figure 4.2.

. v

|
N l/i

w w

The IG The series IG

g
eqgt— o

S
oq——o

The parallel IG The compound IG

Figure 4.2 The four minors that can appear
in G for an edge (v,w) € E(C(Q)) [6, p. 11]

4.2 Calculating the Reduction Complexity

In this section it is shown that the reduction complexity of GG is equal to the
cardinality of a minimum vertex cover in C(G).
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Lemma 4.3 ([6, lemma 4.1, p. 12]) IfV’ is a minimum vertex cover in
C(G), then |V'| < u(G).

This lemma can easily be proven by showing that for every edge (v, w) at least
v or w must be included in any reduction sequence. Proving the other part,
i.e. |[V'| > u(G), is more involved and occupies the remainder of this section.

At first, Bein et al. [6] outline that sources and sinks in C'(G) which are not
split vertices in G are eligible for node reductions. Recall from section 3.3 that
a split vertex is source or sink of an autonomous sub-DAG. Another related
result is that a node reduction at an end-vertex of a contractable edge has no
influence on the complexity graph, so node reductions have to be avoided. An
edge (v,w) is contractable if d*(v) = d~(w) = 1.

The next two lemmata fill the missing gap to theorem 4.6. The first one
guarantees that there is always a vertex that can be chosen accordingly to
the above findings and the second one shows that a node reduction at such a
vertex actually decreases the reduction complexity.

Lemma 4.4 ([6, lemma 4.4, p. 13]) If G is irreducible and V' # () is a
minimum vertex cover of C(G), then there exists v € V' such that v is source
or sink of C(G), not a split vertex of G and not end-vertex of a contractable
edge.

The proof for this lemma initially reduces the search of v to a non-empty
component C(H) of C(G) such that H has no autonomous sub-DAG. Then it
is proven that there is an edge (s',¢') in C(H) such that s’ is a source and #'
is a sink in C'(H), respectively, and clearly one of those two vertices must be
in V',

Lemma 4.5 ([6, lemma 4.5, p. 14]) If G is irreducible, v is eligible for
node reduction in G, i.e. either d~(v) = 1 or d*(v) = 1, and v is not end-vertex
of a contractable edge, then C'(G ov) C C(G) — v.

Assume that dg(v) = 1; for df(v), the argumentation is symmetric. Here it
suffices to show that (u,w) € E(C(G o)) implies (u,w) € E(C(G)) with u
being the unique in-neighbor of v. This u cannot be reverse-dominated by v
in GG, so after inserting v into any u-w-path this path is still valid in terms of
the complexity graph definition.

From the above results, theorem 4.6 can now be proven by a simple induc-
tion on |V’'| because the cardinality of a minimum vertex cover in C([G o v])
is at most |V'| — 1 by lemma 4.5.

Theorem 4.6 ([6, theorem 4.6, p. 14]) If V' is a minimum vertex cover
in C(G), then u(G) = |V'|.
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The polynomial time algorithm for calculating p(G) is also derived in [6,
pp. 14-16]. Its main parts are computing C'(G) and finding a minimum vertex
cover in C'(G), but this is not discussed here.

4.3 Importance to the Hierarchy Problem

One of the early ideas for solving the hierarchy problem was the application
of an inversed reduction sequence to a K2 Starting with the s-t-DAG G, one
would apply series, parallel and node reductions, as discussed in the previous
sections, and record all those changes and their order. In case of series and par-
allel reductions, these changes can be represented in form of those subdigraphs
of the current s-t-DAG G’ that are replaced by single edges in [G'].

After that, those changes can be reversed with a slight modification and
reapplied to a K2 in reverse order. It is obvious how to reverse series and par-
allel reductions. When reverting a node reduction as defined at the beginning
of section 4.1, only one of the edges g;, say g1, is replaced by e and fi, i.e. v
is reinserted as a subdividing vertex on g;. The other edges ¢s,. .., g; are left
untouched. Let H be the digraph that results after reapplication of all the
reversed changes.

The motivation of this approach is that the resulting digraph H is se-
ries-parallel because the reverted node reduction is basically a reverted series
reduction, and that H is a spanning subdigraph of the transitive closure of
G. Thus, H is a spanning subdigraph of G if G is transitive. Since a maxi-
mal acyclic subdigraph of an FD-graph is a transitive s-t-DAG, H is a valid
candidate for a hierarchy.

However, it is very difficult to find a performance guarantee for this method.
Its outcome strongly depends on the choice of the minimum vertex cover in
C(G) and it is not clear whether it is a better idea to choose a vertex cover
with greater cardinality. Therefore, this strategy has been discarded for now.
Several other approaches are discussed in chapter 5.
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5 From Transitive s-t-DAGs to Large In-
transitive Series-Parallel Digraphs

Recall that objective 3.3 (1) asks for series-parallel subdigraphs of the
FD-graph. This chapter deals with this problem in case an acyclic FD-graph
is given or an acyclic subdigraph of the FD-graph is created, e.g. by utilizing
the ideas from section 3.2.

Let G = (V,E) be a transitive s-t-DAG with the information content
¢: B — Ry from section 3.1; i.e. for a subdigraph G’ = (E’, V') of G its weight
is defined by ¢(G') = >".. B(rR(cr)) (€). Consequently, only intransitive se-
ries-parallel subdigraphs of G have to be considered here for objective 3.3, as
transitive edges do not improve the information content of the subdigraph.
The issue of finding such a subdigraph with maximum information content in
G is discussed in this chapter. In the first two sections, a result for weight
functions with certain special properties is discussed, and in section 5.3, the
performance of the Greedy Algorithm for this problem is evaluated.

5.1 Equally Weighted Edges

In the easiest case of a weight function, all edges are equally weighted, i.e. it
holds that c¢(e) =1 for all e € E. This means that the maximum intransitive
series-parallel subdigraph II in G is the one with the maximum number of
edges for a fixed number of vertices, so |E(II)| — |V (II)| has to be maximized.
A parallel composition of two s-t-DAGs increases this value by two, while series
compositions only increase it by one. Consequently, the digraph aimed at is the
intransitive series-parallel digraph created by as many parallel compositions as
possible. This is the s-t-DAG II with V/(IT) = V/, in which N (v) = {s} and
Nii(v) = {t} for every vertex v € V(II) \ {s,t}, and the edge (s,?) € E(II) if
and only if V(IT) = {s,t}. This digraph is depicted in figure 5.1.

A%

Figure 5.1 The edge-maximum intransitive series-parallel digraph I1

Observation 5.1 Every transitive s-t-DAG G contains II.
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Proof. Every vertex v € V \ {s,t} lies on an s-t-path, so there is always
an s-v-path and a wv-t-path in G. Because of transitivity it follows that
(s,v),(v,t) € E,ie. Il CG. O

The digraph II clearly has 2(|V| — 2) edges if |[V| > 3.

Corollary 5.2 If the edges of G are equally weighted then it holds that
o(G) = c(Il) =2(|V| = 2) if |V| > 3, and o(G) = 1 otherwise.

5.2 Major Transitive Weight Functions

If for any three vertices u,v,w € V with e; = (v,u), e3 = (u,w) and f = (v, w)
in E it holds that ¢(f) > max{c(e1), c(e2)}, then c is called major transitive.
Note that equally weighted edges are a special case of major transitivity.

Observation 5.3 Let e € E and let P be a v-w-path in G such that e lies
on P. If ¢ is major transitive it holds that c(e) < ¢((v,w)).

This observation can easily be shown by induction over the length of P.

Considering major transitive weight functions is a bit more involved than
the equally weighted case, but the result is actually the same, as theorem 5.9
shows. However, before proceeding to this theorem some intermediate results
are needed.

In the equally weighted case, it was sufficient to show that there are at least
as many edges in II than there are in any intransitive series-parallel subdigraph
of G. This idea can be extended to the case of a major transitive information
content. The important difference here is that now the information content of
the edges has to be considered instead of their mere number.

Let H be an intransitive series-parallel spanning subdigraph of G. First, an
auxiliary digraph is introduced, whose vertices are edges in G. Let A = E(H)
and let B = E(II). The following considerations require those two sets to
be disjoint, but unfortunately they are not. Hence, the elements of B are
formally considered as copies of the elements of E(II), although A and B are
still treated as subsets of E. Furthermore, let

F ={(a,b) € A x B : alies on an init(b)-ter(b)-path in H}.
Obviously, the digraph K = (AU B, F) is bipartite with partition classes A
and B. By observation 5.3, the following is also clear.

Observation 5.4 If ¢ is major transitive and (a, b) € F' then c(a) < ¢(b).

This means that a matching in I that matches A yields for every edge in H
an edge in II with same or larger weight, motivating the following.
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Proposition 5.5 Let ¢ be major transitive and let IC contain a matching of
A. Then it holds that ¢(H) < ¢(II).

Proof. Let M be a matching of A in K. As H is intransitive and M matches
A, it holds that

c(H)= > cle)= ) cfinit(m)).
e€E(H) meM
Furthermore, because of observation 5.4 and M C F',

> c(init(m)) < ) efter(m)).
meM meM
With ter(m) € B for all m € M and II being intransitive this yields

c(H) < ) cfter(m)) <> c(b) = c(II).
meM beB
]

So it remains to show that there is always a matching in C that matches A.
This can be done by utilizing the well-known result by Hall, sometimes called
marriage theorem. It is presented here without proof. Three different proofs
can be found in [9, pp. 36f.].

Theorem 5.6 (Hall Theorem [9, theorem 2.1.2, p. 36]) A bipartite
digraph with partition classes A and B contains a matching of A if and only
if IN(A")| > |A'| for all A’ C A.

Let A” C A. A vertex v € V is called inner vertex of A’ if there are edges
aj,as € A, ay # ag, such that v = init(ay) = ter(ag). The set of all inner
vertices of A’ is denoted by I(A’). Furthermore, a vertex v € V \ I(A) is
a pre-join vertex of A’ if there are edges aj,as € A’, a1 # ag, such that
v = init(a;) and ter(a;) = ter(ag). On the contrary, v is called a post-split
vertex of A" if there are edges aj,a2 € A’, a1 # az, such that v = ter(a;)
and init(a;) = init(az). Note that a vertex cannot be pre-join and post-split
vertex. The set of all pre-join vertices of A’ is denoted by J*(A’), the set of
all post-split vertices is J~(A4’) and let J(A") = Jt(A)U J~(A'). Finally, an
edge a € A is separated in A’ if a is not adjacent with any other edge in A’.
The set of all separated edges in A’ is denoted by S(A").

Proposition 5.7 It holds that [Ny (A’)| > 2[I(A")[+|J(A")|+|S(A")] for all
A C A

Proof. Let A’ C A. Let Nj be the set of all edges (s,v) and (v,t) with
v € I(A"). Note that s,t ¢ I(A’). Clearly |[Ny| = 2|I(A’)| and Ny C B. Any
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edge in A’ that ends or starts in v lies on an s-v-path or a v-t-path in H,
respectively. So Ny C Ny (A').

Let N; be the set of all edges (v,t) with v € JT(A’) together with all
edges (s,w) with w € J~(A’). Note that s,t ¢ J(A") because that would
imply a transitive edge in H starting in s or ending in ¢. Thus, it holds that
|Ny| = |J(A")]. By definition it is Ny N Ny = ). Similar to the considerations
above, any edge in A’ that starts in v € J*(A’) lies on a v-t-path in H and
any edge ending in w € J~(A’) lies on an s-w-path in H. So N;j C N (4).

Let Ng be the set containing either the edge (init(a),t), if init(a) # s, or
the edge (s, ter(a)) otherwise for all edges a € S(A4’); thus, |Ng| = |S(4")]. A
separated edge in A’ is not adjacent to any other edge in A’, so NgN(N;UN;) =
0. Any edge a € A’ lies on an s-ter(a)-path as well as on a init(a)-t-path, so
Ng C Ni(A").

By the above consideration it holds that N (A4’) 2 Ny U N; U Ng and

[Nk (A))| = [NfU Ny U Ng| = [Ny +|Ny| + [N
= 2[I(A)[ + [J(A)] + [S(A)].
U

Proposition 5.8 It holds that 2|I(A")| + |J(A")| + |S(A")] > |A| for all
A C A.

Proof. Let |A’] = 1. The only edge in A’ is obviously separated, so it holds
that |S(A4)| =1=|A/|.

Now assume that the statement is true for all A” C A with 1 < |A”] <k
and let |[A'| = k. Let a € A" and let A” = A"\ {a}.

In the first case assume that for all edges o’ € A” it holds that init(a) #
init(a’) and ter(a) # ter(a’). If a € S(A’) then S(A") = S(A”) + 1 and the
statement follows directly. Otherwise there is a; € A” such that ter(a;) =
init(a) or there is ag € A” such that ter(a) = init(ag). If aj exists then
init(a) € I(A") \ I(A”). Note that either init(a) may already be a post-split
vertex of A” or a; may be a separated edge in A”, but not both. The existence
of as has analogous implications, so if either one is in A” it holds that

2[I(A")| + [J(A)] + |S(A)] = 2([1(A")[ + 1) + [J (A7) + [S(A")[ — 1
> A" +1=|A.
Clearly, if a1 € A” and as € A” it holds that
2[1(AN| + [J(A)] + [S(A)] = 2([1(A") +2) + [J(A")] + [S(A")| — 2
> A" +2 > |A).
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For the second case it is assumed that there is an edge a; € A” such that
init(a) = init(a1) and that ter(a) # ter(a’) for all edges a’ € A”. Clearly, this
implies ter(a) ¢ I(A”). If there is an edge ay € A” with ter(a) = init(as)
then ter(a) € I(A’) and, as above, |J(A")| + |S(A")| > |J(A”)| + |S(A")]| — 1,
yielding the claim. On the other hand, if ter(a) # init(a’) for all edges a’ € A”
then ter(a) € J(A") \ J(A”) because of a;.

The third case, in which there is no edge a’ € A” with init(a) = init(a’)
but an edge a; € A” with ter(a) = ter(a’), is symmetric to the second case.

Finally, two edges a1, a2 € A”, a1 # as, with init(a) = init(a1) and ter(a) =
ter(ag) are a contradiction to H being series-parallel. O

Indeed, for this proof it is necessary that H is series-parallel, as the example
in figure 5.2 shows. There, none of the elements of A’ fit into any of the three
cases of the proof and it holds that |A’| = 7 and 2|I(A")| + |J(A")| + |S(A")| =

Figure 5.2 An example for A’ showing that proposition 5.8
does not hold in general for graphs that are not series-parallel

Those two propositions form the premise for theorem 5.6, so the main result
follows easily.

Theorem 5.9 If the information content ¢ is major transitive, then o(G) =
c(1I).

Proof.  Clearly, o(G) > ¢(II). Let H be an intransitive series-parallel span-
ning subdigraph of G with o(G) = ¢(H). By proposition 5.7, proposition 5.8
and theorem 5.6 there is a matching of A contained in K. So by propo-
sition 5.5 it holds that ¢(II) > ¢(H). Thus, there must be equality in
o(G) > c(Il) > ¢(H) = o(G). O

It is also possible to construct a matching of A in K directly by exploiting
observation 2.4. This is outlined in the following algorithm.

Algorithm 5.10 (Matching Algorithm)

Input:  An intransitive series-parallel digraph H
Output: A matching M of A in K
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1. If H is isomorphic to K2 then output M := {((s,t), (s,t))}, otherwise set
M :=0and H := H.

2. Choose a subdividing vertex v € V(H') and let (u,v), (v,w) € E(H’) be its
incident edges.

3. Set M := M U{((u,v), (s,v))} if (u,v) € E(H).

4. Set M := M U{((v,w), (v,t))} if (v,w) € E(H).

5. Remove v and the two incident edges from H’. Now, if there is either
df(u) = 0 or dy, (w) = 0, add the edge (u,w) to H'.

6. If H' is isomorphic to K2 then output M, otherwise goto 2.

Clearly, M C F(K) and M is a matching because v is not chosen again after
its deletion in step 5. All edges of H are included in the matching M, either
in steps 3 and 4, or in step 1 if H is isomorphic to K2 Thus, M matches A.
The algorithm terminates after exactly |V (H)| — 2 iterations because step 5
removes one vertex and the algorithm stops when there are only two left.
Step 5 also asserts that H’ remains intransitive and series-parallel during the
algorithm, so there always is a subdividing vertex in step 2 by observation 2.4.
The condition in steps 3 and 4 is necessary to ensure that only edges from H
occur in M, and none of those added in step 5.

Besides step 2, which needs at most O(|V (H)|) evaluations, all steps can
be done in constant time. The conditions in steps 3 and 4 can be evaluated in
constant time by tagging all edges from E(H) in H' at the beginning. Thus,
algorithm 5.10 has a time complexity of O(|V (H)|?).

This algorithm guarantees the existence of a matching of A in I and there-
fore provides an alternative approach to the proof of theorem 5.9 without using
Hall’s theorem. Using a similar idea it is also possible to prove the theorem
directly by the following observation, even without using IC at all.

Observation 5.11 The digraph H is II if and only if for all subdividing
vertices v of H it holds that v € Ny (s) N Ny (t).

Proof. If |V(H)| = 2, this is trivial, so let |V/(H)| > 3. Let H' be the
digraph resulting from H by removing Ny (s) N Ng(t) and all incident edges.
If H = ({s,t},0), then H clearly is II and all subdividing vertices of H are
in Ny (s) N Ng(t). On the other hand, if H' is not ({s,¢},0), then it must be
series-parallel and therefore contain a subdividing vertex by observation 2.4
that is also subdividing vertex of H. O

Hence, if H is not II, it is possible to find a subdividing vertex v € V that
is not incident to both s and t. Let N(H) = Ng(s) N Ng(t). Now there is
an easy operation that increases the number of vertices in N(H) while leaving
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the other properties of H intact. The existence of such an operation motivates
the following proof to theorem 5.9.

Proof. Let H be an intransitve series-parallel subdigraph of G with ¢(H) =
0(G) and |N(H)| being maximal. Let H not be II, otherwise the claim follows
directly. Because of observation 5.11 there is a subdividing vertex v € V' of
H with v ¢ N(H). Let u and w be the unique in- and out-neighbor of v,
respectively.

Let H' be the digraph that results from H by removing the edges incident
to v, adding the edges (s,v) and (v,t), and adding the edge (u,w) if v lies on
the only u-w-path in H. As a result, H’ is also intransitive series-parallel.

Clearly, |[IN(H)| < |N(H')| because v is in N(H') and not in N(H). By
observation 5.3 it is ¢(H) < ¢(H'), i.e. ¢(H) = ¢(H') = o(G). Thus, H’
contradicts the maximality of N(H). O

5.3 The Greedy Approach

For the information content ¢ : E — R without further restrictions, it is
possible to apply the Greedy Algorithm, as introduced in section 3.2, to find an
intransitive series-parallel subdigraph of an s-t-DAG. As before, it is necessary
to investigate the performance of this algorithm.

Let F = {F C F : J intransitive series-parallel spanning subdigraph H of
G such that FF C E(H)}. Clearly, (E, F) is an independence system. By this
definition, the bases of (F, F) are exactly the intransitive series-parallel span-
ning subdigraphs of G. So, if H is an optimum solution to the maximization
problem (E, F, ¢), then it holds that ¢(H) = o(G).

So the question remains whether the Greedy Algorithm always yields an
optimum solution and, if not, whether there is at least an approximation guar-
antee. Recall that by theorem 3.10 the Greedy Algorithm always obtains
optimum solutions if (£, F) is a matroid. It is easy to see that this is not the
case in general, and figure 5.3 shows a possible counterexample.

VARVAN
A

A

Figure 5.3 Two independent elements
of (E,F), E = F1 U Fy, violating (M3)
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In addition, it is possible to calculate the rank quotient of (E,F). An
example can be constructed, which exploits the idea in figure 5.3, where the
presence of two edges e; and ey in an independent element of (E, F) prohibit
the addition of any other edge of an arbitrarily long path that could otherwise
be added. This example is depicted in figure 5.4 with £ being the length of

the mentioned path.
/s /™

Ve
F\ ' FQ\//

Figure 5.4 An example for two maximal independent sets of (F,F),
E = F} U Fy, for k = 4 that lead to an arbitrarily low rank quotient

°oq— o4

As a result from this example, it holds that
pX) _ 5

XCEr(X) T 44k

Thus,

lim ¢(E,F) =0,

k—o0
i.e. the Greedy Algorithm has no approximation guarantee and can perform
arbitrarily bad. Similar to the example from figure 3.2 in section 3.2, setting

cler) =cles) =14e,0<e < 1,and ¢(f) = 1 for all f € F'\ {e} demonstrates
the issue.
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6 Information Content of the Edges

Previous chapters used a general weight function ¢ : F — R, for the edges
of an FD-graph, discussing only global properties of ¢ and not the values for
individual edges. Doing so made it possible to focus solely on algorithmic
approaches that are not bound to a certain weight function. Nonetheless, the
construction of a particular weight function, which is the main issue of this
chapter, is of great interest for this work. Section 6.1 presents the motivation
behind a possible weight function for this problem as introduced in section 3.1,
the information content of an edge, and outlines its derivation. Some properties
regarding major transitivity are discussed in section 6.2.

6.1 Motivation and Calculation

Within a given relation, there may occur functional dependencies that do not
represent the underlying application, but are rather coincidentally. A cus-
tomer relation might, for example, satisfy an untenable functional dependency
between the addresses of the customers and their first names, especially if the
relation is very small. To allow the identification of such functional depen-
dencies in the FD-graph, a special edge weight is used, whose calculation is
introduced in this section.

The basic idea of the edge weight is that every edge contains a certain
amount of information. An edge that represents a functional dependency
whose existence is unlikely contains much information, whereas a functional
dependency with a high probability of occurence results in a lower information
content for the concerned edge. So edges with a high information content can
be considered as trustworthy and, when it comes to choosing edges for removal,
it is strived for keeping as much of those edges as possible to maximize the
summarized information content of the digraph.

The first step is calculating the probability of the occurence of a specific
functional dependency in a relation of given size. Let r be a relation over R
with |r| = n and let G be the FD-graph of r. Let A ={A4;,...,A,} C R and
B={Bji,...,B,} C R be two attribute sets. Recall that this implies that the
sets in A U B are pairwise disjoint. Let r satisfy the functional dependency
A — B and let e = (A,B) € E(G) be the edge that represents A — B.
The FD-probability of e, denoted by p(e), is defined as the probability that a
random relation 7" over A U B with n elements satisfies A — B.

A random relation r with n elements over a relation schema R is a multiset
of n, not necessarily distinct R-tuples, each one chosen independently and
uniformly from dom R. Although random relations are multisets, they can
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still be treated as relations in this context without further adjustments to the
definitions from section 2.3.

Let a =|A; x ... x Ay| =|A1]-...-|Ay| and
b= [] ISl
SeB\A

Furthermore, let A and B be two sets with a and b elements, respectively. The
FD-probability can then be paraphrased in the following way.

Observation 6.1 The FD-probability p(e) is the probability that when
choosing n pairs, such that their first element is from A and their second
element is from B, both independently chosen and uniformly distributed ran-
dom elements, all pairs with the same first element also have the same second
element.

Proof. At first let A and B be disjoint, thus b = |By X ... X By|. Then the
statement is clear for u = v = 1, since the n pairs are then just corresponding
to the elements of r'. For arbitrary values of v and v the elements of v’ can
still be considered as pairs with the first element from A; x ... x A, and the
second element from By X ... X B,.

Now, [tTNA’| =1 for every attribute A’ € Rand 7 € 1/, even if A’ € AN B.
So for every pair, the element from A" € AN B can only be freely chosen for the
first element of that pair, as A" € A, and not for its second element, thus |A’|
must not appear in the product b. This argumentation can be independently
used for every attribute in AN B. O

Now consider the function H(n,k) for n,k > 0, which denotes the number
of possibilities to choose n pairs such that there are exactly k different first
elements among these pairs. It is clear that H(n,k) = 0 if £ > n because
there cannot be more different first elements than pairs. It holds also true
that H(n,0) = 0 for n # 0 because there has to be at least one first element
if any pairs are chosen. Finally, set H(0,0) = 1 because there is exactly one
way to choose 0 pairs.

For the other values of n and £, note that when selecting the nth pair, this
pair can either have a new first element or one that is already present among
the other n — 1 pairs. In the latter case there are k- H(n — 1, k) possibilities
because there are k different first elements and there is only one choice for the
second element, as observation 6.1 demands. If, on the other hand, a new first
element is chosen, then there are (a —k+1)b- H(n— 1,k —1) possibilities. The
first element of the new pair can be any element from A that was not already
selected by the m — 1 other pairs and the second element is arbitrary. This
yields the recurrence equation
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H(n,k) = kH(n —1,k) + (a — k+ 1)bH(n — 1,k — 1) (6.1)
for all n, k > 1. Now adding up H(n, k) for all possible values for k gives
a
> H(n, k)
k=1
=&=1 6.2
p(e) @) (6.2)

for the FD-probability, where the nominator counts the number of favorable
cases following observation 6.1 and where (ab)” is the number of all possible
cases to choose n pairs arbitrarily from A x B.

The limits of the sum in (6.2) can be extended for notational convenience,
as the following calculation shows. Because of (6.1) it holds that

H(n,a+1)=(a+1)Hn—1,a+ 1)+ (a—(a+ 1)+ 1)bH(n — 1, a)
=(a+1)H(n—-1,a+1)
=(a+1)"H(0,a+1)=0
and H(n, k) with £ > a+1 always reduces to a sum of such terms and therefore
also to 0. Thus (6.2) can be written as
> H(n, k)
(€) = =
(ab)"
A good approach to get a closed equation for H(n, k) is the evaluation of
the generating function of H(n, k). In this technique, the values for H(n, k)
are considered as coefficients of a formal power series, its generating function.

A very resourceful book on this topic was written by Wilf [30]. For every k& > 0
let

(6.3)

Cr(z) =Y _ H(n k)a"
n>0
be the generating function of H(n, k). Now the recurrence equation (6.1) has
to be expressed in terms of C(z) by multiplying with 2™ and summarizing
over all values of n for which the recurrence holds. Thus, the left hand side of
(6.1) yields for £ > 1

> H(n,k)2" = Cy(z) — H(0,k)a® = Cy(x).
n>1

Analogously, the right hand side of (6.1) evaluates to
> (kH(n—1,k)+ (a =k + 1)bH(n — 1,k — 1))a"

n>1
= k:z H(n, k)a" M 4 (a — k + 1)62 H(n,k—1)az"*!
n>0 n>0

= kCip(x)x + (a — k + 1)bCy_1(2)x
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for £ > 1. Combining those two formulas for left and right hand sides gives
therefore

Cr(x) = kCi(x)z + (a — k + 1)bCy_1 (z)x
(a —k+1)bx
 1—kx
a recurrence equation for the generating function Ci(z). To solve this, an
initial value is needed, which can easily be found in

Co(x) => H(n,0)a" =1.

= Ok(iﬂ) = Ckfl(ft) Vk > 1,

n>0
Thus, it holds that
_(a—=k+1)bx  (a—k)bx abx
) = T—GoDz 1oz
k
= akph - (6.4)

(1—2)1—22)...(1 —ka)

Wilf [30, section 1.6] has already shown that the fraction in (6.4) is the
generating function of the well-known Stirling numbers of the second kind.
But before utilizing Wilf’s result, the steps to deduce it are outlined.

The Stirling numbers of the second kind, denoted by S, j, have been dis-
cussed in several books [7, 30]. Following those, S, ;. is defined as the number
of possibilities to partition a set of n elements into & nonempty, pairwise dis-
joint classes or, equivalently, as the number of different equivalence relations
with k equivalence classes on a set with n elements.

It is clear that S, = 0 for n < k and S, 9 = 0 for n > 0 because a
partition of a set of n elements consists of at least one and not more than
n classes. In addition, it is Sp o = 1. A recurrence equation for .S,  can be
deduced by the following consideration [7, p. 16]. W.l.o.g. consider a partition
of {1,...,n}. Now it holds that either {n} is one of the classes of the partition
or that n is an element of a bigger class. In the first case the other n — 1
elements are partitioned into k — 1 classes and there are S,,_1 ;_1 possibilities
for that. Removing n in the other case does not reduce the number of classes
of the partition, so there are S,,_; j possibilities to partition the other n —1
elements and k possiblities to place n in one of the k classes. Altogether this
results in

Sn,k = Snflykfl + k’Snfl,k Vn,k > 1. (6.5)

As before, an equation for the generating function of S, 1,

Bi(x) =Y Sppx™ (k> 0),
n>0
can be found by multiplying (6.5) with 2™ and summing over n > 1, i.e.
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D Skt = Spoip12" kD> Spogpr”

n>1 n>1 n>1
for £ > 1. This, in turn, gives

By(x) = 2Bj—1(x) + kxBi(z) (k=1)

& Bi(e) = 5 _""“kak_l(x) (k> 1)
$k
< Bila) = RZ:OS"’W” S A0 -k #z0 (66

because of By(z) = 1.
Now incorporating (6.6) into the generating function of H(n,k) in (6.4)
leads to
Z H(n,k)z" = Cy(z) = akv* Z Sppr" = Z aﬁbksmkm”
n>0 n>0 n>0
& H(n, k) = akb* S, . (6.7)
Note that Wilf [30, p. 19] also calculated an explicit formula for the Stirling
numbers of the second kind by evaluating the partial fraction expansion of
(6.6), which has the form
1 B i e
(1—2)(1—22)...(1—kx) ; 1 —iz’
Here, the a’s can be isolated by choosing a fixed r, 1 < r < k, multiplying
with 1 — rx and evaluating at x = % After simplification this gives
Tk_l

(r— DIk — 1)

and the calculation in [30], with [x"]f(z) denoting the coefficient of z™ in the
power series expansion of f(z), shows that

oy = (—1)kir

xk
Sy = [2"]Bg(z) = [2"] (1—2)(1—22)...(1—ka)
~ 1
(1—2)(1—2x)...(1 — kx)

k 1 k
=2 ol g =) o

r=1 r=1

k n

k—r r

_T_1< 1) ri(k —r)!

for n,k > 0. Together with (6.7), this yields
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k n
_ kpk k—r__ "
H(n, k) = akb ;( 1) ] (6.8)
as an explicite, closed formula for H(n, k).

There is also a combinatorial explanation for H(n, k) which leads directly
to (6.7). Each of the n chosen pairs has one of k first elements. This is
equivalent to saying that the n pairs are distributed over k classes of different
first elements, and it has already been discussed that there are S;, j, possibilities
doing so. Furthermore, after choosing an element from A as the first element
of a pair there is one possibility less for the other pairs with a different first
element, so there are a¥ possibilities of selecting all k different first elements
of the pairs. On the other hand, any element from B can be used as second
element in a pair with a new first element, thus yielding b* possibilities for the
second element of all pairs. Combining these produces H(n,k) = akkamk,
the already known equation.

Now inserting the above result (6.7) in the previous formula (6.3) for p(e)
gives

Z aEkamk

(€) = =

(ab)™ -

a closed formula for p(e), and the numbers S, , may be calculated as in (6.8).

Here it is interesting to note that aEkan,k vanishes for £ > min{a,n}, so the
range of the sum can indeed be k£ > 0.

(6.9)

Assume that e = (A, B) represents a trivial functional dependency A — B,
i.e. B\ A = 0. Then the product b is reduced to the neutral element of the
multiplication, b = 1, and thus
Z aESn,k
k>0
ple) = —ar
Together with
a" =Y dks,, (6.10)
k>0
which is a known relation between power, falling factorial and Stirling numbers
[7, p. 9], this yields p(e) = 1. On the other hand, if b > 1 then by (6.10) it
holds that
ab" = Zakb”Snyk > Zaﬁkan’k,
k>0 k>0
thus, p(e) < 1 in this case.

After finding p(e) in (6.9), the weight of e is defined as c¢(e) = —logp(e).
Taking the logarithm follows the argumentation of Shannon [31, p. 1] to make
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the usage of ¢ more convenient as a measure of information. This definition
yields a high information content for edges representing functional dependen-
cies with low probability and vice versa, which was an important requirement
in the introduction of this weight function. Note that because of the above
consideration, c(e) = 0 if and only if e represents a trivial functional depen-
dency.

6.2 Major Transitivity

The results in section 5.2 ask for examining in which cases the information
content c is a major transitive weight function. Unfortunately, the information
content, as calculated in the previous section, has a rather complex analytical
structure, which is why this question is hard to answer in a general way.

This section shows that the information content can be major transitive,
but also that major transitivity is only a special case that does not occur
systematically. This is important to note because this weight function would
be useless if the digraph II was a common optimum hierarchy, as this is just
not the case in many complex real world examples.

Let G be a maximal acyclic subdigraph of the FD-graph of the relation
r over R with |r| = n as before. Let A,B,C C R be attribute sets, i.e.
A,B,C € V(G), such that ey = (A, B), e2 = (B,C) and e3 = (A,C) are edges
in G. Furthermore, let

ap = asz = H 5], a2 = H|5|»

SeA SeB
by = H "S’lv by = H ’S” by = H ‘5‘7
SeB\A SeC\B SeC\A

i.e. a; and b; take the places of a and b in (6.9) when calculating p(e;) for
i€{1,2,3}.

The cardinalities of the attributes in A, B and C are independent from
each other, which allows almost arbitrary combinations of the above values.
Assume that

b1 <bs, by <bs (6.11)

and forall 0 < k <n

as a
(i) = ()

= ag(‘:’)k'gag(‘f)k!
ko gk
B ch (6.12)
az Gy
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It is not enough to impose a simple restriction on the relationship between ag
and ag, because either one of the sides in (6.12) may be greater depending on
n and k.

Combining the inequalities (6.12) and (6.11) yields
kpk kpk

azbs < azbs

agby — azby

> agbiSuk 3 a5b5Sy
k>0 < k=0

nKHn — npn ’
az by ay bl

i.e. p(es) < p(e2) and therefore c(e3) > c(ea).

VO<Ek<n

=

Furthermore, it is
azby — afby
because of a; = a3 and (6.11). Analogously to the above, it holds that c(e3) >
cler).
So it can be seen that under the constraints (6.11) and (6.12) for all

A, B,C € V(G) with e,eq,e3 € E(G) as above, the information content ¢
is indeed major transitive.

VO<Ek<n
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7 Conclusions and Open Problems

This work presented a mathematical method to deal formally with the problem
of reconstructing attribute hierarchies from database relations, the hierarchy
problem. The suggested approach consists of three main steps. At first, the
transitive FD-graph G = (V, E') had to be constructed with an appropriate
edge weight function that captures the structure of the relation well. Second,
a strategy was proposed to remove all cycles from GG, which yields a transitive
two-terminal acyclic subdigraph of GG. This subdigraph was then the basis in
the third step to find a large intransitive series-parallel subdigraph of G.

Despite the title of this work, in section 3.1 the consideration of subdi-
graphs of GG instead of minors was propagated. The important reasons for this
specialization are that edge contractions in an FD-graph are, because of its
special semantics, very similar to certain deletion operations and that it is not
clear how to generate weights for the new edges in a minor. Nonetheless it
might be possible to overcome the hurdle of generating new edge weights from
known ones, which would possibly allow different approaches.

A related question is whether the information content introduced in chap-
ter 6 is a proper model for the desired structure at all, i.e. whether maximum
intransitive series-parallel subdigraphs of the FD-graph do indeed represent
ideal attribute hierarchies from a database design perspective. The design of
the information content was based on the idea that those functional depen-
dencies that are unlikely to occur by accident are more interesting for the
construction of a hierarchy. It was out of scope for this work to apply the pre-
sented techniques to real world examples, which tend to be extremely large,
but such an evaluation is likely to show important properties for a good weight
function, which may lead to improvements in the design of the information
content.

For the second step, different efficient acyclicity algorithms were discussed
in section 3.2. It was shown that they all yield solutions with at least % of
the optimum weight, which is the best constant lower bound on the approx-
imation quality for all known polynomial acyclicity algorithms. It could also
be interesting to use exact acyclicity algorithms instead if there are only small
cycles, to reduce the error introduced by this intermediate step. A lot of big
cycles would then slow down the whole process considerably, of course.

A different idea to turn the FD-graph G into an s-t-DAG is motivated
by the fact that attributes within one hierarchy level are likely to form cyclic
functional dependencies. So interpreting cycles as indication that the involved
attributes could be grouped together, i.e. that all vertices of a cycle in G that
are proper subsets of any other vertex in the same cycle could be removed, is
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reasonable. Note that there would remain exactly one vertex in any cycle of G
because (v, w), (w,v) € E implies (v,v Uw), (w,v Uw) € E, i.e. v Uw is part
of every cycle that contains both v and w. This is also an interesting starting
point for an approach to property (2) of the objectives 3.1, 3.2 and 3.3, i.e. the
requirement that the set of vertices of a hierarchy is a partition of the set of
attributes. However, this necessarily involves the deletion of vertices, which
is not favored by the information content ¢ : £ — R. Nonetheless, it might
be possible to integrate such cycle reductions in a natural way by modifying
the weight function, e.g. by introducing negative values for certain or all edge
weights in cycles.

Furthermore, it may also be interesting to reconsider the ideas and methods
from section 3.3 and chapter 5 if the given graph is cyclic. It seems to be
possible to keep the general ideas intact while refining them for the application
on cyclic graphs. If this is true, then the second step can be rendered obsolete.

In section 3.3, a possibility to reduce the problem was discussed. The
result was that it is only necessary to be able to find maximum intransi-
tive series-parallel subdigraphs in 3-connected s-t-DAGs. The restriction to
this class of digraphs did not lead to better theoretical results in this work,
but further investigation is required. However, utilizing the reduction of au-
tonomous sub-DAGs in the given s-t-DAG benefits the running time of any
applied non-linear algorithm because the size of the individual input digraphs
is reduced.

In case of a major transitive weight function, it was shown in section 5.2
that optimum solutions for the third step can be found easily in form of a cer-
tain digraph II that is always a subdigraph of G. Essentially, two approaches
were presented. One followed the idea that for every edge in an intransitive
series-parallel subdigraph of GG there was an appropriate edge in II with larger
weight to replace it, which was verified by proving the existence of a matching
in a certain auxiliary digraph utilizing Hall’s marriage theorem. The other,
more concise approach exploited a basic property of series-parallel digraphs
and presented a local operation, whose repeated application turns any intran-
sitive series-parallel subdigraph of G into II in at most O(|V']) steps while not
decreasing its weight. Section 5.1 demonstrated the same result for the simpler
case of equally weighted edges, which is a special case of major transitivity.

An important implication is that in case of a major transitive weight func-
tion for GG, these algorithms provide an optimum solution to the hierarchy
problem if the original FD-graph is acyclic. Otherwise the polynomial-time
acyclicity algorithm may introduce a certain error in general. Section 5.3 dealt
with general weight functions and discussed the application of the Greedy Al-
gorithm to the third step. However, it was shown that this algorithm can
yield arbitrarily bad results, just as for the problem of finding a maximum
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acyclic subdigraph in section 3.2. This and the fact that no further theoreti-
cal results were found might be indications that this problem is NP-hard, but
unfortunately it was not possible to classify its complexity within this work.

In chapter 4, a paper about a related issue was discussed which was be-
lieved to yield another approach to the third step. That paper introduced the
reduction complexity to measure the deviation of an arbitrary s-t--DAG from
being series-parallel. However, it became clear that the introduced method, as
described in section 4.3, based on their work was to difficult to analyze, and
was dismissed in favor of the other ideas.
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