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ABSTRACT. Considering a problem of Bonet and Domariski [I, Problem 9.1],
we prove that for a polynomial P on R2 surjectivity of the differential opera-
tor P(D) on 2'(X) implies surjectivity of the augmented operator P+ (D) on
2'(X x R), where Pt (z1,z2,23) := P(z1,72). Moreover we give a sufficient
geometrical condition on an open subset X of R? such that an analogous im-
plication is true for arbitrary dimension d in case of P being homogeneous,
semi-elliptic, or of principal type.
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1. INTRODUCTION

For an open subset X C R? and P € C[Xj,...,X ] a non-zero polynomial
consider the corresponding differential operator P(D) on 2'(X), where as usual
D; = fi%j. For (z1,...,%4+1) € R we set P (z1,...,2q41) := P(z1,...,24)
and call P*(D) the augmented operator, i.e. P(D) acting "on the first d variables”
on 7'(X x R).

In [I, Problem 9.1] Bonet and Domariski asked if surjectivity of the constant
coefficient differential operator P(D) : 2'(X) — 2'(X) passes on to surjectivity
of PY(D): 2'(X xR) = 2'(X x R). This question is closely connected with the
parameter dependence of solutions of the differential equation

P(D)ux = fx,
see [I]. Bonet and Domanski proved in [I, Proposition 8.3] that for a surjective
differential operator P(D) : 2'(X) — 2'(X) the augmented operator P*(D) is
surjective if and only if the kernel of P(D) has the linear topological invariant
(PQ).

By a classical result due to Hérmander [4] P(D) is surjective on 2’(X) if and
only if X is P(D)-convex for supports as well as for singular supports. These
are some kind of geometric properties of X reflecting properties of the transposed
operator P(D)! = P(—D) acting on the space &’(X) of distributions in X with
compact support. A different characterization of the surjectivity of P(D) on 2'(X)
in terms of the existence of certain shifted fundamental solutions was given only
recently by Wengenroth [I5]. Roughly speaking, P(D) is surjective on 2’(X) if and
only if for every ¢ € X near the boundary of X there is £ € 2'(R?) such that, in
a large relatively compact open subset of X, P(D)E = §¢ and E is a C*-function
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there with F and its derivatives up to order k£ being small, where k is somewhat
arbitrary.

This kind of condition on the existence of shifted fundamental solutions with
additional properties was also used in articles by Meise, Taylor, and Vogt [12], [13]
in order to characterize the existence of continuous linear right inverses of P(D) on
&(X) and 2'(X), respectively. In place of E € 2'(X) being regular in the above
sense, one has to require that F vanishes in X except perhaps close to its boundary.
Moreover, Langenbruch characterized in [I0] (see also [I]) surjectivity of P(D) on
the space of real analytic functions A(X) over X, where the existence of shifted
fundamental solutions having additional properties plays an important role, too.

Because the above result of Wengenroth seems rather difficult to apply in con-
crete situations, we will treat the problem of Bonet and Domanski by using Hor-
manders classical approach. Thus we are interested in whether X x R is PT-convex
for supports as well as PT-convex for singular supports in case of X being P-convex
for supports as well as P-convex for singular supports. In [3| Proposition 1] it is
shown that P-convexity for supports of X is passed on to PT-convexity for supports
of X x R. Moreover, it is shown in [3, Example 9] that an analogous implication
for P-convexity for singular supports is not true in general but in this example the
set X is not P-convex for supports.

In this paper we give some positive results on the above problem under certain
conditions. Namely, we prove that for every open X C R? and every polynomial
P € C[Xy, X3] surjectivity of P(D) on 2’(X) passes on to surjectivity of P+ (D)
on 2'(X x R). To be more precise, we show that P-convexity for supports of X is
equivalent to P*-convexity for singular supports of X x R. Moreover, we show that
for arbitrary dimension the question posed by Bonet and Domanski has a positive
answer on special open subsets X if P is homogeneous, semi-elliptic, or of principal
type.

However, it will be shown in a forthcoming paper that the answer to the problem
of Bonet and Domariski in general is in the negative [9].

The paper is organized as follows. In section 2 we give some sufficient condition
for P-convexity by means of exterior cone conditions. These are formally similar
to the sufficient condition for surjectivity on A(X) for operators P(D) with locally
hyperbolic principal part P, involving the local propagation cone for P, in [I0].
The exterior cone conditions are then used in section 3 to give an affirmative result
to the above problem for special open subsets X of R? in arbitrary dimensions d
and the previously mentioned classes of polynomials. Finally, in section 4 we show
that in two dimensions, i.e. when d = 2 the above question always has a positive
answer.

Apart from standard notation we use the following. For an affine subspace V'
of R we denote by V- the orthogonal space to the subspace parallel to V. In
particular, for a hyperplane H = {z; (v, N) = a} in R? where N € R?\{0} and
a € R we have that H' is the one-dimensional subspace spanned by N. Moreover,
for x = (21,...,74:1) € R we set 2’ = (z1,...,24) € R? and more generally,
we write M’ = {2'; x € M} for a subset M of R%t!. Furthermore, a cone is always
assumed to be non-empty.

2. EXTERIOR CONE CONDITIONS FOR P-CONVEXITY

In this section we present some sufficient conditions for an open subset X of R?
to be P-convex for supports as well as P-convex for singular supports in terms of
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exterior cone conditions. A similar sufficient condition for the PT-convexity for
singular supports of X x R is also given (see Theorem [11| below).

Recall that a cone C' is called proper if it does not contain any affine subspace
of dimension one. Moreover, recall that for an open convex cone I' C R? its dual
cone is defined as

I°:={£eR4Vyel: (y,&) >0}
It is a closed proper convex cone in R?. On the other hand, every closed proper
convex cone C in R? is the dual cone of a unique open convex cone which is given
by
I:={y e R% V¢ € C\{0}: (y,&) >0}
The proof can be done by the Hahn-Banach Theorem (cf. [6l, p. 257, vol. I}). There-
fore, we use the notation I'° also for arbitrary closed convex proper cones.

The main tool not only in this section but throughout the whole paper will be
the following notion introduced by Hormander in connection with continuation of
differentiability (cf. [6, Section 11.3, vol. II]). For a subspace V of R¢

op(V) = i liminf Py (€,1)/P(€.1)

with Py (€,t) := sup{|P(£ +n)|; n € V,|n| < t}, P(€,t) := Pga(£,t). This quantity
is closely related with the localizations at infinity of the polynomial P which in
turn are connected with bounds for the wave front set and the singular support
of regular fundamental solutions of P. In order to simplify notation we will write
op(y) instead of op(span{y}). We recall some well-known facts in the following
remark.

Remark 1. a) Clearly, if V; C Va are subspaces of R? it follows from the
definition that we have op(V1) < op(Va).
b) If @Q is a localization at infinity of P then there is a subspace {0} # A(Q)
of R% such that

vEe R € AQ): Q¢ +n) =Q(E),

(cf. [6, Theorem 10.2.8, vol. IT]). It follows directly from the definitions that
for every subspace V' of R?
inf M Z UP(V).
t>1 Q(Q7 t)
Hence, if V.= A(Q) and if @ is not constant then the left hand side of the
above inequality is 0. In particular, if P has a non-constant localization at
infinity then there is a subspace {0} # V of R? such that op(V) = 0.
¢) Recall that a polynomial P is hypoelliptic if and only if all of its localiza-
tions at infinity are constant (cf. proof of [6, Theorem 11.1.11, vol. II]).
Therefore it follows that op(V) = 1 for every subspace {0} # V of R? if P
is hypoelliptic. Moreover, observe that a polynomial P is hypoelliptic if and
only if the polynomial P(¢) = P(—¢) is hypoelliptic (this follows e.g. from
[6, Theorem 11.1.11, vol. II]). Together with [6, Corollary 11.3.3, vol. II],
a), and b) this gives that for a polynomial P the following are equivalent.
i) Every open set X C R is P-convex for singular supports.
ii) P is hypoelliptic.
iii) op(V) # 0 for every subspace {0} # V of R%.
) op(y) # 0 for every y € R4\{0}.

v

One way we use op(V) is given by the following result which is nothing but a
reformulation of [6, Corollary 11.3.7, vol. II]. For a proof, see [3, Corollary 3].
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Proposition 2. Let X1 C Xy be open and convex, and let P be a non-constant
polynomial. Then the following are equivalent:

i) Bvery u € 9'(X2) satisfying P(D)u € C*(X2) as well as ulx, € C*(X1)
already belongs to C*°(Xa).

ii) Every hyperplane H with op(HY) = 0 which intersects Xo already inter-
sects X.

An easy consequence of the above proposition is the next result. For a proof see
[7, Proposition 7].

Proposition 3. Let I be an open proper convex cone in R?, zy € R%, and P a
non-constant polynomial. If for X := xg + I' no hyperplane H = {z; (x, N) = a}
with op(H*) = 0 intersects X only in xq, the following holds.

FEach u € 9'(X) with P(D)u € C*(X) which is C* outside a bounded subset
of X already belongs to C*°(X).

Because we are interested in the PT-convexity for singular supports of X x R
we need a second quantity apart from op (V) for a subspace V of R9.
We define
0 : s s
op(V):= inf Py(£t)/P(,1).
bV) = it Pl /P
This function has already been considered by Hormander in [B], Section 5] to discuss
“Holder estimates” for solutions of partial differential equations. The reason for
introducing this quantity here is given by the following lemma. For the proof see
[3, Lemma 1]. Again we write o (y) instead of 0% (span{y}).

Lemma 4. Let P € C[Xy,...,X4] and let II be the orthogonal projection of R4+1
onto the first d coordinates. For a subspace W of R¥! we identify W' = II(W)
with the corresponding subspace of R®. Then the following hold.

i) op+ (W' x {0}) = op+ (W' x R) = oL (W').

ii) op+ (W) =0 if and only if o%(W') = 0.

The next lemma exhibits a fundamental connection between op and o%. Recall
that a polynomial P with principal part P, is of principal type if VP, (§) # 0
for all £ with P, (§) = 0. Moreover, P is called semi-elliptic if we have P(§) =
Z\a:m|<1 ao & with Z|a:m|:1 o€ # 0 for any € # 0. Here m = (my,...,mq) €

N d
N? and | : m| = D j=1 Qj/my.

Lemma 5. Let P € C[Xy,...,X4] be a non-constant polynomial with principal
part P, and V C R? a subspace.

i) op(V) < op(V).

i) If V C {P,, = 0} then c%(V) =0.

iii) Assume P is homogeneous, i.e. P = P,,. Then o%(V) = 0 if and only if

op(V)=0 orV C{P =0}.

iv) Assume that d = 2. Then o%(V) = 0 if and only if V C {P,, = 0}.

v) Assume P is semi-elliptic. Then o%(V) =0 if and only if V C {P,, = 0}.

vi) Assume P is of principal type. Then o%(V) =0 if and only if op(V) = 0.

PROOF. i) is obvious from the definitions.

Obviously ¢%(V) < 1;"(80’5) for every ¢t > 1. If P(§) = 3 < n/<m Cal® With
ca # 0 for some o with o = m, we define P;(£) := >, cal®, 0 < j < m. Thus,
P(¢) = Z;n:o P;(€), each P; is a homogeneous polynomial of degree j and P, is
the principal part of P.
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If V C {P, =0} it follows for ¢ > 1

~ m m—1

1
= sup [) —Pj(x)]= sup |
zeV|e|<t ;tm ! zeV|z|<1 J;J

Moreover, for t > 1 we have

- . mo1
PO,1) =" sup | > Pi(a),
|z|<1 =0
so that
PV(O7 t)

1m
t— o0 P(O’ t)

proving ii).

In order to show iii) observe that by i) and ii) we only have to prove that
% (V) = 0 implies op(V) =0 or V C {P = 0}. By the homogeneity of P we have
|P(§ + tz)] = tm|P(% + )| for every t > 1,£,x € R% This implies

Py(et)  Py(5.1)
Pty P(5,1)

for every ¢ € RY ¢ > 1. Thus, if 0% (V) = 0 we have

Py Py(&,,1
(1) 0= inf V&N _ ypy &)

sert P(€,1) oo P(6n, 1)
where (&, )nen is a suitably chosen sequence. If (£, )nen is unbounded we may pass
to a subsequence if necessary and consider the corresponding localization at infinity

Q. But then equality implies Q| = 0 so that

(2) 0= inf

By [7, Lemma 2] we have op(V) = inf;>1infgicr(p) %Y((()O;;) so that implies
UP(V) =0.

If on the other hand (&,)nen is bounded we can assume without loss of generality
that lim,, o &, = &. Using the continuity of (n,1) — Py (n,1) equality then
gives

Py(&,,1)  Py(€1
0= lim ~v(§ ): ~V(§ )
noe P(én,1)  P(E1)
But this implies 0 = supg < |[P(§+0z)| for every x € V, [z| = 1, i.e. for fixed v € V
the polynomial P(£ 4 tx) in ¢t € R vanishes for every ¢ € R. But then again
,_ 1P+ PG +o)

P(&,t) P(8,1)

for all t # 0 and « € V so that 0 = P(% + z). Letting ¢ tend to infinity gives
P(z)=0forallz e V.

iv) While sufficiency follows from ii) necessity is [3, Remark following Theorem
6.3].

v) is [5, Theorem 6.8] or [3] Theorem 1].

vi) is part of [B, Theorem 6.9]. O
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Remark 6. A result similar to Lemma [5|iii) for arbitrary polynomials is not true
in general. This will be used in the forthcoming paper [9] to give an example of a
surjective P(D) : 9'(X) — 2'(X) such that P*(D): 2'(X x R) = 2/(X x R) is
not surjective, thus solving the problem of Bonet and Domanski in the negative.

In order to get a sufficient condition for the PT-convexity for singular supports
of X xR we aim at a result similar to Proposition[3] Before we are able to formulate
and proof this, some preparations have to be made.

The following proposition (cf. [7, Proposition 8]) contains some elementary geo-
metric results which will be usefull in the sequel.

Proposition 7. Let I'° # {0} be a closed proper convex cone in R? and N € S4~1.
For c € R let H. := {x;(xz, N) = c}. Then the following are equivalent.
i) HynT° = {0}.
ii)y NeT' or =N €T.
iii) If v € RY and H. N (z +T°) # 0 then H.N (x +T°) is bounded.
iv) If ¢ € H. then H.N (z +T°) = {z}.

Proposition 8. Let T' # R? be an open proper convex cone in R%, xq € R, and
N € 891 such that m := {x € R% (x, N) = a} is a supporting hyperplane of xo+T
intersecting xo + T only in xo and o + T C {x € R (x, N) > a}. For 8 > a set
X, ={zexg+TD;(x,N)> B}, X, =X, xR, and X5 := (zo +T) x R.

If H={z € R (x, M) = ¢} is a hyperplane with Xo N H # ) as well as
X1 N H = 0 then the hyperplane H,, = {x € R (x, M) = (vo, M')} is a
supporting hyperplane of Xa with Hy, N Xa = {20} x R and Mgy1 = 0. Moreover,
H, ={z ¢ R%; (2, M') = (29, M')} is a supporting hyperplane of xo + T such that
H., N (zo+T) = {zo}.

Proor. Without loss of generality, let g = 0. In this case, « = 0 and Hy
contains 0. Suppose Hj is not a supporting hyperplane of X,. Because of 0 €
HoN X5 this means that there are v,w € Xp = I'xR such that (v, M) < 0 < (w, M),
hence (z, M) < 0 < (y, M) for some z,y € T x R.

Set P := (N,0) € R¥*!. Then |P| = 1 and because of I' C {v € R%; (v, N) > 0}
we have Xy C {v € R (v, P) > 0}. Therefore, A\; := (z,P) > 0 as well as
A2 := (y,P) > 0. Since X5 is a cone we have x1 := ﬁ)\—tlx,yl = ﬁ)\—tly € Xs and
from X; = {v € Xy; (v, P) > 8} we get x1,y1 € Xj.

From (x1, M) <0 < (y1, M) we get a t > 1 such that

<t$17M> <c< <ty1,M>.
Hence there is A € (0, 1) with
(M1 + (1= Ntyr, M) = ¢,

ie. AMtxy + (1 — N)ty; € H. Obviously, X; is convex and for every € X; and ¢ > 1
we have tx € X;. Therefore we have Atx; 4+ (1 — M\)ty; € H N X; which contradicts
our hypothesis.

So, Hy is a supporting hyperplane of Xo = I' x R. This immediately implies
that Mg, = 0 and that H}, is a supporting hyperplane of T'. Moreover, My,1 = 0
implies that H' = {x € R%; (z, M') = ¢} intersects I but not X. Because I is a
proper cone and '\ X] = {x € T'; (z, N) < 8} this implies that H' N T is bounded.
Since HY is a supporting hyperplane of T this yields H, N T = {0} by Proposition
[70), hence Hy N X5 = (Hj x R) N (T x R) = {0} x R. O

Proposition 9. Let I' # R? be an open proper convex cone in R?, xy € R?, and let
X1 and X5 be as in Proposition[§ Moreover, let P be a non-constant polynomial.
Assume that no hyperplane H in R? with 0% (HL) = 0 intersects xo+ 1T only in g.
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Then for every hyperplane H in R4t with HN Xy # 0 and op+ (H) = 0 it
follows that HN X1 # (.

PROOF. Let H = {x € R¥*1; (2, M) = 8} be a hyperplane with H N X, # () but
H N X; =(. We have to show that op+ (M) # 0.

From Proposition [§ it follows that M = (M’,0) and H, = {z € R% (z, M’) =
(zo, M')} is a supporting hyperplane of zo + I' with H, N (o +T) = {zo}. In
particular, the hypothesis gives 0% (M’) # 0. With Lemma [4] we get

04 o%(M") = o+ (span{M'} x {0}) = op+ (M),

proving the proposition. U

Now, we can prove an analogue result to Proposition

Proposition 10. Let I' # R? be an open proper convex cone in R%, xy € RY, and
P eC[Xy,...,X4] a non-constant polynomial. Assume that no hyperplane H with
o%(HL) = 0 intersects xo + T only in .

Then, every u € Z'((xg +T) X R) with PT(D)u € C*((zo +T') X R) for which
there is a bounded subsets B of xo + ' such that u is C'°° outside B x R already
satisfies u € C*°((xg +T') x R).

PrOOF. Without restriction, assume zg = 0. Let u € 2'(I' x R) with P*(D)u €
C>(I'xR) and let B C I" be bounded such that ujr gpxr € C*(I'\BxR). Because I
is a proper cone in R there is a hyperplane H; = {x € R¢; (x, N) = 0} intersecting
T only in 0. Let X, be the intersection of I’ with a halfspace whose boundary is
parallel to H; such that X is unbounded and B C F\Xl.

Let X7 = X'l X R, and Xg := I' x R. Then X; C X, are open convex
subsets of R4t! and it follows from Proposition |§| that for every hyperplane H
in R4 with opt (HY) = 0 and HN Xy # 0 already H N X; # (). Since
u € 9'(X3), PT(D)u € C™(X3) and ujx, € C*(X;) it follows from Proposi-
tion [2] that u € C*°(X>). O

We are now able to prove the main result of this section. Parts i) and ii) of the
next theorem are taken from [7, Theorem 9]

Theorem 11. Let X be an open, connected subset of RY and P € C[X1,...,X4] a
non-constant polynomial with principal part Py, .

i) X is P-convex for supports if for every x € 0X there is an open convex
cone T such that (x +T°)NX =0 and Py, (y) #0 for ally €T
ii) X is P-convex for singular supports if for every x € 0X there is an open
convex cone I' such that (x +T°)NX =0 and op(y) #0 for ally €T
iii) X x R is PT-convex for singular supports if for every x € X there is an
open convez cone I' such that (z+T°)NX =0 and 0% (y) # 0 for ally € T.

PRrROOF. For the proofs of i) and ii) see [7, Theorem 9]. In order to prove iii),
let u € &' (X xR). Recall that by extending any compactly supported distribution
by zero to all of R™! we have &’(X x R) ¢ 2'(R%!) and thus &' (X x R) C
2'(R¥1) C 2'(Y) for every open subset Y C R4+1,

We set K := singsupp P*(—D)u and § := dist(K, X x R). By [6, Theorem
10.7.3, vol. II], we have to show that dist(singsuppu, X¢ x R) > §. Let xg €
(X xR) = 90X x R and let T be as in the hypothesis for z; € dX. Then
(o + (T° xR))N (X x R) =0, thus (xg +y + (I'° x R)) N K = () for all y € RIH!
with |y| < 4. Therefore, for fixed y with |y| < §, there is an open proper convex
cone T' in R? with T' D I'°\{0} such that (zo +y + (I x R)) N K = §. Hence,
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ue &'(X xR) C P(xo+y+ (L xR)) satisfies PT(—D)u € C(xq+y + (T xR)).
We show that u € C*°(z¢ +y + (I’ x R)) by applying Proposition _

Let H = {v € R% (v, N) = a} be a hyperplane with ¢%(N) = 0. As T'is a closed
proper convex cone with non-empty interior, it is the dual cone of some open proper

convex cone I'y. It follows from I'{ = T' D I'° that I'; € T. Because 0%(N) = 0 it
follows from the hypothesis on I' that {N, =N} NI =0, hence {N,-N} NIy =0,

so that by Proposition 7] H does not intersect ), + 3’ + I only in zf 4 y/'.

Since u € &' (X x R) we have that singsupp u is compact. Moreover PT(—D)u €
C>®(zo + y + (I x R)), so that u € C>®(zo + y + (I x R)) by Proposition
Since zp € 0X x R and y with |y| < § were chosen arbitrarily, it follows that
dist(sing supp u, X¢ x R) > 4, which proves iii). O

3. SOME PARTIAL RESULTS IN ARBITRARY DIMENSIONS

In this section we will show that for some special cases of X the sufficient condi-
tions for P-convexity in Theorem [I1] are also necessary. As a consequence, we will
see that surjectivity of P(D) on 2’(X) implies surjectivity of P*(D) on 2'(X xR)
for P being homogeneous, semi-elliptic, or of principal type.

Recall that a real valued function f defined on a subset M of R? is said to
satisfy the minimum principle in the closed subset F' of R¢ if for every compact
subset K C F'N M it holds that inf,.cx f(z) = infrco, i f(z), where Op K denotes
the boundary of K relative F'.

For a subset M of R% let dys : M — R,z — distgay pr(z) be the distance to its
complement.

Proposition 12. Let T° # {0} be a closed proper convex cone in R? and N €
S4=1. Assume that dga\ro satisfies the minimum principle in every hyperplane
H.={z;{z,N) =c},c € R. Then {N,—N}NT =0.

PROOF. If {N, =N} NT # () it follows from Proposition [7] that Hy N I'° = {0}.

Let ¢ # 0 be arbitrary. We first show that H.NI'® = () if and only if H_.NIT° # (.
Indeed, if H.NT° = ) the convexity of I'° implies that either I'° C {x; (z, N) < ¢}
or I'° C {z;{(z,N) > c}. Without restriction we only consider the first case.
Since 0 € I'° we have 0 < ¢. Moreover, because I'° is a cone, it follows for every
x € I'°\{0} and ¢ > 0 that t(z, N) < ¢. Obviously, this implies (z, N) < 0 for
every © € I'°\{0}. Therefore, —c/{x, N) > 0 so that —c/(z, N)z € I'° for every
x € I°\{0}. In particular, there is z € T° N H_..

On the other hand, let H_.NT° # Q. If H.NT° # () it follows from ¢ # 0 that
there are z,y € I'°\{0} such that for some A € (0,1) we have Az + (1 — )y € Ho.
The convexity of I'° together with Hyp N T° = {0} implies Az + (1 — Ny = 0.
Therefore, —z € I'°\{0} which contradicts the fact that I'° is proper.

So, for arbitrary ¢ # 0 we can therefore assume that H. N T° = @ as well as
H_.NT° # (. Because of HyNT° = {0} it follows from Propositionthat the non-
empty set H_.NI° is bounded. So there is R > |c| such that 0 # H_.NI'* C Br(0).
In particular, K := H.N Bg(0) is a non-empty, compact subset of H.NR¥\I'® with

dra\re (K) = distre (K) < distgoy(K) = |c|.

Obviously,  —cN € H, for all x € H,, so that M := {x —cN; z € H.N9Br(0)} C
Hy is compact, and because R > |c|, M does not contain 0. Since Ho\{0} NT° =0
we obtain

d := inf distprs(v) > 0.
veM
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‘We have
Vo€ Hoyel®: |z —y[> = |(x—cN)—(y—cN)J?
&+ |(x —eN) —y|* — 2¢(N, y).

Again, by the convexity of I'° and H.NT° = () we have either I'° C {z;(z, N) < ¢}
or I'° C {x;(x,N) > c}. From 0 € I'° it therefore follows that ¢(N,y) < 0 for all
y € I'° so that we get

Vo€ Hoyel®: |z —y?>c* +|(x—cN)—y|*.

Therefore,
d, o K) = distpe K) = inf distro
ra\re (O, K) istre (Op, K) e o distr ||
> (A + inf distpe|z — eN|?)Y/?
€H.NIBR(0)
= (¢ inf, distre (%)%
= (P + )V > || > distrs (K)
= dra\po (K),
so that dga\ro does not satisfy the minimum principle in H. contradicting the hy-
pothesis. 0

Combining the previous proposition with Theorem [T1] gives the next result.

Theorem 13. Let I' # R? be an open convex cone in R? and X := RINI°. Let P
be a non-constant polynomial with principal part P,,.

i) X is P-convex for supports if and only if P, (y) # 0 for ally € T.
i) X is P-convex for singular supports if and only if op(y) # 0 for ally € T.
iii) X x R is P -convex for singular supports if and only if c%(y) # 0 for all
yel.

PROOF. For the proof of i) recall that a necessary condition for P-convexity for
supports for an arbitrary open set Y in R? is that dy satisfies the minimum principle
in every characteristic hyperplane, i.e. in every hyperplane H = {z; (z, N) = ¢} with
P, (N) =0 (cf. [6, Theorem 10.8.1, vol. II]). So, if X is P-convex for supports it
follows from Proposition [12| that P, (y) # 0 for every y € T.

On the other hand, for every z € 0X = OI'° and y € I'° we have x + y =
2(1/2x 4+ 1/2y) € T'° since I'° is a closed convex cone, hence (z +T°)N X = ( for
every x € 0X. Therefore, if P,,(y) # 0 for every y € T it follows from Theorem
i) that X is P-convex for supports, which proves i).

For the proof of ii) recall that a necessary condition for P-convexity for singular
supports for an arbitrary open set Y in R? is that dy satisfies the minimum principle
in every affine subspace V with op(V+) = 0 (cf. [6, Corollary 11.3.2, vol. II}). In
particular, if X is P-convex for singular supports, it follows that dx satisfies the
minimum principle in every hyperplane H = {x;(z, N) = ¢} with op(H*) = 0.
Thus, by Proposition [12| we get op(y) # 0 for every y € I.

Sufficiency of the condition stated in ii) is proved analogously to the proof of i).

Finally, to prove iii) observe that by [6, Corollary 11.3.2, vol. II] P*-convexity
for singular supports of X x R in particular implies that dx«r satisfies the min-
imum principle in every affine subspace H = {x € R% (z, N) = ¢} x {0} with
0 = op+(span{N} x R) = 0% (N), where we used Lemma Hence dx satisfies the
minimum principle in every hyperplane H = {z € R%; (x, N) = ¢} with ¢%(N) = 0,
so that 0% (y) # 0 for every y € T' due to Proposition This proves necessity in
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iii). Again, sufficiency is proved as in i). d

As an immediate consequence we obtain the next result.

Corollary 14. Let Xy C R? be open and convex and let T'1,Ts, ... be a sequence of
open convex cones, all different from R. Moreover, let x1,x2 ... be a sequence in
Xo. Denote by X the interior of Xo N[\, —(xn + )¢ and assume that for every
n € N we have £, > 0 such that

(3) B, (zn) N (zp + 1) C X.
Then the following holds for a non-constant polynomial P.
i) X is P-convex for supports if and only if Py, (y) # 0 for every y € U2 T,
where Py, is the principal part of P.
ii) X is P-convex for singular supports if and only if op(y) # 0 for every
yeuy I'y.
iii) X xR is P*-convex for singular supports if and only if o%(y) # 0 for every
yeus Iy,

PROOF. Since for non-constant polynomials () convex sets are ()-convex for
(singular) supports and the interior of arbitrary intersections of @Q-convex sets for
(singular) supports are again @Q-convex for (singular) supports (cf. [6 Theorems
10.6.4 and 10.7.4, vol. II]) the sufficiency of the conditions follows from Theorem
I3

We only prove necessity in iii) since the corresponding proofs for parts i) and ii)
are the same modulo obvious changes.

Let X x R be PT-convex for singular supports. Assume that there is j € N and
y € I'; such that 0% (y) = 0. Without restriction let |y| = 1. Then H := {z; (z,y) =
(zj,y)} is a hyperplane through x; with 0% (H*) = 0 and H N (z; +T3) = {z;} by
Proposition |7} Without loss of generality we can assume that z; +I'; C {; (z,y) >
(5, 9)}.

For ¢ > 0 set H, := {z;(z,y) = (z;,y) — ¢} and K, := H. N Ba.(x;). Then
K. # 0 is compact and due to condition (1) we have

VO<c<e;/4: K. C X as well as dx (K.) = de\(x_j+p;_>)(Kc).
As in the proof of Proposition [12]it follows that
g\ (z;119) (Ke) = ¢ < dray (4, 419) (O, Ke).

Hence by Lemma | for 0 < ¢ < £/4 the affine subspace H, x {0} of R4*! satisfies
op+((He x {0})1) = 0% (HL) = 0% (y) = 0 but for the compact subset K. x {0} of
(H. x {0}) N (X x R) we have

dxxr(Ke x{0}) = dx(Kc) = dga\(s;+r9)(Ke) = ¢
< de\(xﬁr;)(aHCKc)
= dXxR(chx{O}(Kc X {0}))
So the minimum principle for dx g is not valid in H. x {0} which contradicts the
P*-convexity for singular supports of X x R by [6, Corollary 11.3.2, vol. II]. O

Remark 15. Observe that for sufficiency of the above conditions instead of X
being convex, in part i) one only needs X, to be P-convex for supports while in
parts ii) and iii) it suffices to let Xy be P-convex for singular supports, resp. Xo x R
be PT-convex for singular supports. For necessity of the above conditions, Xy can
be arbitrary.

Recall that P is of real principal type if it is of principal type and the coefficients
in its principal part are real.
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Corollary 16. Let Xo C R? be open and convex let I'1,Ts,... be a sequence of
open convex cones, all different from R%. Moreover, let x1,xo ... be a sequence in
Xo. Denote by X the interior of Xo N[, (xn +T5)¢ and assume that for every
n € N we have g, > 0 such that

4) B., (zn) N (z, +T5)° C X.

If the non-constant polynomial P is homogeneous, semi-elliptic, or of principal type
the following are equivalent.

i) P(D): 2'(X) — 2'(X) is surjective.

i) PH(D): 2'(X xR) = 2'(X x R) is surjective.

If P is homogeneous, semi-elliptic, or of real principal type then the above are also
equivalent to

iii) X x R s P*-convex for singular supports.

PROOF. Assume that i) holds. Then X is P-convex for supports as well as for
singular supports. By Corollary [14]it follows that P,,(y) # 0 and op(y) # 0 for all
y € U2 Ty, hence X x R is PT-convex for singular supports by Corollary [14] and
Lemma [5| iii), v), or vi), respectively. Since X is P-convex for supports it follows
that X x R is PT-convex for supports by [3} Proposition 1], so that ii) follows.

Now assume that ii) holds. For v € 2'(X) there is w € 2/(X x R) such that
PH(D)w = v ® §p. Choose 1 € 2(R) with (0) = 1. Then u(p) = w(p @ ¢) for
v € P(X) defines a distribution with P(D)u = v proving i). Note that for this
implication neither the special form of X nor the special properties of P are needed.

Now, we assume that P is homogeneous, semi-elliptic, or of real principal type.
Clearly, ii) implies iii). If iii) holds it follows from Corollary [14]iii) that o%(y) # 0
for all y € UpenI'y. If P is homogeneous it follows from Lemmal5|iii) that Py, (y) # 0
and op(y) # 0 for all y € UpenI'y, so that i) follows from Corollary [14]1) and ii).
If P is semi-elliptic we have P,,(y) # 0 for all y € U,enI'y, by Lemm v). Hence
X is P-convex for supports by Corollary [14]i), so that iii) implies i) also for semi-
elliptic P. Finally, if P is of real principal type, it follows from Lemma [5| vi) that
op(y) # 0 for all y € UpenI'y. Therefore, X is P-convex for singular supports by
Corollary [14]ii). It is shown in the proof of [6l Corollary 10.8.10] that P-convexity
for singular supports implies P-convexity for supports if P is of real principal type,
so that i) follows from iii) in this case, too. O

4. THE TWO-DIMENSIONAL CASE

Recall that for elliptic P every open subset X C R is P-convex for supports.
The next theorem is [6], Theorem 10.8.3, vol. II].

Theorem 17. If P is non-elliptic then the following conditions on an open con-
nected set X C R? are equivalent.

i) X is P-convex for supports.
ii) The intersection of X with every characteristic hyperplane is convez.
iii) For every xzo € 0X there is a closed proper convex cone I'° # {0} with
(xo+T°)NX =0 and no characteristic hyperplane intersects o+ T'° only
in xg.

In view of Proposition [7| the above condition iii) clearly is equivalent to the
following condition.

iii") For every xo € 0X there is an open convex cone I' # R% with (zo+I°)NX =
0 and Py, (y) # 0 for all y € T, where P, denotes the principal part of P.
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An analogous theorem to Theorem for P-convexity for singular supports is
the following. Recall that by Remark 1| ¢) a polynomial P is hypoelliptic if and
only if op(H™*) # 0 for every hyperplane H.

Theorem 18. If P is non-hypoelliptic then the following conditions on an open
connected set X C R? are equivalent.

i) X is P-convex for singular supports.
ii) The intersection of X with every hyperplane H satisfying op(H*) = 0 is
convez.
iii) For every xg € 0X there is an open convexr cone I' # R? with (zo+I°)NX =
0 and op(y) #0 for ally € T.

The proof of the above theorem is very similar to the proof of [6, Theorem 10.8.3,
vol. IT] and can be found in [7, Theorem 11].

Theorem 19. If P is non-constant with principal part P, then the following con-
ditions on an open connected set X C R? are equivalent.
i) X x R is PT-convex for singular supports.
ii) The intersection of X with every characteristic hyperplane is convez.
iii) For each xg € 0X there is an open convex cone I' # R® with (vo+T°)NX =
0 and Py (y) #0 for ally €T.

PROOF. By Lemma 5 I iv) we have o%(y) = 0 if and only in y € {P,, = 0}.
Hence, that iii) implies i) is just Theorem [1]

Observe that if X x R is Pt-convex for singular supports it follows as in the
proof of Theorem [13| that dx satisfies the minimum principle in every hyperplane
H in R? with 0% (H*) = 0. By Lemma [5|iv) dx therefore satisfies the minimum
principle in every characteristic hyperplane. Now that i) implies ii) follows as in
the proof of [6l Theorem 10.8.3, vol. II].

That ii) implies iii) follows immediately from Theorem [17] where one has to re-
place iii) by iii’) O

A result of Vogt (cf. [14, Proposition 2.5]) says that the kernel of an elliptic
differential operator on 2’(X) always has the linear topological invariant (2). Since
the kernel of an elliptic differential operator is a Fréchet-Schwartz space it has
property (£2) if and only if it has property (PQ). Therefore, it follows from [Il
Proposition 8.3] that for an elliptic polynomial P the augmented operator Pt (D)
is surjective on 2'(X x R). This interpretation of Vogt’s result is the next theorem.
A proof based on the techniques used here can be found in [3, Corollary 14].

Theorem 20. Let P € C[Xy,...,Xq4| be elliptic. Then for every X C R open
PT(D): 2'(X xR) = 2'(X x R) is surjective.

Combining the last four theorems and [7, Theorem 1] we obtain the following
result.

Theorem 21. Let X be an open subset of R? and P a non-constant polynomial.
Then the following are equivalent.
i) P(D): COO(X) — C™(X) is surjective.
ii) ( ): 2'(X) = P'(X) is surjective.
iii) PT(D): 2'(X xR) = 2'(X x R) is surjective.
iv) X X R is PT-convez for singular supports.
v) The intersection of every characteristic hyperplane with any connected com-
ponent of X is convez.

PROOF. Because for elliptic polynomials P every open set is P-convex for sup-
ports and singular supports and because of Theorems and we can assume
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without loss of generality that P is non-elliptic. Moreover, by passing to different
components of X we can assume without restriction that X is connected. For non-
elliptic P the equivalence of i), iv) and v) follows from Theorems [17| and |19| and
that i) and ii) are equivalent follows from [7, Theorem 1].

If i) (and therefore also iv)) holds then X is P-convex for supports so that
X x R is PT-convex for supports by [3, Proposition 1] and we obtain iii). Finally,
iii) obviously implies iv) which proves the theorem. O

Remark 22. As stated in the introduction, the results of Bonet and Domanski [T,
Proposition 8.3] imply that for a surjective differential operator P(D) : 2'(X) —
2'(X) the augmented operator P* (D) is surjective if and only if ker P(D) has the
linear topological invariant (PQ). Combining this with Theorem [21| and Corollary
gives the following, respectively.

i) Let X C R? be open and P a non-constant polynomial. If the intersection
of every characteristic hyperplane with each connected component of X is
convex then the kernel of

P(D): 2'(X) = 2'(X)

has the property (P(2).
ii) Let X C R? be as in Corollary [16/and P be homogeneous, semi-elliptic, or
of principal type. If

P(D): 2'(X) = 2'(X)
is surjective then its kernel has the property (PS2).

On the other hand, it is shown in [8] that i) and ii) of the above theorem are
also equivalent to the surjectivity of P(D) on the space of ultradistributions of
Beurling type QEW)(X ) in the sense of Braun, Meise, and Taylor [2] for any/some
non-quasianalytic weight function w.
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Lemma [5| helping to find a mistake in the previous version. A reconsideration of
that lemma finally helped to solve the problem of Bonet and Domanski in the
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the referee for pointing out [I0] and [II]. Finally, I want to thank L. Frerick and
J. Wengenroth for inspiring and encouraging discussions.
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