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Abstract

A P (k)-graph is a graph in which any two distinct vertices are joined by a sin-
gle k-path. In this thesis we will discuss such graphs as well as the conjecture of
Kotzig, both motivated by the study on edge extremal graphs without certain bipar-
tite subgraphs. We will collect and prove some properties of P (k)-graphs and discuss
attacks on the conjecture. As a certain approach we introduce the more general cycle-
intersection-conjecture and prove some special cases. Further, some generalizations
on above definitions are presented.
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1 Introduction

A central object of observation in extremal graph theory is the so called Turán func-
tion ex(n, F ), where n ∈ N and F is a graph. It gives the maximal number of edges
in an n-vertex graph without any subgraph isomorphic to F . Determining the exact
value of this function for some fixed F but general n ∈ N seems to be hopeless in
most cases, but the powerful theorem of Erdős and Stone (cf [6], p. 151) describes at
least its asymptotic behavior very well. It states that for any graph F with chromatic
number χ there holds

ex(n, F ) =

(
χ− 2

χ− 1
+ o(1)

)(
n

2

)
.

Unfortunately for bipartite F , for which χ = 2, this only gives ex(n, F ) = o(n2). In
particular, this includes the even cycles C2k. Nearly fifty years ago (cf. [13]) Paul
Erdős asked for a tighter determination of ex(n,C2k). Soon there was an answer for
quadrangles C4 (see [7]). It was found that the extremal edge count grows asymp-
totically like Θ(n3/2). Erdős himself conjectured ex(n,C2k) = Θ(n1+1/k). Today we
know this is true for C6 and C10, but besides this there are no further final results

(e.g. see [9]). The simple lower bound Ω(n1+ 1
2k−1 ) can be achieved by using Erdős’

probabilistic method.

As all these results are aiming for asymptotic estimations, it is also an interesting
task to explicitly construct C2k-free graphs or to efficiently check whether a given
graph is already edge extremal or not. Of course, a cycle C2k is equivalent to two
edge disjoint paths of length k between the same end vertices. So a cycle of length
2k can be avoided by demanding at most one path of length k between any pair
of vertices. To maximize the number of edges one can get the idea that this can
be achieved by additionally forcing at least one, hence exactly one path of length
k between any two vertices. Graphs with this property are called P (k)-graphs and
were first studied by Anton Kotzig in 1977 (see [11]). An also long known result
is the classification of P (2)-graphs. This, again, is a result of Erdős together with
Alfréd Rényi and Vera T. Sós and is known as the Friendship Theorem (see [7]
or Section 1.3). It was proven that the edge count of P (2)-graphs is in Θ(n) and
therefore does not provide infinitely many extremal graphs. For k ≥ 3 it actually
seems worse. Until today there is no P (k)-graph known for any k ≥ 3 but there is
also no proof that they do not exist. Their not-existence was conjectured by Kotzig
after he proved this for k ≤ 7 (see [12]). Some further solved cases for small k are
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1 Introduction

listed in Section 1.4. Because of their questionable existence these graphs do not
seem to fit the purpose of characterizing extremal C2k-free graphs. One of the results
of this thesis will be that even if there are such graphs, they at best generate a finite
number of extremal graphs since their edge count is in O(n) (see Section 2.6).

This thesis will collect, prove and discuss properties of P (k)-graphs (see Chapter 2)
as well as consider a certain attack on the conjecture of Kotzig (see Chapter 3).
We also add some new results concerning this topic, especially about the degrees,
symmetries and subgraphs of P (k)-graphs. Since we do not achieve a full proof, we
hope that this collection may help a future researcher to get a quick overview on this
topic, maybe useful for a final proof. Great work on P (k)-graphs and the conjecture
was done by Kotzig himself (see [12]), by John A. Bondy in his survey on the topic
(see [3]) and by Alexandr V. Kostochka (see [10]). Some generalized topics will be
discussed in Chapter 4.

1.1 Definitions and notations

The definitions and notations of this thesis mainly will follow Diestel [6]. Variations
from these standards are introduced below.

Throughout this text and if not mentioned otherwise let G = (V,E) be a finite
graph with vertex set V and edge set E ⊆

(
V
2

)
. We will use n := |V | as the number

of vertices. The word graph refers to simple graph and so we will not discuss directed
graphs, multi- or hypergraphs. Whenever we deal with another graph H, we use
V (H) to denote the vertex set and E(H) to denote the edge set of H.

The set N = {1, 2, 3, ...} denotes the set of natural numbers greater than zero. If
the zero should be included we write N0 := N ∪ {0}.

The length of a path P or cycle C will always be the number of its edges and
is denoted by |P | and |C|. Note that in the case of paths this does not equal the
number of vertices which is denoted by |V (P )|. We use the abbreviation k-path
and k-cycle for paths or cycles of length k. The same notation might be applied in
other cases where the term of length is defined, e.g. for k-arcs, k-chords or k-loops
(for the definitions of these terms see below or Chapter 3). A path intersecting a
subgraph H ⊆ G at most in its end vertices is called H-crossing-free (or simply
crossing-free if the corresponding subgraph is clear). A path is said to connect its
end vertices. If P is a path and v, w ∈ V (P ) two vertices, then vPw denotes the
subpath of P between v and w. If P and Q are paths intersecting only in one end
vertex v ∈ V (P ) ∩ V (Q), then PQ means the concatenation of these paths at v.
When it seems to be appropriate to emphasize the connection vertex, we also write
PvQ. An analogous notation is used for arbitrary long path concatenations which

10



1.1 Definitions and notations

also may close to a cycle.

We say two subgraphs H1, H2 ⊆ G intersect in v ∈ V if v is contained in both
subgraphs. The vertex v is then called an intersection vertex or crossing of the two
subgraphs H1 and H2.

A path that is a subgraph of a cycle C is called an arc of C. A path intersecting
C exactly in its end vertices is called a chord of C, hence is C-crossing-free.

If v, w ∈ V are two vertices and the shortest path between v and w is of length
d, then d is called the distance of v and w and we denote it by d(v, w). Of course
d(v, v) = 0. We define

Nk
G(v) := {w ∈ V | d(v, w) = k},

Bk
G(v) := {w ∈ V | d(v, w) ≤ k}.

to be the k-neighborhood of v or the k-ball around v. We will write NG(v) instead
of N1

G(v) and BG(v) instead of B1
G(v). A vertex w ∈ NG(v) is called a neighbor of

v. The diameter diam(G) := maxv,w∈V d(v, w) is the largest distance of two vertices
in G. The eccentricity of a vertex v ∈ V is defined by ε(v) := maxw∈V d(v, w). It
is a measure for the distance of the farthest vertex from v. A vertex of minimal
eccentricity is called a center of G. The eccentricity of a center is the radius rad(G)
and can equivalently defined by

rad(G) := min
v∈V

max
w∈V

d(v, w).

If a graph G is of radius one and v is a center of G then the graph is called v-
dominated. Note that in this case all other vertices of G are adjacent to v.

The degree dG(v) of a vertex v ∈ V is the number of vertices adjacent to v. It
holds dG(V ) = |NG(v)|. If S ⊆ V is a set of vertices from G then dS(v) denotes the
number of neighbors of v in S, hence dS(v) = |NG(v) ∩ S|. The minimal, maximal
and average degree of G are defined by

δG := min
v∈V

dG(v), ∆G := max
v∈V

dG(v), d̄G :=
1

n

∑
v∈V

dG(v).

Most of the time the subscript G is dropped when the corresponding graph follows
from the context.

We are going to use the Landau-notations O (big-O), o (small-O), Θ and Ω. When-
ever this notation appears and if not mentioned otherwise, these asymptotics are used
with respect to the vertex count n tending to positive infinity. As usual, we will write
f = O(g) instead of f ∈ O(g). Accordingly for the other symbols.

We proceed with the definition of the central object of our observations:

11



1 Introduction

Definition 1.1. A graph G on n ≥ 2 vertices is called a P (k)-graph for some k ∈ N
if any two distinct vertices v, w ∈ V are connected by a unique k-path. The set of
all P (k)-graphs will be denoted by P (k).

The restriction to graphs on at least two vertices is useful because otherwise the
empty graph and the graph on a single vertex would be P (k)-graphs for all k ∈ N.
We decided to exclude these trivial examples.

If there are two k-paths in G with the same end vertices we will call this a double
k-path.

1.2 Basic observations on P (k)-graphs

Concerning P (k)-graphs there are some basic properties that do not need a long
proof and we will collect them in this section.

Observation 1.2. All P (k)-graphs are connected and therefore each one contains
an edge e = {v, w}. According to the definition there is a k-path between v and w
and together with the edge e we got a cycle of length k + 1. If e would be contained
in two (k + 1)-cycles then following the cycles from v to w (not over e) reveals two
k-paths between these vertices. We conclude our most important observation: any
edge is contained in exactly one (k+ 1)-cycle and hence G is uniquely decomposable
into such cycles. Since adding a cycle raises the degree of all vertices by an even
number we found that all degrees are even, thus G is Eulerian and for the minimal
degree holds δ ≥ 2.

If {Ci} is such an edge disjoint (k+ 1)-cycle-decomposition of G, then there are no
other (k+ 1)-cycles besides these. If there would be another cycle, it would share an
edge with an Ci. This is not possible as discussed in Observation 1.2. The number
of (k + 1)-cycles will be denoted by ck+1. Accordingly, the number of k-paths is pk.
Note that pk is exactly known to be

(
n
2

)
since there is exactly one path for any pair

of vertices in G.

P (k)-graphs cannot be bipartite. A path P starting in a fixed vertex must change
the partition class in each step. The partition class of the end vertex then only
depends on the parity of the length of P . So all k-path starting in this vertex will
end in the same partition class, hence never reach the other class. If the other class
is not empty, not all vertices can be reached by such a path. In particular χ(G) ≥ 3
and G has to contain an odd cycle.

12



1.3 P (2)-graphs and the Friendship Theorem

1.3 P (2)-graphs and the Friendship Theorem

The case k = 2 is one of the few cases in which we not only know that P (k) is
not empty but also know the full classification of contained graphs. Consider the
following equivalent definition of P (2)-graphs:

A graph G is called P (2)-graph if any two distinct vertices v, w ∈ V share
exactly one common neighbor, i.e. NG(v) ∩ NG(w) contains exactly one
vertex.

The following class of graphs contains infinitely many P (2)-graphs.

Definition 1.3. A non-empty graph G is called a windmill graph (or just a windmill)
if it satisfies one of the following equivalent definitions:

(i) G is the union of edge disjoint triangles, all overlapping in a unique central
vertex v.

(ii) G is dominated by a central vertex v and G−v is a 1-factor (i.e. G is 1-regular,
hence a perfect matching).

Once we have chosen a central vertex the other vertices will be called outer vertices.

Proof of equivalence. (i) ⇒ (ii): Choose v to be the vertex shared by all triangles.
Since a triangle is dominated by all of its vertices, G is dominated by v. Triangles
are complete graphs, so if two triangles share two or more vertices, they are sharing
an edge. The triangles used in the definition are said to be edge disjoint and since
they share already v, they are vertex disjoint with the only exception v. Removing
v from G removes a single vertex from each triangle and leaves disjoint K2’s. This is
a 1-factor.

(ii)⇒ (i): A 1-factor is the disjoint union of K2’s. By adding a vertex v and joining
it to all the other vertices, each K2 becomes a K3. These triangles only share the
vertex v. The triangles are pairwise edge disjoint, because sharing an edge means
sharing at least two vertices.

Observation 1.4. We show the easy fact that these graphs belong to P (2). Let
v ∈ V be a dominating vertex. Choose two vertices a, b ∈ V .

Case 1: The vertices a and b are outer vertices. Of course v is a common neighbor.
If v′ would be another common neighbor then v′ would have degree 2 in G−v, which
is a contradiction.

Case 2: One of the vertices is equal to v, say a = v. Then there is a unique
neighbor b′ of b in G− v. This vertex is the unique common neighbor of b and v.

13



1 Introduction

...

Figure 1.1: The general form of windmill graphs.

More interesting than that windmills are in P (2) is the fact that these are the
only P (2)-graphs at all. This is the non-trivial statement of the so called Friendship
Theorem, first proved by Erdős, Rényi and Sós in [7].

Theorem 1.5 (The Friendship Theorem). The P (2)-graphs are exactly the wind-
mills.

The name of the theorem originates from the following way to express its statement:

If there are n ≥ 2 people and we know that any two of them have exactly
one friend in common (and friendship is a symmetric relation), then there
is a person which is friend with everyone (the host or politician). Moreover
all other people occur in couples, i.e. they are friend with each other and
the host, but with no one else. In particular n is odd.

Until today there is no easy and pure graph theoretical or combinatorial proof known.
The original proof uses finite geometry in the final step. A much more elementary
proof, the one we will present here, only uses simple linear algebra (cf. [2], p. 223 ff).
The proof will basically go in two steps. First we show that a P (2)-graph which is
not a windmill must be a regular graph. In the second step (the linear algebra step)
we show that the triangle is the only regular P (2)-graph. To show the regularity we
need two preparatory propositions.

Proposition 1.6. P (2)-graphs are locally windmills, i.e. G[BG(v)] (the subgraph of
G induced by v and its neighborhood) is a windmill for every vertex v ∈ V .

14



1.3 P (2)-graphs and the Friendship Theorem

v

Figure 1.2: A locally induced windmill in a graph which itself is not a windmill. The
neighborhood NG(v) (the gray filled vertices) induces a perfect matching.

Proof. Choose a vertex v ∈ V . Of course, H := G[BG(v)] is v-dominated. We show
that removing v leaves a 1-factor and hence, by part (ii) of Definition 1.3, H is a
windmill. Since n ≥ 2 and G is connected we can choose a vertex w ∈ H − v.
Since all vertices in V (H − v) are neighbors of v, all neighbors of w in V (H − v)
are common neighbors of v and w. From the definition of P (2)-graphs follows that
there is exactly one such shared neighbor. Therefore every vertex w ∈ V (H − v) has
exactly one neighbor in V (H − v) and V (H − v) induces a 1-factor.

We see that if a friendship graph G is of radius one then G is a windmill. But
there is another sufficient condition for being a windmill.

Proposition 1.7. If G is a P (2)-graph with minimal degree δ = 2 then G is a
windmill.

Proof. Let v ∈ V be a vertex of degree 2 and let w and w′ its neighbors. Because G
is locally a windmill (by Proposition 1.6) the vertices w and w′ are adjacent. Define
(see Figure 1.3)

A := NG(w) \ {v, w′}, B := NG(w′) \ {v, w}.

If u ∈ A ∩ B then u and v are both common neighbors of w and w′. Therefore
A ∩ B = ∅. Now let u ∈ A and u′ ∈ B. If u and u′ are adjacent, then u and w′ are
common neighbors of u′ and w. So u has no neighbors in B and u′ no neighbors in A.
But nevertheless there must be a common neighbor s of u and u′. But this neighbor
can neither lie in A or B nor can s be w,w′ or v. So either A = ∅ or B = ∅, say B is

15



1 Introduction

A B

v

w w'

Figure 1.3: Configuration used in the proof of Proposition 1.7.

empty. Then w dominates G and as discussed above this already implies that G is a
windmill.

A consequence of the last proposition in connection with Observation 1.2 is that
for a friendship graph G that is not a windmill there must hold δ ≥ 4. We are now
ready to proof the regularity statement as a further proposition:

Proposition 1.8. If G is a P (2)-graph but no windmill, then G is d-regular with
d ≥ 4.

Proof. We give a proof in two steps. For the first step we show that any two vertices
at distance two are of the same degree. Assuming that G is no windmill we can show
in step two that this suffices to imply the regularity of G.

Step 1: Let a, b ∈ V two vertices of distance two and v their common neighbor.
Further let a′ be the common neighbor of v and a, and b′ the common neighbor of v
and b. Define

A := NG(a) \ {a′, v}, B := NG(b) \ {b′, v}
and observe that this gives a configuration as viewed in Figure 1.4. Choose an
arbitrary vertex a′′ ∈ A. We show that the unique common neighbor b′′ of a′′ and b
is in B. It holds

• b′′ 6= v because a′ is already a common neighbor of a and v.

• b′′ 6= b′ because v is already a common neighbor of a and b′.

All other neighbors of b are in B and so b′′ ∈ B. This neighbor of a′′ in B is unique
because all neighbors of a′′ in B share the neighbors a′′ amd b. So every a′′ ∈ A has
exactly one neighbor in B and we found |A| ≥ |B|. Because of the obvious symmetry

16



1.3 P (2)-graphs and the Friendship Theorem

a b

a' b'

v

A B

Figure 1.4: Configuration used in the proof of Proposition 1.8.

we get |A| = |B| and because dG(a) = |A| + 2 and dG(b) = |B| + 2 we also get
dG(a) = dG(b).

Step 2: If there are no vertices of distance two then the graph is complete, hence
regular. So assume a, b ∈ V of distance two. We know that dG(a) = dG(b). Except
for the common neighbor v of a and b all other vertices are either of distance two to
a or of distance two to b and so all vertices in V \{v} are of the same degree. Since G
is no windmill, G is not dominated by v and therefore there must be a vertex u ∈ V
of distance two from v and we are done.

The second part of the proof of the Friendship Theorem is the one using techniques
from linear algebra. The connection to this part of mathematics arises from the
possibility to represent a graph in the form of a matrix, here we use the adjacency
matrix. In the final step of the proof we will need the following observation:

Observation 1.9. Consider the set of possible paths of length two starting in an
arbitrary vertex v ∈ V . For the first step of the path there are d possibilities. For
the second step there are only d − 1 because we cannot go back to v. So there are
d(d− 1) such paths. Since we can reach any other vertex from v by exactly one path
of length two, there must hold d(d− 1) = n− 1 and this rearranges to

n = d2 − d+ 1. (1.1)

Proof of Theorem 1.5. A 1-regular graph cannot be a P (2)-graph because it would
consist of a single edge. Let G be a regular P (2)-graph of degree d ≥ 2 and A its
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1 Introduction

adjacency matrix. We recall that the entry in row i and column j of A2 gives the
number of paths of length two from vertex i to vertex j. So

A2 =


d 1 1 · · · 1
1 d 1 · · · 1
1 1 d 1
...

...
. . .

...
1 1 1 · · · d

 = E + (d− 1)I,

where E is the matrix only filled with ones and I is the identity matrix. E has the
simple eigenvalue n and the multiple eigenvalue 0 of multiplicity n − 1. Since A2 is
a polynomial in E its eigenvalues are

λ1 = n+ d− 1, λ2 = d− 1,

also with the multiplicities 1 and n−1. We know that the eigenvalues of A are of the
form ±

√
λ1 and ±

√
λ2 and since the trace of A is zero, the sum of the eigenvalues

has to vanish. Assume w.l.o.g. that A has the eigenvalue
√
λ1 and let c be the

multiplicity of
√
λ2. There must hold√

λ1 + c
√
λ2 − (n− 1− c)

√
λ2 = 0.

By rearranging the terms we get√
λ1

λ2

= n− 1− 2c

and because the right hand side is an integer also the left hand side has to be an
integer. So there must be an f ∈ N0 with λ1 = λ2f

2. Note that n = λ1 − λ2

and d = λ2 + 1. By substituting this into Eq. (1.1) from Observation 1.9 we get
λ1 = λ2

2 + 2λ2 + 1. Finally we derive

f 2 = λ2 + 2 +
1

λ2

and here f 2 can only be an integer if λ2 = 1 which means d = 2. So G is a cycle, but
the triangle is the only cycle in P (2). Since the K3 is a windmill we are done.

1.4 The conjecture of Kotzig

In 1977 Anton Kotzig stated the following conjecture:

Conjecture 1.10 (Kotzig). There are no P (k)-graphs for any k ≥ 3.

18



1.4 The conjecture of Kotzig

Kotzig himself proved it up to k = 8 by using statements on even cycles (see
Section 2.1). Kostochka was able to show that a longest cycle C in G satisfies
k+ 5 ≤ |C| ≤ 4

3
k−2 (see [10]). To make this possible there must hold k+ 5 ≤ 4

3
k−2

which rearranges to k ≥ 21. This proves the conjecture for the cases up to k = 20. In
a concluding remark it is asserted that this bound can be extended to treat all cases
k ≤ 30. In a paper of K. Xing and B. Hu [16] the authors claimed to have proven
the cases k ≥ 11 and the problem seemed solved. But in the year 2000 R. Häggkvist
pointed out that the work was based on the unproven assumption that there always
exists a (2k − 8)-cycle in a P (k)-graph. In conclusion, this paper only shows that
such cycles are forbidden. Because of the hard work on the conjecture without a final
result, in [2] a proof is indicated as “currently out of reach”.

Example 1.11. We show that conjecture Conjecture 1.10 holds for k = 3. According
to Observation 1.2 there is a 4-cycle C in G. Observe that neither C, C with a single
chord nor K4 are P (3)-graphs. Consequently there has to be a vertex v /∈ V (C) but
adjacent to C. Assume v is a neighbor of w ∈ V (C). The cycle C can be divided into
two 2-arcs with end vertex w. Let w′ be the other common end vertex of these arcs.
Now, each one of these arcs appended to the edge {v, w} gives a 3-path between v and
w′. This contradicts the uniqueness of 3-paths and hence there are no P (3)-graphs.

A similar argument works for k = 5. More difficult are the cases with even k. E.g.
for k = 4 we need to discuss several different cases. All k ≤ 5 are discussed and
solved later by using the cycle-intersection-conjecture in Chapter 3.
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2 Properties of P (k)-graphs

2.1 Cycles in P (k)-graphs

Whenever there are two k-paths between two vertices v, w ∈ V this gives rise to at
least one cycle. So, to avoid such multiple paths we should keep a closer eye on the
cycle structure of our graphs. Especially the even cycles seem to be dangerous for the
P (k)-property as seen in Example 1.11 and more generally explained in the following
observation.

Observation 2.1. The most important thing about even cycles for this topic is that
there are, in contrast to odd cycles, so called antipodal vertices. If C is an even
cycle of length 2` and v ∈ V (C), there is a unique vertex v′ ∈ V (C) (the antipodal
vertex) that together with v divides C into two arcs of length `. These arcs are two
crossing-free `-paths between the same vertices. Thus, if ` ≤ k and in any vertex
v ∈ V (C) there starts a path of length k − ` that does not intersect C again, we
already found a double k-path as seen in Fig. 2.1. For the same reason a chord of
C must have length at most k − ` because a longer chord would contain such an
undesirable (k − `)-path. In Lemma 2.5 we will push this further. We summarize:
even cycles of length 2` with ` ∈ {2, ..., k} are potentially dangerous (where actually
` = k is trivially dangerous and forbidden).

ℓ

k	–	ℓ
vv'

ℓ

k	–	ℓ
vv'

Figure 2.1: The two possible k-paths that may emerge from the existence of an even
2`-cycle.

This, in general, makes the existence of P (k)-graphs more unlikely for odd k be-
cause these graphs necessarily contain even (k + 1)-cycles (see Observation 2.1). A
main objective of this section will be to show that this is not just a problem for odd
k. The following weak criterion suffices to imply an even cycle.
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2 Properties of P (k)-graphs

Lemma 2.2. Let v, w ∈ V be two vertices having three pairwise crossing-free paths
between them. Then G contains an even cycle.

Proof. Call the paths Pi, i = 1, 2, 3. The union of two of these paths is a cycle with
the length the sum of the lengths of the building paths. If |P1|+ |P2| is even then the
union P1 ∪ P2 is an even cycle and we are done. If the sum is odd this means |P1|
and |P2| are of different parity. So one of them must have the same parity as |P3|,
say P1. Hence P1 ∪ P3 is an even cycle.

We will show that the configuration of three crossing-free paths is indeed present.
We need a preparatory lemma.

Lemma 2.3. Every cycle in a P (k)-graph with k ≥ 3 has a chord of length ` ∈
{1, ..., k}.

Proof. Call the cycle C. Choose two vertices v, w ∈ V (C) which are not connected
by a k-path in C. Observe that this is always possible if k ≥ 3. So the k-path P from
v to w has to have edges outside of C. If P and C intersect in exactly s vertices, this
divides P into s+ 1 C-crossing-free subpaths and at least one of them, call it P ′, has
to contain edges outside of C. Of course P ′ is a chord of C and as a subpath of P it
must be of length at most k.

P'

v

w

P1

P2

P3

v

w

P

Figure 2.2: The left side displays the configuration used in the proof of Lemma 2.3.
The right side shows the configuration used in the proof of Lemma 2.4.
At least two of the three paths P1, P2 and P3 combine to an even cycle.

Lemma 2.4. For k ≥ 3 every P (k)-graph contains an even cycle of length 2` for an
` ∈ {2, ..., k − 1}.
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2.1 Cycles in P (k)-graphs

Proof. This is clear for odd k (by Observation 2.1), because the (k + 1)-cycles are
even. For even k choose an odd (k + 1)-cycle C. According to Lemma 2.3 C has a
chord P1 between two vertices v, w ∈ V (C). The vertices v and w divide C into two
arcs P2 and P3. By Lemma 2.2, the three pairwise crossing-free paths P1, P2 and P3

between v and w imply an even cycle. Since the length of the paths are in {1, ..., k}
and 2k-cycles and multi-edges are forbidden, we obtain an even cycle of length 2`
with ` ∈ {2, ..., k − 1}.

Actually we can say more about the possible cycle lengths. Kotzig himself proved
that there cannot exist cycles of length ` ∈ {4, 2k − 6, 2k − 4, 2k − 2}. Further, in
[16] it was shown that the existence of (2k − 8)-cycles leads to a contradiction. The
absence of quadrangles can be explained by observing that any possible path of length
k from a vertex in a C4 to its antipodal vertex induces a double k-path as illustrated
in Fig. 2.3. This restricts the length 2` of an even cycle to 6 ≤ 2` ≤ 2k− 10. Solving
for k gives k ≥ 8. In the case k = 9 there is a 10-cycle, but here this is also a (2k−8)-
cycle which is forbidden. An even stronger statement by Kostochka (see [10]) proves
the non-existence of cycles longer than 4

3
k−2. He also proved the existence of a cycle

of length at least k + 5. We will give a proof of the non-existence of (2k − 2)-cycles
by the following more general lemma. From Observation 2.1 we know that a chord
of an even 2`-cycle is at most of length k − `. We can tighten this bound:

Lemma 2.5. Let G be a P (k)-graph and C an even cycle of length 2`, ` ∈ {2, ..., k−1}
in G. All chords of C are shorter than k − `.

Proof. Assume P to be a chord of C and let v, w ∈ V (C) be its end vertices. If P is
of length at least k − `+ 1 we already found a double k-path in Observation 2.1. So
assume |P | = k − `. We construct a double k-path as seen in Fig. 2.4. The vertices
v and w divide C into two arcs Q and R, say |Q| ≥ |R|. Choose an inner vertex u
from R. This again divides R into two subpaths R1 and R2. Also divide Q into the
subpaths Q1 and Q2 of lengths

|Q1| =
1

2
(|Q|+ |R1| − |R2|), |Q2| =

1

2
(|Q| − |R1|+ |R2|).

Observe that these lengths are positive integers by using that |R| and |Q| are of the
same parity. Further it holds |Q| = |Q1| + |Q2|, so these arcs decompose Q. Let u′

be the common end vertex of Q1 and Q2. Also choose the division of Q as shown in
Fig. 2.4. Now we found the paths

S1 := uR2wPvQ1u
′, S2 := uR1vPwQ2u

′
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2 Properties of P (k)-graphs

Figure 2.3: The upper row shows the possible ways to connect two antipodal vertices
of a C4 (the gray vertices) by a k-path. The two lower rows then show two
k-paths induced by the configuration above. These two paths may use
the two 2-arcs of the C4 as well as a chord between antipodal vertices, if
possible. The gray colored vertices in the lower rows are the end vertices
of the two k-paths.

to be of the same length k. We calculate the length exemplary for S1:

|S1| = |R2|+ |P |+ |Q1|

= |R2|+ |P |+
1

2
(|Q|+ |R1| − |R2|)

= |P |+ 1

2
(|Q|+ |R1|+ |R2|)

= |P |+ ` = k.

S1 and S2 share the end vertices u and u′ and so we found a double k-path. This
cannot be, hence the chord must have length smaller than k − `.

Corollary 2.6. A P (k)-graph does not contain a (2k − 2)-cycle.

Proof. According to Lemma 2.3 such a cycle must have a chord. But because of
Lemma 2.5 this chord would be of length zero which is not possible.

We summarize the results on cycles obtained above and by considerations in [10],
[11] and [16]
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2.2 Dependent substructures

Q1

Q2

R1

R2

P

Q1

Q2

R1

R2

P
v w

u

u'

v w

u

u'

Figure 2.4: Configuration used in the proof of Lemma 2.5. A (k− `)-chord P induces
a double k-path as shown.

Lemma 2.7. Let G be a P (k)-graph for some k ≥ 3. The following statements hold:

(i) G contains an even cycle of length 2` for an ` ∈ {3, ..., k − 5} (cf. [11], [16]).

(ii) G does not contain an even 2`-cycle with ` ∈ {2, k − 4, k − 3, k − 2, k − 1, k}
(cf. [11], [16]).

(iii) G contains a cycle of length at least k + 5 (cf. [10]).

(iv) G does not contain cycles longer than 4
3
k − 2 (cf. [10]).

When we indicated even cycles as potentially dangerous to induce double k-paths
we only spoke about even cycles of lengths at most 2k. Item (iv) now shows that this
is nothing to care about: Whenever there is an even cycle we do not have to check
the length to know of the problems arising.

2.2 Dependent substructures

In the last section we already discussed the problems arising with even cycles. We
mentioned that a path starting in an even cycle and not intersecting it again can cause
a double k-path if it is long enough. So we learned that the path structure that is left
when removing an even cycle cannot be very rich. In detail, we will see that cycles
and paths of certain lengths are always strongly entangled. An additional result will
be an upper bound for the length of a longest path and cycle in a P (k)-graph.

Lemma 2.8. Let G be a P (k)-graph and C an even 2`-cycle in G. It holds:

(i) All cycles of length at least k − ` intersect C.
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2 Properties of P (k)-graphs

C

R

P

Qi

S

w

v

C

R

P

Qi

S

w

v

Figure 2.5: Configuration used in the proof of Lemma 2.8.

(ii) All paths of length at least 2(k − `)− 3 intersect C.

Proof. The idea is to assume the converse and then construct a double k-path as
illustrated in Figure 2.5. We treat part (i) and (ii) together by letting S either a
cycle of length at least k− ` or a path of length at least 2(k− `)−3. Note that ` < k
by Lemma 2.7. Assume S to not intersect C. Since G is connected we can find a path
P from S to C where only the end vertices are contained in S or C. We call these
end vertices v ∈ V (S) and w ∈ V (C). Observe that it is always possible to choose a
path R of length k − ` − |P | < k − ` in S starting in v. But then joining P and R
in v gives rise to a (k − `)-path that starts in w but not intersects C again. This is
a contradiction according to Observation 2.1. So C and S have to intersect.

If we already know that a path or cycle intersects a certain even cycle we can go
further and estimate the number of intersections.

Lemma 2.9. Let G be a P (k)-graph and C an even cycle in G of length 2`.

(i) A cycle of length `′ ≥ k − ` intersects C in at least `′

k−` vertices.

(ii) A path of length `′ ≥ 2(k − `)− 3 intersects C in at least `′+2
k−` − 1 vertices.

Proof. Let S be a cycle or path of the required length which therefore intersects C
in s ≥ 1 vertices (see Lemma 2.8).

(i): We remove the intersection vertices from S which therefore decays into at
most s subpaths. Since S has `′ vertices there are `′− s vertices left for the subpaths
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2.2 Dependent substructures

v1

v2

v3

v4

P1

P2

P3

C

S

Figure 2.6: Construction used in the proof of Lemma 2.9. The path (or cycle) S
is divided into subpaths Pi by removing its crossings v1, ..., vs ∈ V (S)
with C. If |Pi| ≥ k − ` − 1 this leads to a double k-path according to
Observation 2.1.

and hence one of them, call it P , must consist of at least `′−s
s

vertices and has length

at least `′−s
s
− 1. When re-adding the intersection vertices an end vertex of P is now

joined to the cycle C, thus defines a path of length |P | + 1 starting in C and not
intersecting it again. From Observation 2.1 we know that such a path must have
length at most k − `− 1. We derive

k − `− 1 ≥ |P |+ 1 ≥ `′ − s
s

⇒ s ≥ `′

k − `
.

(ii): The proof is analog to (i) but removing s intersection vertices divides S into
at most s+ 1 subpaths. Further S itself has `′+ 1 vertices, so removing the crossings
leaves a subpath of length at least `′+1−s

s+1
− 1. The same considerations as in (i) lead

to the lower bound for s.

The result of the last lemma can be slightly enhanced when requiring s ≥ 2. The
crossings of S and C divide S into subpaths and most of these are chords of C. Using
Lemma 2.5 and a more detailed investigation can yield tighter lower bounds on s but
the ones derived above are sufficient for the further approach.

27



2 Properties of P (k)-graphs

Observation 2.10. What should we keep in mind from Lemma 2.8 and 2.9? We
list some of the most useful consequences for the further approach:

1. If k is odd, then all (k + 1)-cycles intersect each other at least twice. This
follows directly from Lemma 2.9 by setting 2` := k + 1 and `′ := k + 1. In
fact, for general k two 2`-cycles already intersect each other if ` ≥ 1

3
k, and if

we demand ` ≥ 1
2
k they even intersect twice.

2. Cycles of length at least k−1 intersect all even cycles at least twice, e.g. (k+1)-
cycles are such cycles. A (k − 2)-cycle is intersected by all even cycles at least
once.

3. Paths of length at least 2k − 7 intersect all even cycles.

As an additional result we can bound the length of general cycles and paths in
P (k)-graphs. Surprisingly this upper bound only depends on k. The bound attained
for cycles is weaker than the one achieved by Kostochka in [10].

Corollary 2.11. Let G be a P (k)-graph for k ≥ 3 and C an even cycle of length
2`. Let C ′ be a cycle and P ′ be path in G. It holds |C ′| ≤ 2`(k − `) and |P ′| ≤
(2`+ 1)(k − `)− 2. In particular:

|C ′| ≤ 1

2
k2, |P ′| ≤ 1

2
k(k + 1)− 15

8
. (2.1)

Proof. Assume |C ′| > 2`(k− `) or |P ′| > (2`+ 1)(k− `)− 2. Note that this is always
long enough to enforce a crossing with C by Lemma 2.8. Now, when using Lemma 2.9
to estimate the number s of these crossings with C, we obtain s > 2`. This, of course,
is not possible since |C| = 2`. The inequalities (2.1) can be achieved by observing
that the upper bound is maximized for ` = 1

2
k for cycles and ` = 1

4
(2k − 1) for

paths.

A powerful result of this section is that the cycle structure of a P (k)-graph for odd
k is pretty entangled in the sense that all (k + 1)-cycles intersect each other at least
twice. This will be the basis of the attack presented in Chapter 3. To max out the
applicability of this approach, we show that this is not a peculiarity for odd k.

Lemma 2.12. Let G be a P (k)-graph for k ≥ 3. Any two (k+1)-cycles in G intersect
at least twice.

Proof. This is clear for odd k as discussed in Observation 2.10. So let k be even and
C and C ′ two odd (k+ 1)-cycles in G. From Lemma 2.4 we know that C has a chord
P that together with some arc P ′ of C builds an even cycle C̃ of length 2`. Say the
end vertices of P are v, w ∈ V (C). In Observation 2.10 we mentioned that C ′ has
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2.2 Dependent substructures

C

C'

P1

P2

v

v'

w'

w

v

C

C'

w

P1

Q Q' R' R Q R

Q' R'

v'

Figure 2.7: Construction used in the proof of Lemma 2.12. The configuration on the
right hand side can be seen as a special case of the configuration on the
left hand side when |P2| = 0 and w = w′. The shaded area represents the
interior of the even cycle S := QP1Q

′P2 used in the proof.

to intersect all even cycles at least twice, especially C ′ intersects C̃ twice. If two of
the crossings are in P ′ we found two intersections of C and C ′ and so we are done.
Hence, consider the following two cases:

(i) If only one crossing of C ′ and C̃ lies in P ′, then there has to be another one
in P . Choose the first intersection vertex v′ of P and C ′ by starting at v and
following P . Let P1 := vPv′ be the subpath of P between v and v′.

(ii) If there is no crossing of C ′ and P ′, choose the first and last intersection vertex
of C ′ and P (again with respect to the order induced by P , starting in v). Call
these vertices v′ and w′. Also define the subpaths P1 := vPv′ and P2 := wPw′.

Note that this gives rise to a configuration as seen in Fig. 2.7 and further that the
first case can be seen as the second one by setting |P2| = 0 and defining w = w′ to be
the only intersection of C and C ′. So we can treat the cases together. The vertices
v and w divide C into two arcs Q and R. Respectively C ′ is divided into the arcs
Q′ and R′ by v′ and w′. Observe that either QP1Q

′P2 or RP1Q
′P2 is an even cycle

because of Lemma 2.2 and C is odd. W.l.o.g. assume the former one, call it S, to
be even. The paths R and R′ are chords of S and according to Lemma 2.5 we know
there must hold

1

2
|S|+ |R| < k,

1

2
|S|+ |R′| < k.
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2 Properties of P (k)-graphs

We consider the sum of these inequalities and derive

2k > |S|+ |R|+ |R′|
= |P1|+ |P2|+ |Q|+ |Q′|+ |R|+ |R′|
= |P1|+ |P2|+ 2(k + 1)

which rearranges to |P1| + |P2| + 1 < 0. This, of course, is a contradiction and we
conclude that C and C ′ have to intersect.

In Chapter 3 we will extend the result above: two (k + 1)-cycles have to intersect
at least five but at most k− 1 times. Since this implies 5 ≤ k− 1, this will prove the
conjecture for k ≤ 5.

2.3 Connectivity

Lemma 2.13. For k ≥ 3 every P (k)-graph is 2-connected.

Proof. We know G is connected. Consider the blocks (2-connected components) of G.
A block always contains an edge. If e is an edge and C the (k+ 1)-cycle e belongs to,
then e and C are part of the same block. Hence each block contains a (k + 1)-cycle.
But two distinct blocks intersect at most in a single node (a cut point). For k ≥ 3
this is a contradiction to Lemma 2.12 which states that two (k + 1)-cycles have to
intersect at least twice. Thus, G consists of a single block and is 2-connected.

Besides the vertex connectivity κ we can discuss the edge connectivity κ′ which
will turn out to be always even. Actually we can see more.

Observation 2.14. When partitioning the set V of vertices into two disjoint sets
V1, V2 ⊆ V with V1 ∪ V2 = V , the set M of edges passing between vertices from
different sets is called a cut of G. Each cycle in G must pass the cut an even number
of times because for each transition from V1 to V2 it has to return to V1 over another
unused edge. Further, by Observation 1.2 G is decomposable into (k + 1)-cycles Ci.
This induces a decomposition of M into the sets Mi := M ∩E(Ci). Since all the sets
Mi are pairwise disjoint and of even size, also |M | has to be even.

We recall that κ′ is the size of the smallest cut, hence even by the observation
above.
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2.4 Subgraphs of P (k)-graphs

2.4 Subgraphs of P (k)-graphs

To prove properties for all P (k)-graphs it would be helpful to use induction on a
simple graph parameter, e.g. the number of vertices or edges. We observe that this
is not so easy:

Observation 2.15. Every edge e ∈ E is contained in a (k + 1)-cycle. Such a cycle
contains k+1 paths of length k and only one of them does not contain e. So every edge
is contained in at least k paths of length k. This means that removing a single edge
will not result in a P (k)-graph anymore. The same holds when removing vertices.
By the same considerations as above we can conclude that a vertex is always an inner
vertex (a non-end vertex) of a k-path. This shows that a simple induction on the
number of vertices or edges is not possible.

Lemma 2.16. Let G be a P (k)-graph for some k ≥ 3. A proper subgraph of G
cannot be a P (k)-graph on its own.

Proof. Assume H ⊂ G to be a proper subgraph of G and also a P (k)-graph. From
Observation 2.15 we know that only removing edges will not result in a P (k)-graph.
So G−H is not empty. Let H ′ be a single connected component of G−H. Further
define ∂H to be the set of vertices in H with neighbors in H ′ and respectively ∂H ′

the set of vertices in H ′ with neighbors in H. The proof will proceed in two steps.
Because all pairs of distinct vertices from H do already have a connecting k-path in
H, we have to ensure that including H ′ does not give rise to another possible k-path
between the same end vertices. In step 1 we will derive that because of this, the
vertices of ∂H ′ have to be of a certain large distance in H ′. In the second step this
will cause a contradiction when considering (k + 1)-cycles containing edges from H ′.

Step 1: The set ∂H must be of size of at least two because it is a separator of G
and according to Lemma 2.13 G is 2-connected for k ≥ 3. Choose v, w ∈ ∂H and for
each one a neighbor in H ′, say v′ and w′ (see Fig. 2.8). Since H ′ is connected there is
a path P ⊆ H ′ between v′ and w′ which is possibly of length zero if v′ = w′. Further
we have a k-path Q ⊆ H between v and w. This forms a cycle C := vv′Pw′wQv of
length |P | + k + 2. Choose a subpath Q′ of Q of length |P | + 2. This is possible if
|P | ≤ k−2. Q′ is an arc of C. The other arc is of length (|P |+k+2)− (|P |+2) = k,
contains vertices in H ′ and connects two vertices in H. But because H is already
a P (k)-graph there is a k-path with the same end vertices completely contained in
H. This is a contradiction. We conclude |P | ≥ k − 1, in particular v′ 6= w′ and
|V (H ′)| ≥ |P |+ 1 ≥ k.

Step 2: Because |V (H ′)| ≥ k (from step 1) and H ′ was chosen to be connected,
we can choose an edge e in H ′ and a (k + 1)-cycle C ⊆ H. From Lemma 2.12 we
know that the (k + 1)-cycle C ′ that contains e must intersect C at least twice, thus
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2 Properties of P (k)-graphs

must contain two vertices from H. Also C ′ must have an arc in H ′ of length at least
k− 1 between the vertices connected to H (by step 1). So C ′ contains at least k + 2
vertices. But this is a contradiction and we are done.

Q

H

H'

H

H'
P

Q'

v

v'

w

w'

v

v'

w

w'

Figure 2.8: Configuration used in the first step of the proof of Lemma 2.16. The right
hand side emphasizes the complementary arc to Q′ in C.

Note that the assumption k ≥ 3 is essential for the lemma because a triangle is a
P (2)-graph but subgraph of all windmills.

2.5 Symmetries

As we will see in this section, P (k)-graphs are either completely asymmetric or of a
certain rotational symmetry.

Lemma 2.17. An automorphism f ∈ Aut(G) of a P (k)-graph G is either the identity
or has at most one fixed point, i.e. at most one vertex v ∈ V with f(v) = v.

Proof. Let H ⊆ G the subgraph of G induced by the set of fixed points of f . If f = id
then G = H. Assume H to be a proper subgraph with |V (H)| ≥ 2. According to
Lemma 2.16 H is no P (k)-graph on its own. Hence, there are two vertices v, w ∈
V (H) with the property that the connecting k-path P = vv1 · · · vk−1w (in G) is not
completely contained in H. But then the image under f is P ′ = vf(v1) · · · f(vk−1)w
which is different from P because some of the vertices v1, ..., vk−1 are no fixed points
of f . So we found two k-paths P and P ′ between v and w and this is a contradiction.
Hence |V (H)| ≤ 1.

This result suffices to classify all possible symmetries of P (k)-graphs.
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2.6 Degree estimations

Corollary 2.18. For k ≥ 3 every automorphism of a P (k)-graph is either the identity
or a rotation, i.e. there is at most one fixed point and the orbits of all other vertices
are equally long.

Proof. From Lemma 2.17 we know that if f ∈ Aut(G) is not the identity then there
is at most one fixed point. Now assume there are two vertices v, w ∈ V (G) which
are no fixed points but have orbits of different length. We denote the length of the
orbit by ordf (v) and ordf (w) and assume w.l.o.g. 2 ≤ ordf (v) < ordf (w). Then
define g := f ordf (v) as an iteration of f . The vertices v, f(v), ..., f ordf (v)−1(v) are fixed
points of g. Since these are more than one we conclude g = id. But we also see that
w is no fixed point of g because otherwise its order is at most ordf (v). This is a
contradiction.

2.6 Degree estimations

In this section we will derive some bounds on the maximum degree ∆ and average
degree d̄ of P (k)-graphs. The only known bound on the minimal degree is the trivial
one: δ ≥ 2 from Observation 1.2. We need the following observation on the diameter
of P (k)-graphs:

Lemma 2.19. Let G be a P (k)-graph for k ≥ 3. It holds diam(G) ≤ 2
3
k − 3.

Proof. Let v, w ∈ V (G) be two vertices. Because G is 2-connected we can use the
theorem of Menger (see [6] p. 50 ff.) to conclude that there are two crossing-free
paths P1 and P2 from v to w. The union P1 ∪ P2 is a cycle C and according to
Lemma 2.7 of length at most 4

3
k − 6. Hence, one of the paths P1 and P2 is of length

at most 1
2
|C| = 2

3
k − 3. This holds for all pairs of vertices and so we are done.

Note that this also holds for k ≤ 4 despite of the fact that 2
3
k− 3 < 0, because we

already know that P (k) is the empty set for such values of k. Our next result will
be a simple lower bound for the maximum degree ∆ of P (k)-graphs. Actually the
derived bound holds for all graphs of diameter at most 2

3
k − 3. An upper bound is

given by ∆ ≤ 2ck+1 with ck+1 the number of (k + 1)-cycles in G. This follows from
the fact that different (k + 1)-cycles do not share edges and each cycle passes each
vertex at most once.

Lemma 2.20. For the maximum degree ∆ of a P (k)-graph G holds

∆ ≥ 1 +

(
n+ 1

2

) 3
2k−6

= Ω
(
n

3
2k−6

)
. (2.2)
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Proof. Choose an arbitrary vertex v ∈ V . We estimate the size of the `-neighborhood
N `
G(v) with the maximum degree ∆:

|N `
G(v)| ≤ ∆(∆− 1)`−1.

We know from Lemma 2.19 that G is of diameter at most 2
3
k − 3. Therefore every

other vertex than v is contained in some `-neighborhood for an ` ∈ {1, ..., 2
3
k − 3}

and there must hold

n− 1 ≤
2k/3−3∑
`=1

|N `
G(v)|

≤ ∆

2k/3−3∑
`=1

(∆− 1)`−1

= ∆
(∆− 1)2k/3−2 − 1

∆− 2

=

(
1 +

2

∆− 2

)(
(∆− 1)

2k/3−2 − 1
)
.

We know that ∆ ≥ 4 and hence deduce n − 1 ≤ 2
(
(∆− 1)2k/3−2 − 1

)
which results

in statement (2.2).

For the further observations we need two classical results. The proofs are included
because they are short and instructive.

Lemma 2.21. Let G be a graph of average degree d̄G = 2d (note: d does not have to
be integral). Then there is a subgraph H ⊆ G with minimum degree δH ≥ d + 1 and
average degree d̄H ≥ 2d.

Proof. If G has minimum degree δ ≥ d + 1 we are done. Otherwise we can choose
a vertex v0 of degree d0 := dG(v0) ≤ d. If we remove v0 from G we can express the
new average degree by

d̄G−v0 =
nd̄G − 2d0

n− 1
.

Using this identity we see that d̄G−v0 < d̄G implies d̄G < 2d0 ≤ 2d. But this is a
contradiction. Hence by removing a vertex of degree at most d the average degree
is never decreasing and finally by repeating this procedure we arrive at a graph of
minimum degree δH ≥ d+ 1 since all vertices of smaller degree are removed.

Lemma 2.22. Let G be a graph not containing a k-path. Then the number of edges
is bounded by

|E| ≤ k − 1

2
n.
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2.6 Degree estimations

v0

vℓvi

vi+1

Figure 2.9: A path with the required configuration as used in the proof of
Lemma 2.22. The emerging (`+ 1)-cycle is emphasized.

Proof. Assume |E| > k−1
2
n which implies d̄G = 2|E|

n
> k−1. According to Lemma 2.21

we can find a subgraph H ⊆ G with minimum degree δH > 1
2
(k + 1) and average

degree d̄H > k−1. In particular, if H is not connected we can consider its connected
component of the largest average degree. In the case of choosing H to be this com-
ponent this also guarantees the foregoing degree estimations. Note that H must have
at least k + 1 vertices.

Assume P = v0v1 · · · v` to be the longest path in H of length ` < k, which then
leads to a contradiction as follows: We show that this path can be used to find an
(` + 1)-cycle in H. Because H is connected and has at least one more vertex (the
path contains at most k vertices) there must be a vertex adjacent to this cycle. If
we start in this vertex, go over to the cycle and traverse it in an arbitrary direction,
we finally get a path of length ` + 1 which is a contradiction to the choice of P . It
would follow ` ≥ k and so it remains to construct this (`+ 1)-cycle.

Since P cannot be extended, all the neighbors of v0 and v` must already be con-
tained in P . So there are more than 1

2
(k+ 1) neighbors of v0 in P . Each one of these

has a previous vertex (with respect to the order induced by P ). So there are fewer
than `− 1

2
(k+1) < 1

2
k vertices left which are not followed by a neighbor of v0. These

are not enough to cover all neighbors of v` in P which are more than 1
2
(k+ 1) many.

Hence there is a pair vi, vi+1 ∈ P which satisfies that vi is adjacent to v` and vi+1 is
adjacent to v0. Now C := v0v1 · · · viv`v`−1 · · · vi+1v0 is the desired (` + 1)-cycle (see
Fig. 2.9) and we are done.

The last lemma, together with the upper bound 1
2
k(k+ 1)− 15

8
on the path length

in P (k)-graphs from Corollary 2.11, already shows that for the edge count of P (k)-
graphs holds |E| = O(n), thus they indeed do not fit the purpose of representing
edge-rich C2k-free graphs as discussed in the introduction. In detail, we can derive

|E| ≤ 1

4

(
k(k + 1)− 23

4

)
n <

1

4
k2n.

So the edge count is linearly bounded above with respect to k2 and n. The following
result will tighten this estimation in the way, that the upper bound is even linear in
k.
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2 Properties of P (k)-graphs

Lemma 2.23. Let G be a P (k)-graph and C an even cycle of length 2` in G. It
holds d̄ < 2(k + `− 2). In detail there holds:

(i) d̄ < 3k − 3 for odd k.

(ii) d̄ < 10
3
k − 6 for even k.

Proof. The idea is to remove the even cycle C from G. This directly deletes at most
2`∆ edges. The remaining graph, according to Lemma 2.8, contains no path of length
2(k − `)− 3 or longer. Here we can use the previous Lemma 2.22 and estimate

|E| ≤ |E(G \ C)|+ 2`∆

≤ [2(k − `)− 3]− 1

2
n+ 2`∆

= (k − `− 2)n+ 2`∆.

Because of the identity d̄ = 2|E|
n

and ∆ < n we found the first bound:

d̄ ≤ 2(k − `− 2) + 4`
∆

n
< 2(k − `− 2) + 4` = 2(k + `− 2).

This upper bound is tighter if ` is smaller and therefore we try to use the smallest even
cycle of G we know of to bound d̄. For odd k we know about the even (k+ 1)-cycles,
hence we can choose ` = k+1

2
and get (i). For even k we only know the existence of

even cycles with length at most 4
3
k − 2 by Lemma 2.7 and so we can only assume

` ≤ 2
3
k − 1 which leads to (ii).

In Chapter 4 we shall see that some generalizations of P (k)-graphs necessarily
lead us to regular graphs as only possible solutions. Combining Lemma 2.20 and
2.23 shows that there are at most finitely many regular P (k)-graphs for k ≥ 3. In
the case of regular graphs it must hold d̄ = ∆. Using the established lower and upper
bounds yields

1 +

(
n+ 1

2

) 3
2k−6

≤ 3k − 3 ⇒ n ≤ 2(3k − 4)
2k−6

3 − 1

for odd k and a qualitatively equivalent result for even k. Now we are going to use
the connection between edge count and the number of (k + 1)-cycles to derive

Corollary 2.24. Let G be a P (k)-graph and ck+1 the number of (k+ 1)-cycles in G.
It holds:

(i) ck+1 ≤ 3
2
n for odd k.

(ii) ck+1 ≤ 5
3
n for even k.
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2.7 Summary

Proof. Since G possesses a decomposition into all its (k + 1)-cycles that contains
every edge in E exactly once, we derive

ck+1 =
|E|
k + 1

=
d̄n

2(k + 1)
.

Using the estimations on d̄ from Lemma 2.23 directly leads to above estimations on
ck+1.

In [3] Bondy proved an even better upper bound for odd k only dependent on k:
ck+1 ≤ 1

2
(k − 1). When ck+1 is bounded, also the edge count is. But with a limited

number of edges, graphs with to many vertices are no longer connected. Hence in the
case of odd k there is also an upper bound for n. This implies that there are at most
finitely many P (k)-graphs for odd k. A lower bound on the number of (k+ 1)-cycles
was proven in [10]: ck+1 ≥ 4.

2.7 Summary

In this chapter we collected properties of P (k)-graphs for general k ≥ 3. Some of
these results are new, some are known but may were presented with a new proof.
This section lists what should mainly be kept in mind from the whole chapter. Of
course, these are not the final answers and further results are welcome.

Theorem 2.25. Let G be a P (k)-graph for some k ≥ 3. The following statements
hold:

(i) G is uniquely decomposable into edge disjoint (k + 1)-cycles and these are the
only (k + 1)-cycles in G (see Observation 1.2).

(ii) G contains an even cycle of length 2` with ` ∈ {3, ..., k − 5} but no even cycle
for ` ∈ {2, k − 4, k − 3, k − 2, k − 1, k} (cf. [11], [16]).

(iii) G contains a cycle of length at least k + 5, but all cycles are of length at most
4
3
k − 2 (cf. [10]).

(iv) Any two (k+ 1)-cycles in G intersect at least twice. This will be extended to at
least five and at most k − 1 crossings in Chapter 3 (see Lemma 2.12, [3]).

(v) All paths in G are of length at most 1
2
k(k + 1)− 15

8
(see Corollary 2.11).

(vi) G is 2-connected. Any cut is of even size, hence the edge-connectivity is even
(see Section 2.3).

(vii) A proper subgraph of a P (k)-graph cannot be a P (k)-graph on its own (see
Section 2.4).
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2 Properties of P (k)-graphs

(viii) G is either asymmetric or has a rotational symmetry, i.e. an f ∈ Aut(G) has
at most one fixed point and the orbits of all other vertices are equally long (see
Section 2.5).

(ix) δ ≥ 2, ∆ = Ω
(
n

3
2k−6

)
, and d̄ = O(n) (see Section 2.6).

(x) For fixed odd k there are only finitely many P (k)-graphs (see last paragraph in
Section 2.6).

(xi) If ck+1 is the number of (k + 1)-cycles in G, it holds 4 ≤ ck+1 ≤ 1
2
(k − 1) for

odd and 4 ≤ ck+1 ≤ 5
3
n for even k (see Corollary 2.24).

(xii) k ≥ 21 (see [10]). �
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3 The cycle-intersection-conjecture

When one starts studying P (k)-graphs a common way to get a feeling for the possi-
bilities and impossibilities of such graphs is trying to construct one. A good point to
start a construction is a subgraph we surely know to exist, e.g. a (k + 1)-cycle. But
already installing a second (k + 1)-cycle presents problems. A bit of experimenting
reveals that it is a hard task to configure the cycles that way that they do not contain
two k-paths with the same end vertices. Actually, it seems to be impossible if one
tries to intersect the cycles at least twice. This observation leads us to the following
conjecture which could be used to attack the conjecture of Kotzig.

Conjecture 3.1 (cycle-intersection-conjecture). Whenever two cycles of length k+1
intersect in at least two vertices, their union contains a double k-path.

This idea was already mentioned in [3] as a possible attack, labeled as worth
to examine. If this conjecture turns out to be true this will give a direct proof
of the conjecture of Kotzig: all (k + 1)-cycles have to intersect at least twice (see
Lemma 2.12) and ck+1 ≥ 4. We were not able to give a full proof of the conjecture, but
we will present some techniques and handle some cases for small and large numbers
of crossings or nearly uniform vertex distributions.

Troughout this chapter we will always work in the context of the cycle-intersection-
conjecture: the graph G is always a cycle intersection, i.e. the union of two edge
disjoint (k + 1)-cycles C1 and C2 for k ≥ 3 which intersect in s ≥ 2 vertices (the
case of not edge disjoint cycles is trivial and was discussed in Observation 1.2). This
can look like as illustrated in Fig. 3.1. To avoid confusion we emphasize that some
subpaths of e.g. C1 which are referred to as arcs of C1 can also be interpreted as
chords of C2 and vice versa as long as their end vertices are crossings of these cycles.
So it might be the case that a path P is a chord of C1 but a chord from C2, which
means P ⊆ C2. Therefore, most of the time we will just omit to state explicitly the
cycle a chord or arc belongs to. This means we write, e.g. “P is a chord” instead of
“P is a chord of C1”. This includes that if not mentioned otherwise the word “chord”
(or “arc”) always refers to a chord (or an arc) of C1 or C2. Also, when not referring
to a certain cycle, the words “chord” and “arc” can be used interchangeably. We will
prefer to call it a chord. So each of the cycles C1 and C2 consists of s chords. All this
conventions will come in useful especially when introducing the following generalizing
terms:
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3 The cycle-intersection-conjecture

C1

C2

Figure 3.1: An exemplary configuration of the cycles-intersection-conjecture. One of
the cycles (here C1) can be viewed as an actual circle, the other one (here
C2) is represented by a chain of chords of the first one. Note that only
the intersection vertices are drawn and there may be inner vertices not
included in this simplified illustration.

Definition 3.2. (i) An inner vertex is a vertex of G that is not an intersection
vertex of the cycles.

(ii) A subpath of C1 (or C2) whose end vertices are intersection vertices is called a
near-chord.

(iii) Let P and P ′ be a chord and a near-chord from different cycles. If P and P ′

only intersect in their end vertices, then the cycle P ∪ P ′ is called a near-loop.

(iv) A near-loop is called chord-dominated if its chord is at least as long as its
near-chord.

(v) A near-loop consisting of two chords is called a loop.

Note that a chord (of C1 or C2) is a special case of a near-chord where only the
end vertices are crossings of the cycles. Also the decomposition of a near-loop into
a chord and a near-chord is unique. Hence we can speak of the near-loop’s chord
or near-chord. Figure 3.2 visualizes above definitions. The next definition will be a
useful tool in many proofs of this chapter:

Definition 3.3. The chord graph Gc = (V c, Ec, I) of a cycle intersection G is a
multi-graph defined by its vertex set V c and edge set Ec, as well as an incidence
relation I ⊆ V c × Ec:

(i) V c is the set of intersection vertices of G.

(ii) Ec is the set of chords of G.
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chord

near-chord near-loop

loop

Figure 3.2: On the left side a chord (through the white vertices) and a near-chord
(through the gray vertices). On the right side a loop (through the white
vertices) and a near-loop (through the gray vertices).

(iii) A vertex v ∈ V c and an edge e ∈ Ec are incident (i.e. (v, e) ∈ I) if v is an end
vertex of e.

For e ∈ Ec the term |e| means the length of the chord e as seen in G.

Observation 3.4. The multi-graph Gc can be seen as emerging from G by just
ignoring the inner vertices (see Fig. 3.3). So each former chord now directly connects
two vertices. We emphasize that paths and cycles in Gc can also be seen as paths
and cycles in G: If S is a path (resp. a cycle) in Gc, then

⋃
e∈E(S) e is a path (resp.

a cycle) in G of length
∑

e∈E(S) |e|. This path (or cycle) in G will also be denoted
by S. We also mention that loops of G are multi-edges (i.e. 2-cycles) of Gc. Note
that chord graphs have exactly s vertices and are always 4-regular because of the
four chords starting in each intersection vertex of G. Also Gc is a generalized cycle
intersection which is a regular cycle intersection that may contain multiple edges (see
the example in Fig. 3.3). Gc consists of two s-cycles intersecting s times.

In the next two sections we will prove the cycle-intersection-conjecture for some
values of s. Section 3.3 then generalizes the results of Section 3.1. Although the main
result of Section 3.1 is a direct consequence of Lemma 3.18 from the later section,
we introduce it separately as it is done in most of the literature (e.g. see [3]). The
content of Section 3.3 then is a new result of this thesis.
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3 The cycle-intersection-conjecture

G G
c

Figure 3.3: The multi-graph on the right side is the chord graph Gc of the graph on
the left side. It emerges from G by “forgetting” about the inner vertices.
Only the intersection vertices (the white ones) are left. Gc is a generalized
cycle intersection because it contains a multiple edge.

3.1 Equally long chords and the cases s ∈ {k, k + 1}

In the case s = k + 1, when all vertices are intersection vertices and there are no
inner vertices, the graph G := C1 ∪ C2 has exactly k + 1 vertices and is isomorphic
to its chord graph Gc. Here the cycles C1 and C2 are two Hamiltonian cycles of G
and a k-path is necessarily a Hamiltonian path. Consequently we are interested in
finding two Hamiltonian paths with the same end vertices. A Hamiltonian path can
be obtained by deleting an edge from a Hamiltonian cycle. If we know about two
Hamiltonian cycles sharing an edge, we can remove this common edge and each of
the cycles becomes a k-path, both with the same end vertices. Unfortunately the
already known Hamiltonian cycles C1 and C2 are edge disjoint. Thus, the hard part
in performing this idea is finding a Hamiltonian cycle CH containing edges from both
cycles C1 and C2. For this purpose we need the term of Hamiltonian decomposition
and a powerful theorem on 4-regular graphs which we are not going to prove here.

Definition 3.5. Let G be a graph. A Hamiltonian decomposition of G is a set of
edge disjoint Hamiltonian cycles of G whose union is the whole graph again.

Theorem 3.6 (Thomason, [15]). Let G be a 4-regular (multi-)graph and e1, e2 ∈
E(G) two edges. There is an even number of Hamiltonian decompositions of G.
Further there is an even number of Hamiltonian decompositions of G that assign e1

and e2 to the same cycle.

Observation 3.7. The statement of Theorem 3.6 will be used in the following dif-
ferent way: If G is 4-regular and e1, e2 ∈ E(G) are two edges, then there is an even
number of Hamiltonian decompositions of G that assign e1 and e2 to different cycles.
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3.2 Loops and the cases s ∈ {2, 3, 4}

Since the total number of Hamiltonian decompositions is even and the part that as-
sign e1 and e2 to the same cycle is of even size too (see Theorem 3.6), their difference
is also even. This was the number we are looking for.

Corollary 3.8. For a (generalized) cycle intersection G with s = k + 1 there is a
Hamiltonian cycle in G that contains edges from C1 and from C2.

Proof. Note that G is 4-regular because it is isomorphic to its 4-regular chord graph
Gc (see Observation 3.4). Choose e1 ∈ E(C1) and e2 ∈ E(C2). The pair (C1, C2)
is a Hamiltonian decomposition of G with e1 and e2 in different Hamiltonian cycles.
According to Observation 3.7 there must be at least one more decomposition into
Hamiltonian cycles C ′1 and C ′2. Of course, C ′1 (resp. C ′2) has to contain edges from
C1 and C2 because otherwise (C ′1, C

′
2) equals the decomposition (C1, C2).

As discussed above this solves the case s = k + 1. This can be extended to the
following case:

Lemma 3.9. If the chords of C1 and C2 are all of the same length ` with at most
one exception per cycle, then G contains a double k-path.

Proof. Let e1 ⊆ C1 and e2 ⊆ C2 be the two chords of lengths different from `, or
arbitrary chords if all chords are of the same length. Consider the chord graph Gc

of G and note that e1, e2 ∈ Ec. As mentioned in Observation 3.4 Gc is a generalized
cycle intersection of s-cycles, also called C1 and C2, with s crossings. So we can use
Corollary 3.8 to construct a Hamiltonian cycle CH in Gc containing e1 but not e2

and also different from C1. In Gc the cycle CH is of length s. Because at most e1

has a length different from ` we observe a length of (s− 1)`+ |e1| = |C1| = k+ 1 for
CH in G. Also C1 and CH share the chord e1. So removing a single edge e of e1 in
G yields two paths of length k between the end vertices of e and we are done.

Lemma 3.9 includes the case s = k: all chords are single edges except for two which
are of length two.

3.2 Loops and the cases s ∈ {2, 3, 4}

For the cases s ∈ {2, 3, 4} we need to have a closer look at the influence of loops on
the path structure of G. We will see that both, even and odd loops, may imply a
double k-path. The fact that for small s all possible cycle intersections have such
loop configurations proves the cycle-intersection-conjecture for these special cases.
The case s = 2 is treated separately.
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3 The cycle-intersection-conjecture

Q1 Q2

C1 C2

v

w

P1

P2 P3

P4

R

Figure 3.4: Configuration used in the proof of Lemma 3.10, two (k + 1)-cycles inter-
secting twice.

Lemma 3.10. If s = 2 there is a double k-path.

Proof. Let v, w ∈ V (C1)∩V (C2) be the intersection vertices. Observe that the arcs of
C1 and C2 between these vertices are four pairwise crossing-free paths Pi, i = 1, 2, 3, 4
between v and w. W.l.o.g. |P1| ≥ |P2| ≥ |P3| ≥ |P4|. Because the lengths of two arcs
from the same cycle sum up to k + 1 it holds

|P1|+ |P4| = k + 1, |P2|+ |P3| = k + 1, |P1|, |P2| ≥
k + 1

2
.

We know that the union of two of the three paths P1, P2 and P3 gives an even cycle
(see Lemma 2.2). Also all three paths are of length at most k, hence the cycle
is of length at most 2k.1 Call the two paths forming this cycle Q1 and Q2 and the
remaining path R (see Fig. 3.4). Note that R is a chord of the cycle Q1∪Q2. Because
of the considerations on even cycles in Observation 2.1 it must hold

k ≥ 1

2
(|Q1|+ |Q2|) + |R|

=
1

2
(|Q1|+ |Q2|+ |R|) +

1

2
|R|

=
1

2
(|P1|+ |P2|+ |P3|) +

1

2
|R|

=
1

2
|P1|+

k + 1

2
+

1

2
|R|.

1Note that we have to check this because we no longer can use the statements of Lemma 2.7 which
is only valid in the context of P (k)-graphs.
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3.2 Loops and the cases s ∈ {2, 3, 4}

But this rearranges to |R| + 2 ≤ k + 1 − |P1| = |P4| which is impossible because P4

is the shortest of these paths.

Lemma 3.11. If G contains an even loop then also a double k-path.

Proof. Let C be the loop of length 2` and observe that 2 ≤ ` < k. Let P1 ⊆ C1 and
P2 ⊆ C2 be the two chords the loop consists of. Assume w.l.o.g. |P1| ≥ |P2|, hence
|P2| ≤ `. P2 is an arc of C2, so let P ′2 ⊆ C2 be the other arc which now is a chord of
C. It holds |P ′2| ≥ k + 1− `. But according to Lemma 2.5 a chord of C of length at
least k − ` implies a double k-path.

Observation 3.12. Note that the last result for even loops also holds for chord-
dominated even near-loops. Using the terms of the proof of Lemma 3.11, P1 would
be a chord. So P ′2 is C-crossing-free and the proof works as before.

Observation 3.13. From Observation 2.1 we know that an even cycle potentially
implies a double k-path. But there is a similar mechanism working for odd cycles if
there are two of them. Of course, an odd cycle cannot be divided into arcs of the
same length, but the idea is to compensate this difference by a corresponding choice
of the arcs in the second odd cycle. The approach is essentially illustrated in Fig. 3.5.

P1

C'C

P2

P'2

P'1

Q

R

C'C
Q

R

Figure 3.5: A pair of cycles of matching parity may induce a double k-path. The
chords P1, P2, P ′1 and P ′2 are chosen that way, that it holds |P1|+ |P ′2| =
|P ′1|+ |P2|.

The two odd cycles C and C ′ are divided into the arcs P1, P2 ⊆ C and P ′1, P
′
2 ⊆ C ′.

The cycles are connected by a path Q and there is an additional path R starting in
one of the cycles, say in C ′, and not intersecting the cycles again. The important part
is that the arcs must be chosen that way, so that |P1|+ |P ′2| = |P2|+ |P ′1|. Since the
arcs of C ′ are predefined by its crossings with Q and R, there are some restrictions
on the length of C. In general there are the following difficulties in finding such
configurations:

1. The cycle C has to be long enough to compensate the encountered difference
in the arc lengths of C ′. This is always satisfied if |C| ≥ |C ′|.
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3 The cycle-intersection-conjecture

2. The path Q must not be too long because otherwise a k-path might not com-
pletely pass around the second cycle. In detail it must hold |Q|+ |P1|+ |P ′2| ≤ k
or equivalent |Q|+ |P2|+ |P ′1| ≤ k.

3. The path R must not be too short because otherwise there might be not enough
space to accomplish a single k-path. In detail it must hold |R|+|Q|+|P1|+|P ′2| ≥
k or equivalent |R|+ |Q|+ |P2|+ |P ′1| ≥ k.

Note that this technique not only works for two odd cycles, but also if the both cycles
are even. The only important fact are the matching parities of the cycle lengths.

Although these are a lot of things to care about we will see that such a configuration
can be found if there are two odd loops in G. The proof of the following lemma is
a bit long because we have to check the three conditions from above but it mainly
follows Observation 3.13.

Lemma 3.14. If G contains two odd loops then also a double k-path.

Proof. We try to find a configuration as discussed in Observation 3.13 (see Fig. 3.6).
The two odd cycles are represented by the odd loops C and C ′. Choose |C| ≥ |C ′|.
Call the chords that the loops consist of P1, P2 ⊆ C and P ′1, P

′
2 ⊆ C ′ where P1 and

P ′1 are from C1 and P2 and P ′2 are from C2. W.l.o.g. assume

|P1|+ |P ′1| ≥ |P2|+ |P ′2|. (3.1)

The paths P2 and P ′2 are arcs of C2 and between these there are two more arcs Q and
R of C2, possibly of length zero. Choose |R| ≥ |Q|. If |Q| = |R| = 0 we are in the case
s = 2 in which we know of the existence of a double k-path (see Lemma 3.10). Hence
assume |R| ≥ 1. Define the two edge disjoint arcs P̃1 and P̃2 of C, both starting in
the same vertex v and of length

|P̃1| =
1

2
(|P1|+ |P2|+ |P ′1| − |P ′2|), |P̃2| =

1

2
(|P1|+ |P2| − |P ′1|+ |P ′2|).

Observe that these lengths are positive integers according to (3.1) and the odd length
of the loops. These paths indeed satisfy the following important conditions:

(i) The lengths of P̃1 and P̃2 sum up to |C|, hence it holds |P̃1|+ |P̃2| = |P1|+ |P2|.
These arcs decompose C and are both between the same end vertices.

(ii) The identity |P̃1| + |P ′2| = |P̃2| + |P ′1| is satisfied, thus the different lengths of
the arcs of both loops compensate perfectly.

We are done building the configuration of Observation 3.13. It remains to check the
two requirements on the paths Q and R:
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3.2 Loops and the cases s ∈ {2, 3, 4}

R

Q

P1
~ P'2

R

Q

P2
P'1

~

v v

Figure 3.6: Configuration used in the proof of Lemma 3.14. This applies the idea
discussed in Observation 3.13 and constructs the two k-paths between
the gray vertices.

Step 1: Assume Q is too long, i.e. |Q|+ |P̃1|+ |P ′2| > k or equivalent |Q|+ |P̃2|+
|P ′1| > k. Consider the sum of these inequalities and assume at first that |Q| = |R|.
We obtain

2k < 2|Q|+ |P̃1|+ |P̃2|+ |P ′2|+ |P ′1|
= 2|Q|+ |P1|+ |P2|+ |P ′2|+ |P ′1|
= |Q|+ |R|+ |P2|+ |P ′2|+ |P1|+ |P ′1|
= k + 1 + |P1|+ |P ′1|

which can be rearranged to |P1|+ |P ′1| > k − 1 or |P1|+ |P ′1| ≥ k. This implies that
the loops C and C ′ must intersect, therefore |Q| = 0. But because of our assumption
|R| = |Q| this contradicts |R| ≥ 1. So it must hold |R| > |Q|. We proceed in the
same way:

2k < 2|Q|+ |P̃1|+ |P̃2|+ |P ′2|+ |P ′1|
= 2|Q|+ |P1|+ |P2|+ |P ′2|+ |P ′1|
≤ |Q|+ |R|+ |P2|+ |P ′2|+ |P1|+ |P ′1| − 1

= k + |P1|+ |P ′1|.

This implies |P1|+ |P ′1| > k or |P1|+ |P ′1| = k+ 1. But then again |R| = 0 and so we
know |Q|+ |P̃1|+ |P ′2| ≤ k.

Step 2: Assume R is too short, i.e. |R|+ |Q|+ |P̃1|+ |P ′2| < k + 1 or equivalently
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3 The cycle-intersection-conjecture

|R|+ |Q|+ |P̃2|+ |P ′1| < k + 1. Again consider the sum of the inequalities:

2k + 2 > 2|R|+ 2|Q|+ |P̃1|+ |P̃2|+ |P ′2|+ |P ′1|
= 2|R|+ 2|Q|+ |P1|+ |P2|+ |P ′2|+ |P ′1|
= 2(|R|+ |Q|+ |P2|+ |P ′2|) + |P1|+ |P ′1| − (|P2|+ |P ′2|)
= 2k + 2 + |P1|+ |P ′1| − (|P2|+ |P ′2|).

This is equivalent to |P1|+ |P ′1| < |P2|+ |P ′2|. This contradicts our assumptions. So
also the condition |R|+ |Q|+ |P̃1|+ |P ′2| ≥ k + 1 is satisfied.

Continuing along the ideas of Observation 3.13, we now can construct a double
k-path. Take the path R′ ⊆ R of length k− |Q| − |P̃1| − |P ′2| = k− |Q| − |P̃2| − |P ′1|.
The two paths

S1 := P̃1QP
′
2R
′, S2 := P̃2QP

′
1R
′

are of length k and connect the same vertices. To demonstrate the procedure we
calculate the length of S1:

|S1| = |P̃1|+ |Q|+ |P ′2|+ |R′|
= |P̃1|+ |Q|+ |P ′2|+ k − |Q| − |P̃1| − |P ′2|
= k.

Observation 3.15. Also for this result there holds a similar generalization as in
Observation 3.12. Again, we are going to use the terms of the proof of Lemma 3.14.
Assume C and C ′ to be only near-loops. If the sum of the lengths of the chords
exceeds or equals the sum of the lengths of the near-chords, which implies P1 and
P ′1 to be the chords, the paths Q and R are C- and C ′-crossing-free. The rest of the
proof proceeds as above.

This yields the main result of this section.

Corollary 3.16. For s ∈ {2, 3, 4} there is always a double k-path.

Proof. The case s = 2 is treated by Lemma 3.10. Observe that the only possible
configurations with three or four crossings are shown in Fig. 3.7. All these configu-
rations contain two loops. Either one of the loops is even or both loops are odd. In
both cases we know of the existence of a double k-path by Lemma 3.11 and 3.14.

Figure 3.7 and 3.8 also contain the left intersection configurations not treated
completely by above results for s ∈ {5, 6}. Indeed, Kotzig proved in [12] that these
configurations also induce double k-paths. This yields 7 ≤ s ≤ k − 1 and hence
another proof of the conjecture of Kotzig for k ≤ 7.
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C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

Figure 3.7: All possible intersection configurations for the cases s ∈ {3, 4, 5}. The
only configuration not containing two loops is the K5-configuration shown
on the right.

C1

C2
C1

C2

C1

C2

Figure 3.8: These are the only three out of ten possible configurations for s = 6 that
do not directly imply a double k-path by Lemma 3.11 and 3.14. The
loops in the middle and right configuration have to be odd. Also these
two configurations are isomorphic: the first one emerges from the second
one by exchanging C1 and C2 and vice versa.
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3 The cycle-intersection-conjecture

3.3 Nearly equally long chords

In this section we are going to extend the idea of Section 3.1 where we discussed
s ∈ {k, k + 1}. In general, when considering the chord graph of a cycle intersection
G, we always can find two Hamiltonian cycles CH

1 and CH
2 in Gc sharing an edge as

we did in Corollary 3.8. Now, these cycles can be used to construct double k-paths
in G as we worked out in Lemma 3.9. Problems arise when the cycles CH

1 and CH
2

are not of length k + 1 in G. We have to find a way to match and correct the cycle
lengths. We start by introducing another interesting theorem by Thomason:

Theorem 3.17 (Thomason, [15]). Let G be a 2m-regular (multi-)graph on at least
three vertices for an m ≥ 1. If G has a Hamiltonian decomposition then there are at
least 3m−1(m− 1)! Hamiltonian decompositions.

For the 4-regular (multi-)graphs considered in this chapter this gives us the exis-
tence of three Hamiltonian decompositions (hence, even four by Theorem 3.6). We
can prove

Lemma 3.18. Let L be the length of the longest and ` be the length of the shortest
chord in a cycle intersection G. If there holds sL− ` ≤ k, then G contains a double
k-path.

Proof. Assume sL − ` ≤ k and consider the chord graph Gc of G. According to
Theorem 3.17 we can find three Hamiltonian decompositions of Gc. These cycles
as subgraphs of G are of lengths between s` and sL. Note that the two cycles
from the same decomposition in Gc also cover G. We now return to G and forget
about Gc. Because there are exactly 2(k + 1) edges in G, the lengths of the two
cycles in a decomposition are of the same parity. So we can speak of the parity of a
decomposition. Since we have three decompositions, we can choose two of the same
parity. Let CH

1 and CH
2 be the two longer cycles from these two decompositions.

Also assume |CH
1 | ≥ |CH

2 |. Again, the lengths of the two cycles from the same
decomposition sum up to 2(k + 1). Hence we know |CH

1 |, |CH
2 | ≥ k + 1. Note that

these cycles have to share a chord because otherwise they would belong to the same
decomposition. More precisely, we are looking for a common chord P incident on
at least one end vertex to a not common chord, a situation illustrated in Fig. 3.9.
This is always possible, because there are common and not common cords and some
of them have to overlap in their end vertices. Let R ⊆ CH

1 be such a chord not
contained in CH

2 but sharing an end vertex with P . Further, let v and w be the end
vertices of P . Choose w to be the end vertex shared with R. Let P ′ be a subpath
of P starting in v and of length k + |P | − 1

2
(|CH

1 | + |CH
2 |). This is possible because
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C1
H

C2
H

C2

C1
H

C2
H

C2

C2
H

C2

P

P'

P'

v w

v w

v w

w'C1
H

R

R

R'

v'

v'

Figure 3.9: The three steps of creating a double k-path in the proof of Lemma 3.18.
At first replace the chord P by a subpath P ′ to achieve the right total
length of the paths. The second step equals the path lengths which are
now both k. The gray vertices are the common end vertices of the paths.

|CH
1 | and |CH

2 | are of the same parity and the so defined length |P ′| satisfies

|P ′| ≥ k + `− sL
= k − (sL− `) ≥ 0

and

|P ′| ≤ k + |P | − (k + 1)

= |P | − 1.

Let v′ be the other end vertex of P ′ next to v. Since P is also an arc of both the
cycles CH

1 and CH
2 , we can choose the opposed arcs Q1 ⊂ CH

1 (with respect to CH
1 )

and Q2 ⊂ CH
2 (with respect to CH

2 ). Observe that 2|P ′| + |Q1| + |Q2| = 2k. Define
d := 1

2
(|CH

1 |−|CH
2 |) which is an integer because of the matching parities of the cycles.

Consider the subpath R′ of R starting in w and of length d. Again, this is possible
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3 The cycle-intersection-conjecture

because

d ≤ 1

2
(sL− (k + 1))

≤ 1

2
(`− 1) < `.

Let w′ be the other end vertex of R′ next to w. The two paths S1 := w′Q1vP
′ and

S2 := w′R′wQ2vP
′ of length k both connect v′ and w′. Note that the part w′Q1v in

S1 denotes the subpath of Q1 between w′ and v. We show that the lengths are k:

|S1| = |Q1| − |R′|+ |P ′|

= |Q1| −
[

1

2
(|CH

1 | − |CH
2 |)
]

+

[
k + |P | − 1

2
(|CH

1 |+ |CH
2 |)
]

= |Q1|+ k + |P | − |CH
1 | = k.

|S2| = |R′|+ |Q2|+ |P ′|

=

[
1

2
(|CH

1 | − |CH
2 |)
]

+ |Q2|+
[
k + |P | − 1

2
(|CH

1 |+ |CH
2 |)
]

= |Q2|+ k + |P | − |CH
2 | = k.

The statement of Lemma 3.18 gives rise to a more transparent result. Assume ¯̀

to be the average chord length. Let `i be the length of the i-th chord in an arbitrary
enumeration of the chords, then

¯̀=
1

2s

∑
i

`i =
2(k + 1)

2s
=
k + 1

s
.

Assume that the length of each chord is between ¯̀− ε and ¯̀+ ε with ε ≥ 0. So the
chord lengths differ at most by 2ε.

Corollary 3.19. Using above notations, if there holds

ε ≤
¯̀− 1

s+ 1
=
k + 1− s
s(s+ 1)

,

then G contains a double k-path.
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Proof. Let L be the length of the longest and ` be the length of the shortest chord
in the cycle intersection. It holds

Ls− ` ≤ (¯̀+ ε)s− (¯̀− ε)

= ¯̀(s− 1) + ε(s+ 1)

≤ ¯̀(s− 1) + ¯̀− 1

= ¯̀s− 1 = k.

Now, using Lemma 3.18 gives rise to a double k-path.

This shows that cycle intersections in P (k)-graphs cannot have nearly equally long
chords. There must always be a chord longer that ¯̀+ ε or shorter than ¯̀− ε, with
ε =

¯̀−1
s+1

. The restriction is stronger, i.e. ε is larger, when there are only a few
crossings of the cycles, hence when s is small.

3.4 Ideas for a general approach

In this part we will discuss some techniques which might be useful in finding a general
proof for the Conjecture 3.1. Unfortunately, at the moment each one of these ideas is
too hard to be caried out in general. Using restrictions on the structure of the cycle
intersection then prevents us from finding a proof that fits all the cases.

Induction on the number s of crossings

Induction on the number s of crossings is possible in both directions, i.e. there is
a possible induction base for rising and falling s. On the one hand we know that
Conjecture 3.1 is true for small s ≤ 6, on the other hand we also know this for large
values s ≥ k. A possible induction step may be performed by the vertex detachment
operation as seen in Fig. 3.10. This decreases the intersection count by one. Also
the reversal of the detachment process is conceivable by gluing a vertex of C2 to C1.
This increases the intersection count s. Problems arising with this approach are the
following: when detaching a vertex it must be ensured that the now possible k-paths
do not pass both vertices, ṽ1 and ṽ2 (see Fig. 3.10 for the notation). Otherwise, the
gluing back would create self-intersections in the paths. Likewise, when first gluing
a vertex of C2 to C1, a new k-path must not change the cycle at the gluing vertex.
Otherwise, detaching the vertex again will destroy the path.
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C1

C2

C1

C2

v
v1 v1'

v2

v2'

v1 v1'

v2

v2'

v1
~

v2
~

Figure 3.10: The vertex v is detached by replacing it with two vertices ṽ1 and ṽ2 and
afterwards joining these to the former neighbors of v: ṽ1 to v1 and v′1, ṽ2

to v2 and v′2. The possibility of emerging multiple edges must be taken
into account, but these are easy to deal with.

Induction on the number of inner vertices

The induction base is given by the case s = k + 1 and is solved in Section 3.1. An
induction step can be performed by removing an inner vertex from both cycles until
all vertices are intersection vertices. By following this approach it is hard to control
the lengths of the constructed paths. Consider a double k-path after the removal
of two inner vertices. When now re-adding these vertices it is possible that the two
paths are no longer of the same length. E.g. the first path passed one, the second
path passed two chords with now additional vertices. Now, the paths are of length
k + 1 and k + 2. To be precise, both paths have to pass exactly one chord that lost
a vertex during the induction step.

Induction on the length of chords and vertex distributions

For this approach a step consists of shifting an inner vertex from one chord to another
on the same cycle. This modifies the distribution of the vertices and can either
generate a mostly uniform inner vertex distribution or shift all inner vertices to a
single chord. The last case is solved as a special case in Section 3.1. Also the
completely uniform distribution of the inner vertices is solved, but this solves as
induction base only if s divides k+ 1. In general, the best we can achieve are chords
varying in length by only one vertex. Setting ε = 1 in Corollary 3.19 tells us that
this is solved when s ≤ ¯̀− 2, or equivalent s(s + 2) ≤ k + 1. Furthermore, we are
facing the same problems as by induction on the number of inner vertices: it is hard
to control the length of paths. Shifting vertices back and forth can change the length
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P

C1

PC1

Figure 3.11: The two possible ways a k-path may embedded into C1 ∪ P when it
should contain P but starts and ends in C1.

of paths uncontrollably.

Forbidden near-loops and other substructures

The proofs of Lemma 3.11 and 3.14 can be generalized to near-loops instead of loops.
The even near-loops have to be chord-dominated. For the odd ones it is important
that the chords are from the same cycle and their total length dominates the total
length of the near-chords. This was already discussed in Section 3.2. This gives some
restrictions on the form of the cycle intersection. Maybe this can be extended to
cover a whole class of forbidden substructures where we can prove that one of these
structures is necessarily contained in C1 ∪ C2.

Counting k-paths

Each chord P of C1 induces a certain number of k-paths where each one contains P
but starts and ends in C1 (see Fig. 3.11). When avoiding double k-paths, all chords
together can induce at most

(
k+1

2

)
such paths. Otherwise there would be two with

the same end vertices in C1. Only considering k-paths through single chords gives
a number of k-paths linear in k (see [3]). But

(
k+1

2

)
growth like k2. Hence, it may

be necessary to include paths through pairs, triples or general tupels of chords. This
technique can used to achieve bounds on s or chord lengths. At the moment it seems
very complicated to count such paths without some additional restrictions on the
structure of the cycle intersection. In [3] Bondy used this technique to bound the
number ck+1 of (k + 1)-cycles in P (k)-graphs for odd k.
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4 Generalizations

4.1 P`(k)-graphs

The most natural generalization of the definition of P (k)-graphs may be the following.

Definition 4.1. A graph G on n ≥ 2 vertices is called a P`(k)-graph for some k, ` ∈ N
if for any two distinct vertices v, w ∈ V there are exactly ` distinct paths of length k
between these vertices. The set of all P`(k)-graphs will be denoted by P`(k).

Of course, the P (k)-graphs are just the P1(k)-graphs. There are no P`(1)-graphs
for any ` ≥ 2 because this would require to include multi-graphs. Again the empty
graph and the graph on a single vertex are excluded in the definition above because
they would trivially satisfy the path condition. In contrast to the case ` = 1 where
graphs decompose into edge disjoint (k + 1)-cycles, it is not easy to determine a
necessary substructure for P`(k)-graphs when ` ≥ 2. At least we can see, that each
edge e ∈ E is contained exactly ` cycles of length k + 1. Much is known about
P`(2)-graphs and we will discuss them in Section 4.1.1. For the other cases there are
many open questions. In contrast to the special case of P (k)-graphs Kotzig found
examples for the generalized definition (see [12]).

Observation 4.2. Consider the complete graph Kn for some n ≥ 2. Choose k ∈ N
with k ≤ n− 1 and two vertices v, w ∈ V (Kn). There are exactly

` := (n− 2)k−1 =
(n− 2)!

(n− k − 1)!

k-paths from v to w in Kn. Therefore Kn is a P`(k)-graph. The following other
examples are known (also see [12]):

1. Take an arbitrary number of K5’s and join them in a common vertex. This
yields a P6(3)-graph. It seems that this only works with K5 (and with K3 as
seen in Section 1.3) but this is still unproven.

2. The octahedron graph is a P8(5)-graph. This graph is isomorphic to the com-
plete 3-partite graph K2,2,2. This gives rise to the question which other complete
r-partite graphs are P`(k)-graphs.
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The original motivation for our study of P (k)-graphs can directly be applied
to P`(k)-graphs in the following sense: instead of avoiding C2k-subgraphs we are
know considering edge-rich graphs without the corresponding subgraphs illustrated
in Fig. 4.1. These graphs are ` + 1 crossing-free k-paths joined in their end ver-
tices. They are bipartite, the partition classes are highlighted in Fig. 4.1. For ` = 2
we observe that these forbidden bipartite subgraphs are just the complete bipartite
graphs K2,`+1. The P`(k)-graphs emerge from the requirement to include the maximal
possible number of `-paths between any two vertices of G.

... ... ...

K2,ℓ+1

Figure 4.1: Forbidden subgraphs in P`(2)-, P`(3)- and P`(4)-graphs (from left to
right). For k = 2 these are just the complete bipartite graphs K2,`+1.

There is not much known about for which pairs of parameters k, ` ∈ N there exists
a P`(k)-graph.

4.1.1 P`(2)-graphs

As discussed above a P`(2)-graph is K2,`+1-free. A main result of this section will
be to show that these graphs are indeed edge extremal with this property. The
downside is that we can show that there are only finitely many P`(2)-graphs for any
` ≥ 2. Actually, we also do not know an explicit construction algorithm for arbitrary
`, hence do not know about the existence of such graphs besides the ones thar are
already listed. A discussion on these graphs can be found in [5].

A big advantage of the case ` ≥ 2, in contrast to ` = 1, is that we can directly prove
that we only have to consider regular graphs. Again, note that the path condition
for P`(2)-graphs can alternatively be formulated as follows: Any two distinct vertices
v, w ∈ V have exactly ` common neighbors.

Theorem 4.3. Let G be a P`(2)-graph. If ` ≥ 2 then G is regular.

Proof. Since n ≥ 2 and G is connected there is an edge e = {a, b}. Define the sets

C := NG(a) ∩ NG(b), A := NG(a) \ (C ∪ {b}), B := NG(b) \ (C ∪ {a}),

58



4.1 P`(k)-graphs

so C contains the common neighbors of a and b, A the neighbors of a that are not
neighbors of b (except of b itself) and B the neighbors of b that are not neighbors
of a (except of a itself, see Fig. 4.2). By definition |C| = `. Call sA, sB and sC the
number of edges induced by A, B and C. Further call sAB, sBC and sCA the number
of edges between A and B, B and C, and C and A.

A vertex c ∈ C must share ` common neighbors with a, and b is only one of
them. The other ` − 1 common neighbors must lie either in C or in A. So for
each vertex c ∈ C there holds dC(c) + dA(c) = ` − 1. Accordingly there must hold
dC(c) + dB(c) = `− 1. Summing these equations over all c ∈ C leads to

2sC + sCA = `(`− 1), 2sC + sBC = `(`− 1) (4.1)

and hence also to sCA = sBC .

A vertex a′ ∈ A must share exactly ` common neighbors with b, and a is only one
of them. The other `− 1 neighbors must lie either in B or in C and therefore there
holds dB(a′) + dC(a′) = ` − 1. Accordingly we derive dA(b′) + dC(b′) = ` − 1 for all
b′ ∈ B. Summing over all a′ ∈ A (resp. b′ ∈ B) yields

sAB + sCA = (`− 1)|A|, sAB + sBC = (`− 1)|B|. (4.2)

By combining these equations in (4.2) we find

|A| − |B| = sCA − sBC
`− 1

and since we know sCA = sBC and ` ≥ 2 we also found |A| = |B| and therefore
dG(a) = |A| + |C| + 1 = |B| + |C| + 1 = dG(b). So all adjacent vertices are of the
same degree and since G is connected G is regular.

A B

C

ba

Figure 4.2: Configuration used in the proof of Theorem 4.3.

An alternative proof for the regularity can be found in [14]. Indeed, this result
shows that P`(2)-graphs for ` ≥ 2 are just a special case of the so called strongly
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regular graphs. A graph G is called strongly regular with the parameters n, d, λ and
µ (or short an (n, d, λ, µ)-graph) if G is d-regular on n vertices and there holds

(i) any two adjacent vertices have exactly λ neighbors in common.

(ii) any two non-adjacent vertices have exactly µ neighbors in common.

The P`(2)-graphs for ` ≥ 2 are just the (n, d, `, `)-graphs. The field of strongly regular
graphs is well studied and many deep results are known. Nevertheless, we are going
to prove the properties important for this topic only in the context of P`(2)-graphs.
We will show that a (regular) P`(2)-graph is edge extremal without K2,`+1-subgraph.

Lemma 4.4. The number of vertices of a d-regular P`(2)-graph G is

n =
d(d− 1)

`
+ 1. (4.3)

In particular, ` has to divide d(d− 1).

Proof. Count the number of paths of length two in G starting in a fixed vertex v ∈ V .
For the first step there are d possibilities. For the second step there are d−1 because
we are not allowed to go the same step back. So there is a total count of d(d − 1)
such paths. Since there are exactly ` paths of length two from v to any other vertex,
there must hold `(n− 1) = d(d− 1). Solving this for n gives Eq. (4.3)

Lemma 4.5 (cf. [8]). For n, ` ∈ N the number of edges in an n-vertex graph G
without K2,`+1-subgraph is bounded from above by

|E| ≤ n

4

(
1 +

√
4`(n− 1) + 1

)
. (4.4)

Proof. Let G be a K2,`+1-free graph on n vertices. We are counting the paths of
length two. If there is a vertex v of degree d then one can choose any two of its
neighbors to create a path of length two with v as the middle vertex. Thus there are
exactly

(
d
2

)
2-paths with the middle vertex v (note that this also works for d = 0 and

d = 1). Considering all vertices as possible middle vertices there is a total count of∑
v∈V

(
dG(v)

2

)
=

1

2

∑
v∈V

d2
G(v)− |E|

2-paths in G. Since there are no K2,`+1 in G, between any two vertices there are at
most ` paths of length two and therefore

`

(
n

2

)
≥ 1

2

∑
v∈V

d2
G(v)− |E|. (4.5)
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Recall the discrete Cauchy-Schwarz-inequality (
∑
aibi)

2 ≤ (
∑
a2
i ) (
∑
b2
i ) and use

ai = dG(vi) and bi = 1 to find(∑
v∈V

dG(v)

)2

≤ n
∑
v∈V

d2
G(v).

Using this in (4.5) yields

`

(
n

2

)
≥ 1

2n

(∑
v∈V

dG(v)

)2

− |E| = 2

n
|E|2 − |E|.

This is a quadratic equation in |E| with parameters n and `. Solving this leads
directly to Eq. (4.4).

Corollary 4.6. A regular P`(2)-graph is edge extremal without K2,`+1-subgraph.

Proof. We substitute Equation (4.3) into the upper bound (4.4):

ex(n,K2,`+1) ≤ n

4

(
1 +

√
4`(n− 1) + 1

)
=
n

4

(
1 +
√

4d2 − 4d+ 1
)

=
n

4

(
1 +

√
(2d− 1)2

)
=
nd

2
= |E|.

Unlike the windmills in the case ` = 1 there are no examples of P`(2)-graphs for
` ≥ 2 which are not extremal. With this result we found a sufficient and efficiently
checkable condition for extremality. Unfortunately the following theorem shows that
this is not too useful.

Theorem 4.7. Let G be a d-regular P`(2)-graph. Then d− ` divides `2.

Proof. Consider the adjacency matrix A of G. The square of A must be of the
form A2 = `1 + (d − `)I (compare the proof of the Friendship Theorem 1.5). The
eigenvalues of A2 are

λ1 = `n+ d− `, λ2 = d− `

where λ1 is simple and λ2 of multiplicity n − 1. So the eigenvalues of A are ±
√
λ1

and ±
√
λ2 and must sum up to zero since the trace of A vanishes. Assume w.l.o.g.
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that A has the positive eigenvalue
√
λ1 and that

√
λ2 is of multiplicity c. Then there

holds √
λ1 + c

√
λ2 − (n− 1− c)

√
λ2 = 0.

We can write this as √
λ1

λ2

= n− 1− 2c

and since the right hand side is integral, also the left hand side has to be of this form.
So there is an f ∈ N with λ1 = f 2λ2. Note that

n =
λ1 − λ2

`
, d = λ2 + `.

Substituting this into (4.3) gives λ1 = λ2
2 + 2λ2` + `2 and finally combination with

λ1 = f 2λ2 leads to

f 2 = λ2 + 2`+
`2

λ2

.

So the right hand side has to be integer and since λ2 = d− ` we are done.

Observation 4.8. For a given ` ∈ N there are only finitely many divisors of `2.
Thus there are only finitely many possible degrees d of G and since n is completely
determined by d there can only be a finite number of (regular) P`(2)-graphs for fixed
`. We can also give an upper bound on the number of vertices for a (regular) P`(2)-
graph. Of course any divisor of `2 is at most `2 and hence d ≤ `2 + ` = `(`+ 1) which
(using Lemma 4.4) leads to

n =
d(d− 1)

`
+ 1 ≤ `(`+ 1)(`(`+ 1)− 1)

`
+ 1

= (`+ 1)(`(`+ 1)− 1) + 1

= `(`+ 1)2 − `− 1 + 1

= `((`+ 1)2 − 1)

= `(`2 + 2`+ 1− 1)

= `2(`+ 2).

In this sense our criterion is pretty weak because only a finite number of infinitely
many extremal graphs are P`(2)-graphs. At least these results allow to directly
identify a couple of graphs as extremal graphs (cf. [14]):

• The complete graph K`+2 is a P`(2)-graph of degree d = ` + 1 (and indeed
d− ` = 1 divides `2) and K2,`+1-free.

• The Shrikhande graph and the K4 × K4 are the only two P2(2)-graphs, both
6-regular on 16 vertices and hence extremal K2,3-free (see Fig. 4.3).
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Figure 4.3: The Shrikhande graph (left) and the K4 ×K4 (right).

• The line graph L(K6) of the complete graph on 6 vertices is 8-regular and a
P4(2)-graph. It is extremal without a K2,5-subgraph.

• The halved 5-cube 1
2
Q5 on 16 vertices is 10-regular and a P6(2)-graph. The

graph 1
2
Q5 is defined as a single connected component of the graph emerging

from the vertices of the 5-cube by connecting vertices at distance two in Q5. It
is extremal K2,7-free.

4.2 Infinite graphs

There is an easy way to construct an infinite P`(2)-graph. Start with a K2,`+1-free
graph G0. The next graph Gi+1 emerges from Gi by the following operations:

1. For any two vertices v, w ∈ V (Gi) with exactly `′ < ` common neighbors, add
`− `′ vertices ujvw, j = 1, ..., `− `′.

2. Join all these vertices ujvw to their corresponding vertices v and w. This adds
`− `′ new common neighbors to the pair v and w.

The union G :=
⋃
i∈NGi is a P`(2)-graph. This is not obvious:

Claim 4.9. The graph G constructed above is a P`(2)-graph.

Proof. We have to check that any two vertices v, w ∈ V neither got more nor fewer
than ` common neighbors.
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Case |NG(v) ∩ NG(w)| < `: Since G0 ⊆ G1 ⊆ G2 ⊆ · · · there holds v, w ∈ V (Gi)
for some i ∈ N0. So they have ` common neighbors in Gi+1, hence at least ` common
neighbors in G. Contradiction.

Case |NG(v) ∩ NG(w)| > `: Again there is a Gi where this already holds. We
use induction on the construction step i to show that this is not possible. This is
clear for G0 by definition. So assume Gi is K2,`+1-free and Gi+1 is not. For the
vertices v, w ∈ V (Gi+1) with more than ` common neighbors there are three possible
configurations: both vertices were already contained in Gi, only w was in Gi or both
vertices are new in Gi+1. Observe that the vertices ujab added to Gi to construct Gi+1

are only common neighbors of a, b ∈ V (Gi). Since the construction adds exactly
the right amount of common neighbors to any existing pair v, w ∈ V (Gi) to achieve
exactly ` of them, the vertices v and w cannot be both in Gi. If, e.g. v is a new
added vertex, then v only has two neighbors and this can only be too much if ` = 1.
So it suffices to consider this case. If w ∈ V (Gi) and w and v share the two vertices
a and b in Gi+1 then w is already a common neighbor of a and b in Gi. So no v were
be added at all. Otherwise for ` = 1 there will at most be added a single vertex for
each pair a, b ∈ V (Gi). So it could never have happened that v and w are both new
to Gi+1 and we are done.

At this point it is not clear if G is infinite. This can be achieved by a clever choice
of G0. For example for ` = 1 choose G0 = C5 (see Fig. 4.4). If G is finite the
Friendship Theorem 1.5 requires G to be a windmill which, of course, do not contain
a C5. This also shows that the statement of the Friendship Theorem does not hold
when including infinite graphs because G is a P (2)-graph but no windmill. For the
other values of ` just choose G0 to be a graph on more than `2(`+2) isolated vertices
(i.e. G0 contains no edges). As we know from Observation 4.8 these are too many
vertices for a finite P`(2)-graph. Another working approach to infinite P (2)-graphs
can be found in [1] and [4]. There it was also proven that there are 2ℵα distinct
P (2)-graphs for each infinite cardinal ℵα.

A similar construction does not work for P (k)-graphs with k ≥ 3 in the sense,
that it cannot build infinite graphs. Consider the following construction based on
the one above: Start with a graph G0 without any double k-path. Gi+1 emerges
from Gi by adding a k-path consisting of new vertices between any pair of vertices
that are not already joined by a k-path in Gi. We show that the infinite union
G :=

⋃
i∈NGi is either a finite graph or contains a double k-path. At first, observe

that Observation 2.1, Lemma 2.4 and Observation 2.10 also work for infinite graphs.
We conclude that G contains an even cycle C regardless of whether G is finite or
not. This even cycle is already contained in a Gi for some i ∈ N0. If we assume
that G is not finite, the sequence of constructed graphs cannot become stationary.
Hence we have to add a k-path to Gi to achieve Gi+1. But in Gi+1 this k-path either
starts in C and does not intersect it again or is a k-chord of C. As we mentioned in
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G0=C5 G1

G2

Figure 4.4: The first three steps of a construction of an infinite P (2)-graph which is
not a windmill.

Observation 2.1 and 2.10 this is not possible in a P (k)-graph.
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[8] Z. Füredi. Quadrilateral-free graphs with maximum number of edges. Proc. of
the Japan Workshop on Graph Th. and Combinatorics, pages 13 – 22, 1994.
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