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Abstract. We show that C0-semigroups generated by first order partial dif-
ferential operators on Lp(Ω, µ) and C0,ρ(Ω), respectively, are hypercyclic if

and only if they are weakly mixing, where Ω ⊂ Rd is open. In the case of

d = 1 we give an easy to check characterization of when this happens. Fur-
thermore, we give an example of a hypercyclic evolution family such that not

each of the operators of the family are hypercyclic themselves. This stands in
complete contrast to hypercyclic C0-semigroups.

MSC 2010: 47A16, 47D06

1. Introduction

A continuous linear operator T on a separable Banach space X is called hyper-
cyclic if there is a hypercyclic vector x ∈ X which means that {Tnx; n ∈ N} is
dense in X. There are a number of articles dealing with hypercyclic operators, for
a survey see e.g. [10], [11].

Analogously, a C0-semigroup T = (T (t))t≥0 on a Banach space X, or more
generally a family (T (ι))ι∈I of continuous linear operators onX, is called hypercyclic
if there exists an element x ∈ X such that {T (t)x; t ≥ 0}, resp. {T (ι)x; ι ∈ I} is
dense in X. In this case x is again called hypercyclic vector for the semigroup T ,
or for the family (T (ι))ι∈I , respectively.

The first example of a hypercyclic C0-semigroup was given by Rolewicz [14],
already in 1969. A systematic study of hypercyclic C0-semigroup was initiated by
Desch, Schappacher, and Webb [7]. Since then, various authors contributed to this
subject, see e.g. [2], [4], [3], [12], [1], [6], [5].

A notion closely related to hypercyclicity is that of transitivity. A C0-semigroup,
or more generally a family of continuous linear operators (Tι)ι∈I on a Banach space
X is called transitive if for each pair of non-empty, open subsets U, V of X there
is ι ∈ I such that T−1

ι (U) ∩ V 6= ∅. It was shown by Grosse-Erdmann that (Tι)ι∈I
is transitive if and only if (Tι)ι∈I is hypercyclic and the set of hypercyclic vectors
is dense [9, Satz 1.2.2 and its proof]. Moreover, Peris proved that a commuting
family of continuous linear operators (Tι)ι∈I for which each Tι has dense range is
hypercyclic if and only if the set of hypercyclic vectors is dense [13]. In particular,
an arbitrary commuting family of continuous linear operators (Tι)ι∈I for which each
Tι has dense range is hypercyclic if and only if it is transitive. A C0-semigroup is
hypercyclic if and only if it is transitive (see e.g. [7, Theorem 2.2]). A family of
continuous linear operators (Tι)ι∈I on a Banach space X is called weakly mixing if
(Tι ⊕ Tι)ι∈I is transitive on X ⊕X.

In [12], we gave a condition characterizing when C0-semigroups on spaces of
integrable and continuous functions, respectively, generated by first order partial
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differential operators are hypercyclic. In section 3 below we show that these semi-
groups are hypercyclic if and only if they are weakly mixing. However, for a given
C0-semigroup of the form discussed here, it might be difficult to check whether these
conditions hold, because they involve sequences of integrals with respect to certain
measures, and it has to be verified that these sequences tend to zero. Therefore,
we simplify the condition characterizing hypercyclicity considerably in the case of
one spacial dimension. This gives a characterization which is easy to check in con-
crete examples. Before we do this, in section 2 we deal with families of certain
weighted composition operators on the aforementioned spaces and prove that they
are transitive if and only if they are weakly mixing.

In section 4 we use the results of section 2 to show that for a hypercyclic evo-
lution family U = (U(s, t))s∈R,t≥s on a Banach space it may happen that some
of the operators U(s, t) are not hypercyclic. This stands in complete contrast to
C0-semigroups, which can be viewed as special evolution families. In [4], Cone-
jero, Müller, and Peris showed that for a hypercyclic C0-semigroup T not only each
operator T (t), t > 0, has to be hypercyclic but also that the set of the respective
hypercyclic vectors coincide.

2. Families of weighted composition operators

In this section we show that certain families of weighted composition operators
on spaces of measurable or continuous functions, respectively, are transitive if and
only if they are weakly mixing and give a characterization of when this happens.

Let Ω be an open subset of Rd, I 6= ∅ a set, and let ϕ : I ×Ω→ Ω be a mapping
such that ϕ(ι, ·) is injective and continuous for all ι ∈ I. Typically, I will be either
N0, [0,∞), or R.

Furthermore, let ρ be a positive function on Ω, i.e. ρ(x) > 0, x ∈ Ω. We will con-
sider spaces of continuous functions C0,ρ(Ω,C) and C0,ρ(Ω,R), where C0,ρ(Ω,K) :=
{f : X → K continuous; ∀ε > 0 : {x ∈ Ω; |f(x)|ρ(x) ≥ ε} is compact} is equipped
with the norm ‖f‖ := supx∈Ω |f(x)|ρ(x).

Moreover, we consider spaces of p-integrable functions. Let µ be a (positive)
locally finite Borel measure on Ω. In particular, µ is σ-finite. For 1 ≤ p < ∞ let
Lp(µ,R), Lp(µ,C) be as usual. Since in most occasions it will not matter whether
the considered functions are real or complex valued, we will write Lp(µ) and C0,ρ(Ω)
for brevity. Since µ is locally finite, the set of compactly supported, continuous
functions Cc(Ω) is dense in Lp(µ) (cf. [15, Theorem 3.14]) and obviously Cc(Ω) is
dense in C0,ρ(Ω), too. Lp(µ) as well as C0,ρ(Ω) is a separable Banach space.

Let w : I × Ω→ (0,∞) be such that for every ι ∈ I we have 1/w(ι, ·) ∈ L∞loc(µ).
We assume that for ι ∈ I the mapping Tw,ϕ(ι) : Lp(µ)→ Lp(µ), f 7→ w(ι, ·)f(ϕ(ι, ·))
is a well-defined continuous operator on Lp(µ) and if all w(ι, ·) are continuous that
the same is true for Tw,ϕ(ι) : C0,ρ(Ω) → C0,ρ(Ω), f 7→ w(ι, ·)f(ϕ(ι, ·)) (see e.g.
[12, Theorem 4.1, Theorem 4.2] for conditions ensuring this). Tw,ϕ(ι) is called a
weighted composition operator.

In [12] we characterized when the family Tw,ϕ is transitive on Lp(µ), respectively
on C0,ρ(Ω). We now show that this is the case if and only if Tw,ϕ is weakly mixing.
In order to formulate our theorems we make the following observation.

Since ϕ(ι, ·) is one-to-one for every ι ∈ I it has an inverse mapping from ϕ(ι,Ω)
to Ω which is denoted by ϕ(−ι, ·). In case of (I,+) being a group we want to
emphasis that in general ϕ(−ι, ·) is different from ϕ(κ, ·) for κ being the additive
inverse of ι in (I,+). Nevertheless, in the most important case when ϕ(ι1 + ι2, ·) =
ϕ(ι1, ·) ◦ ϕ(ι2, ·) for all ι1, ι2 ∈ I and ϕ(e, ·) = idX with e being the unit in (I,+),
we have ϕ(−ι, ·) = ϕ(κ, ·).
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Being an open subset of Rd, Ω is σ-compact. Hence, by the continuity and
injectivity of ϕ(ι, ·) it follows that for each closed subset C of Ω the image ϕ(ι, C)
is an Fσ-set, and in particular, Borel measurable. Since the closed subsets of Ω
generate the Borel σ-algebra over Ω, the injectivity of ϕ(ι, ·) now implies that
ϕ(ι, B) is a Borel subset of Ω whenever B is. So by setting

νp,ι(B) :=

∫
ϕ(ι,·)−1(B)

w(ι, ·)p dµ

and

νp,−ι(B) :=

∫
ϕ(ι,B)

1/w(ι, ϕ(−ι, ·))p dµ

for p ∈ [1,∞) and ι ∈ I we obtain a family of well-defined Borel-measures on Ω.
Obviously, for a non-negative, measurable function f one has∫

f dνp,ι =

∫
w(ι, ·)pf(ϕ(ι, ·)) dµ

and ∫
f dνp,−ι =

∫
χ
ϕ(ι,Ω)

f(ϕ(−ι, ·))/w(ι, ϕ(−ι, ·))p dµ.

Theorem 1. Under the above hypotheses on ϕ and w, the following are equivalent.

i) Tw,ϕ is weakly mixing on Lp(µ).
ii) Tw,ϕ is transitive on Lp(µ).

iii) For every compact subset K of Ω there are a sequence of measurable subsets
(Ln)n∈N of K and a sequence (ιn)n∈N in I such that

lim
n→∞

µ(K\Ln) = 0

as well as

lim
n→∞

νp,ιn(Ln) = lim
n→∞

νp,−ιn(Ln) = 0.

Proof: That i) implies ii) is obvious. That ii) implies iii) is shown in [12,
Theorem 4.3]. To show that iii) implies i) we write T instead of Tw,ϕ for brevity.

Let Ui, Vi, i = 1, 2, be non-empty open subsets of Lp(µ) and fi, gi ∈ Cc(Ω) be
such that fi ∈ Ui, gi ∈ Vi, i = 1, 2. Set K := supp f1 ∪ supp f2 ∪ supp g1 ∪ supp g2

which is a compact subset of Ω. Let (Ln)n∈N and (ιn)n∈N be as in iii) for K.
For n ∈ N we set

vn := (
g1(ϕ(−ιn, ·))

w(ιn, (ϕ(−ιn, ·)))
)χϕ(ιn,Ln)

and

ṽn := (
g2(ϕ(−ιn, ·))

w(ιn, (ϕ(−ιn, ·)))
)χϕ(ιn,Ln)

which are measurable and because of 1/w(ι, ·) ∈ L∞loc(µ) in Lp(µ). Denoting the
sup-norm by ‖ · ‖∞ we then have

‖vn‖p ≤ ‖g1‖p∞νp,−ιn(Ln)

so that (f1χLn + vn)n∈N converges to f1. Furthermore

‖T (ιn)(f1χLn)‖p ≤ ‖f1‖p∞νp,ιn(Ln),

so that (T (ιn)(f1χLn))n∈N converges to 0. Since T (ιn)vn − g1 = −g1χK\Ln we
see that (T (ιn)(f1χLn + vn))n∈N converges to g1. The same arguments yield that
(f2χLn+ ṽn)n∈N converges to f2 and (T (ιn)(f2χLn+ ṽn))n∈N converges to g2. Thus,
T (ιn)(Ui) ∩ Vi 6= ∅, i = 1, 2, for sufficiently large n, so that i) follows. �
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The same kind of arguments as above show that iii) implies i) in the next theo-
rem, except that one needs Brouwer’s Theorem. By Brouwer’s Theorem, ϕ(ι,Ω) is
an open subset of Ω since ϕ(ι, ·) is injective. Therefore, Cc(ϕ(ι,Ω)) can be identified
with a subspace of Cc(Ω), so that g(ϕ(−ιn, ·)) ∈ Cc(Ω) for g ∈ Cc(Ω). That ii)
implies iii) is shown in [12, Theorem 4.5].

Theorem 2. Under the above hypotheses on ϕ and w and the additional assumption
that for all compact subsets K of Ω we have infx∈K ρ(x) > 0, the following are
equivalent

i) Tw,ϕ is weakly mixing on C0,ρ(Ω).
ii) Tw,ϕ is topologically transitive on C0,ρ(Ω)

iii) For every compact subset K of Ω we can find a sequence (ιn)n∈N in I such
that

lim
n→∞

sup
x∈ϕ(ιn,·)−1(K)

w(ιn, x)ρ(x) = lim
n→∞

sup
x∈ϕ(ιn,K)

ρ(x)

w(ιn, ϕ(−ιn, x))
= 0.

3. Hypercyclic C0-semigroups

In this section we use the results of the previous one to show that certain C0-
semigroups generated by first order differential operators are hypercyclic if and only
if they are weakly mixing.

Let Ω ⊂ Rd be open and F : Ω→ Rd be a C1-vector field. We make the general
assumption that for every x0 ∈ Ω the unique solution ϕ(·, x0) of the initial value
problem

ẋ = F (x), x(0) = x0

is defined on [0,∞). Since F is a C1-vector field it is well-known that the same is
true for ϕ(t, ·) for every t ≥ 0. For a continuous function h : Ω → R we define for
t ≥ 0

ht : Ω→ (0,∞), x 7→ exp(

∫ t

0

h(ϕ(s, x)) ds).

It is easily seen, that because of ϕ(t + s, x) = ϕ(t, ϕ(s, x)) we have ht+s(x) =
ht(x)hs(ϕ(t, x)) for all s, t ≥ 0 and x ∈ Ω.

As in section 2, let µ be a locally finite Borel measure on Ω and ρ a positive
function on Ω. We want to define a C0-semigroup T on Lp(µ), resp. C0,ρ(Ω), via
(T (t)f)(x) := ht(x)f(ϕ(t, x)). In order to do so we recall the definition of the
following Borel measures on Ω from section 2. For 1 ≤ p <∞ and t ≥ 0

νp,t(B) :=

∫
ϕ(t,·)−1(B)

hpt dµ

and

νp,−t(B) :=

∫
ϕ(t,B)

1/ht(ϕ(t, ·))p dµ.

Recall that ϕ(t, ·), t ≥ 0, is one-to-one and that we denote its inverse mapping from
ϕ(t,Ω) to Ω by ϕ(−t, ·). Obviously, if ϕ(·, x) is well-defined in −t < 0 it follows
that the two notions of ϕ(−t, x) coincide, hence there is no problem of consistency.

Recall that for a positive measurable function f on Ω one has∫
f dνp,t =

∫
hpt (x)f(ϕ(t, x)) dµ(x)

and ∫
f dνp,−t =

∫
χ
ϕ(t,Ω)

(x)f(ϕ(−t, x))/ht(ϕ(−t, x))p dµ(x).
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For a general characterization in terms of the measures (νp,t)t≥0 of when the
operators T (t)f = htf(ϕ(t, ·)), t ≥ 0, are well-defined on Lp(µ) and form a C0-
semigroup, see [12, Theorem 4.7]. If the so defined operators form a C0-semigroup
on Lp(µ) we call the measure µ p-admissible for F and h.

In the special case when the measure µ has a positive Lebesgue density ρ, one
has the following characterization of when µ is p-admissible for F and h. For its
proof see [12, Proposition 4.12].

Proposition 3. Let µ be a locally finite Borel measure on Ω admitting a positive
Lebesgue density ρ. Then, the following are equivalent.

i) µ is p-admissible for F and h.
ii) There are M ≥ 1, ω ∈ R such that for t ≥ 0 and λd-almost all x ∈ Ω

hpt (x)ρ(x) ≤Meωtρ(ϕ(t, x))|detDxϕ(t, x)|,

where λd denotes d-dimensional Lebesgue measure and Dxϕ(t, x) the Jacobian of

x 7→ ϕ(t, x). If ii) holds then ‖T (t)‖ ≤Met
ω
p .

For the case of continuous functions one has the following theorem. For its proof
see [12, Theorem 4.8].

Theorem 4. Let ρ be a positive, upper semicontinuous function on Ω. The follow-
ing are equivalent.

i) The family of mappings T (t) : C0,ρ(Ω) → C0,ρ(Ω), f 7→ ht(·)f(ϕ(t, ·)) is
well-defined and a C0-semigroup on C0,ρ(Ω).

ii) a) There are constants M ≥ 1, ω ∈ R such that for all t ≥ 0, x ∈ Ω one
has ht(x)ρ(x) ≤Meωtρ(ϕ(t, x)).

b) For every compact subset K of Ω and every δ ≥ 0 the sets ϕ−1(t, ·)(K)∩
{x ∈ Ω; ht(x)ρ(x) ≥ δ} are compact for every t ≥ 0.

We call a positive function ρ on Ω C0-admissible for F and h if via (T (t)f)(x) =
ht(x)f(ϕ(t, x)) a C0-semigroup is defined on C0,ρ(Ω).

Under the assumption that h is continuously differentiable, it is shown in [12]
that for µ p-admissible for F and h, resp. ρ C0-admissible for F and h, the generator
of our C0-semigroup is given by the closure of the operator

C1
c (Ω)→ X, f 7→

d∑
j=1

Fj∂jf + hf

in X = Lp(µ), resp. in X = C0,ρ(Ω), with C1
c (Ω) = Cc(Ω) ∩ C1(Ω).

Taking into account that h is continuous, hence 1/ht ∈ L∞(µ), the following
theorems are immediate consequences of Theorem 1 and Theorem 2, respectively.

Theorem 5. Let µ be a locally finite, p-admissible Borel measure for F and h on
Ω. Then the following are equivalent.

i) The C0-semigroup defined by (T (t)f)(x) = ht(x)f(ϕ(t, x)) is weakly mixing
on Lp(µ).

ii) The C0-semigroup defined by (T (t)f)(x) = ht(x)f(ϕ(t, x)) is hypercyclic on
Lp(µ).

iii) For every compact subset K of Ω there are a sequence of measurable subsets
(Ln)n∈N of K and a sequence of positive numbers (tn)n∈N such that

lim
n→∞

µ(K\Ln) = 0
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as well as

lim
n→∞

νp,tn(Ln) = lim
n→∞

νp,−tn(Ln) = 0.

Theorem 6. Let ρ be a positive C0-admissible function for F and h on Ω such
that infx∈K ρ(x) > 0 for every compact subset K of Ω. Then the following are
equivalent.

i) The C0-semigroup defined by (T (t)f)(x) = ht(x)f(ϕ(t, x)) is weakly mixing
on C0,ρ(Ω).

ii) The C0-semigroup defined by (T (t)f)(x) = ht(x)f(ϕ(t, x)) is hypercyclic on
C0,ρ(Ω).

iii) For every compact subset K of Ω there is a sequence of positive numbers
(tn)n∈N such that

lim
n→∞

sup
x∈K

htn(ϕ(−tn, x))ρ(ϕ(−tn, x))χ
ϕ(tn,Ω)

(x) = lim
n→∞

sup
x∈K

ρ(ϕ(tn, x))

htn(x)
= 0.

It seems that the conditions for hypercyclicity given by the above theorems
might be hard to evaluate for a given C0-semigroup. It turns out that in the
one dimensional case, i.e. d = 1, the above characterizations can be considerably
simplified, provided that µ admits a positive Lebesgue density.

The reason for this is that for d = 1 a compact subset which is contained in a
single component of Ω\{F = 0} is already contained in the trajectory {ϕ(t, x); t ≥
0} of a single point x ∈ Ω, simply because the trajectories are either one-point sets
(in case of the point being a zero of F ) or open intervals (which then do not contain
any zero of F and are trajectories without double points). So, for a compact subset
K of a component of Ω\{F = 0} there is a compact interval [a, b] containing K
which is contained in the same component of Ω\{F = 0} as K such that either
F|[a,b] > γ > 0 or F|[a,b] < γ′ < 0 for some suitable γ, γ′. In the first case, it
follows that ϕ(t, a) ≥ a + tγ > b for all t > (b − a)/γ, while in the second case
ϕ(t, b) ≤ b + tγ′ < a for all t > (a − b)/γ′. So in both cases [a, b], hence K, is
contained in a trajectory of a single point.

Using this idea, we first prove a technical tool.

Lemma 7. Let Ω ⊂ R be open and [a, b] ⊂ {F 6= 0}. Assume that ρ : Ω→ (0,∞) is
measurable and satisfies hpt (x)ρ(x) ≤ Meωtρ(ϕ(t, x))|∂2ϕ(t, x)| for some constants
M ≥ 1, ω ≥ 0 and for every t ≥ 0, x ∈ [a, b].

Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a, b] and

hpt (ϕ(−t, c))ρ(ϕ(−t, c))|∂2ϕ(−t, c)|χ
ϕ(t,Ω)

(c)

≤ Chpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)

(y)

≤ C2hpt (ϕ(−t, d))ρ(ϕ(−t, d))|∂2ϕ(−t, d)|χ
ϕ(t,Ω)

(d)

as well as

h−pt (c)ρ(ϕ(t, c))|∂2ϕ(t, c)| ≤ Ch−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)|
≤ C2h−pt (d)ρ(ϕ(t, d))|∂2ϕ(t, d)|.

for all t ≥ 0, where c := a, d := b if F|[a,b] > 0, respectively c := b, d := a if
F|[a,b] < 0.

Proof: Let [a, b] ⊂ {F 6= 0}. We define

c :=

{
a , F|[a,b] > 0

b , F|[a,b] < 0
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and

d :=

{
a , F|[a,b] < 0

b , F|[a,b] > 0.

Then there is r > 0 such that for every y ∈ [a, b] there are sy, ty ∈ [0, r] such that
ϕ(sy, y) = d and ϕ(ty, c) = y. It follows that for all y ∈ [a, b]

hpty (c)ρ(c) ≤ Meωtyρ(ϕ(ty, c))|∂2ϕ(ty, c)|
≤ Meωrρ(y)|∂2ϕ(ty, c)|

and

hpsy (y)ρ(y) ≤ Meωsyρ(ϕ(sy, y))|∂2ϕ(sy, y)|
≤ Meωrρ(d)|∂2ϕ(sy, y)|.

The continuity of the mappings (t, x) 7→ ∂2ϕ(t, x) and (t, x) 7→ ht(x), and the fact
that for fixed t the map x 7→ ∂2ϕ(t, x) has no zeros, now imply the first part of the
lemma.

Observe that we have ϕ(s + t, y) = ϕ(s, ϕ(t, y)) for all s, t ∈ R for which the
involved quantities are defined. From this it follows that

∂2ϕ(s, ϕ(t, y))∂2ϕ(t, y) = ∂2ϕ(t, ϕ(s, y))∂2ϕ(s, y).

In particular

∂2ϕ(sy, ϕ(−t, y))∂2ϕ(−t, y) = ∂2ϕ(−t, ϕ(sy, y))∂2ϕ(sy, y)(1)

= ∂2ϕ(−t, d)∂2ϕ(sy, y),

for y ∈ ϕ(t,Ω), as well as

∂2ϕ(sy, ϕ(t, y))∂2ϕ(t, y) = ∂2ϕ(t, ϕ(sy, y))∂2ϕ(sy, y)(2)

= ∂2ϕ(t, d)∂2ϕ(sy, y).

Moreover, ht(y)hs(ϕ(t, y)) = ht+s(y) = hs(y)ht(ϕ(s, y)) again for all s, t ∈ R for
which the involved quantities are defined. Hence,

ht(ϕ(−t, y))hsy (ϕ(t, ϕ(−t, y))) = hsy (ϕ(−t, y))ht(ϕ(−t, ϕ(sy, y)))(3)

= hsy (ϕ(−t, y))ht(ϕ(t, d)),

for y ∈ ϕ(t,Ω), as well as

ht(y)hsy (ϕ(t, y)) = hsy (y)ht(ϕ(sy, y)) = hsy (y)ht(d).(4)

Clearly, if y ∈ ϕ(t,Ω) and ϕ(sy, y) = d it follows that d ∈ ϕ(t,Ω), hence
χ
ϕ(t,Ω)

(y) ≤ χ
ϕ(t,Ω)

(d). From this we get for t ≥ 0 and all y ∈ [a, b]

hpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)

(y)

=
hpt (ϕ(−t, y)) hpsy (ϕ(−t, y))ρ(ϕ(−t, y)) |∂2ϕ(−t, y)|

hpsy (ϕ(−t, y))
χ
ϕ(t,Ω)

(y)

≤ hpt (ϕ(−t, y))Meωrρ(ϕ(sy, ϕ(−t, y))|∂2ϕ(sy, ϕ(−t, y))∂2ϕ(−t, y)|
hpsy (ϕ(−t, y))

χ
ϕ(t,Ω)(y)

=
hpt (ϕ(−t, y))Meωrρ(ϕ(−t, d))|∂2ϕ(−t, d)∂2ϕ(sy, y)|hpt (ϕ(−t, d))

hpsy (ϕ(−t, y))hpt (ϕ(−t, d))
χ
ϕ(t,Ω)

(y)

=
hpt (ϕ(−t, y))Meωrρ(ϕ(−t, d))|∂2ϕ(−t, d)∂2ϕ(sy, y)|hpt (ϕ(−t, d))

hpt (ϕ(−t, y))hpsy (ϕ(t, ϕ(−t, y)))
χ
ϕ(t,Ω)

(y)

≤ Meωr|∂2ϕ(sy, y)|
hpsy (y)

hpt (ϕ(−t, d))ρ(ϕ(−t, d))|∂2ϕ(−t, d)|χ
ϕ(t,Ω)

(d),
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where we applied (1) in the fourth and (3) in the fifth line. Using the continuity
of the mappings (t, x) 7→ ∂2ϕ(t, x) and (t, x) 7→ ht(x) and the compactness of
[0, r]× [a, b], we get a constant K > 0 such that for all y ∈ [a, b]

hpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)

(y)

≤ Khpt (ϕ(−t, d))ρ(ϕ(−t, d))|∂2ϕ(−t, d)|χ
ϕ(t,Ω)

(d).

In the same way one shows that for all y ∈ [a, b]

hpt (ϕ(−t, c))hpty (ϕ(−t, c))ρ(ϕ(−t, c))|∂2ϕ(−t, c)|
hpty (ϕ(−t, c))

χ
ϕ(t,Ω)(c)

≤ Meωr|∂2ϕ(ty, c)|
hpty (c)

hpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)(y)

giving

hpt (ϕ(−t, c))ρ(ϕ(−t, c))|∂2ϕ(−t, c)|χ
ϕ(t,Ω)

(c)

≤ Khpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)

(y)

for all y ∈ [a, b].
Furthermore, for t ≥ 0 and all y ∈ [a, b]

h−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)| =
hpsy (ϕ(t, y))

hpsy (ϕ(t, y))
h−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)|

≤ Meωsyρ(ϕ(sy, ϕ(t, y))|∂2ϕ(sy, ϕ(t, y))∂2ϕ(t, y)|
hpsy (ϕ(t, y))hpt (y)

=
Meωsyρ(ϕ(t, d))|∂2ϕ(t, d)∂2ϕ(sy, y)|

hpsy (y)hpt (d)

≤ Meωr|∂2ϕ(sy, y)|
hpsy (y)

h−pt (d)ρ(ϕ(t, d))|∂2ϕ(t, d)|,

where we used (2) and (4) in the third line. Again the continuity of the mappings
(t, x) 7→ ∂2ϕ(t, x) and (t, x) 7→ ht(x) and the compactness of [0, r] × [a, b] give a
constant L > 0 such that for all y ∈ [a, b]

h−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)| ≤ Lh−pt (d)ρ(ϕ(t, d))|∂2ϕ(t, d)|.
In the same way as above one shows that for all y ∈ [a, b]

h−pt (c)ρ(ϕ(t, c))|∂2ϕ(t, c)| ≤ Lh−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)|,
proving the lemma. �

As a second tool, we need the following proposition. For its proof, see [12,
Proposition 4.12].

Proposition 8. Let µ be p-admissible for F and h with Lebesgue density ρ. Then,
a µ-density of νp,t, respectively νp,−t, is given by

χϕ(t,Ωt)
hpt (ϕ(−t, ·))ρ(ϕ(−t, ·))|detDxϕ(−t, ·)|

ρ
,

respectively

h−pt ρ(ϕ(t, ·))|detDxϕ(t, ·)|
ρ

.

Recall that we denote d-dimensional Lebesgue measure by λd.

Theorem 9. Let Ω ⊂ R be open and assume the locally finite p-admissible measure
µ has a positive Lebesgue density ρ. Then, the following are equivalent.



HYPERCYCLIC C0-SEMIGROUPS AND EVOLUTION FAMILIES 9

i) The C0-semigroup T defined via (T (t)f)(x) = ht(x)f(ϕ(t, x)) is hypercyclic
on Lp(µ).

ii) The C0-semigroup T defined via (T (t)f)(x) = ht(x)f(ϕ(t, x)) is weakly
mixing on Lp(µ).

iii) λ1(F = 0) = 0 and for every m ∈ N for which there are m different
components C1, . . . , Cm of Ω\{F = 0}, for λm-almost all choices of xj ∈
Cj , j = 1, . . . ,m, there is a sequence of positive numbers (tn)n∈N tending to
infinity such that

lim
n→∞

h−ptn (xj)ρ(ϕ(tn, xj))∂2ϕ(tn, xj) = 0

as well as

lim
n→∞

hptn(ϕ(−tn, xj))ρ(ϕ(−tn, xj))∂2ϕ(−tn, xj)χϕ(tn,Ω)
(xj) = 0

for j = 1, . . . ,m.

Proof: That i) implies ii) follows from Theorem 5. In order to show that
ii) implies iii) observe that ϕ(t, x) = x if F (x) = 0 so that ht(x)f(ϕ(t, x)) =
exp(th(x))f(x) for every f ∈ Lp(µ) on {F = 0}. From this it follows easily that T
cannot be hypercyclic if λ1(F = 0) > 0. Let x1, . . . , xm be from different compo-
nents of Ω\{F = 0} which, by Proposition 3, we assume without loss of generality to
satisfy ht(xj)ρ(xj) ≤Meωtρ(ϕ(t, xj))|∂2ϕ(t, xj)| for all t ≥ 0, j = 1, . . . ,m. Since Ω
is open there is r < 0 such that ϕ(t, xj) is well-defined for all t ∈ [r,∞), j = 1, . . . ,m
and the aforementioned inequality is valid for ϕ(r, xj) in place of xj , too. For
j = 1, . . . ,m we define Kj := {ϕ(t, xj); 0 ≤ t ≤ 1} if F (xj) > 0, respectively
Kj := {ϕ(t, xj); r ≤ t ≤ 0} if F (xj) < 0. Then the Kj ’s are compact intervals con-
tained in Ω\{F = 0} satisfying λ(Kj) > 0, since F (xj) 6= 0, and Kj = [xj , ϕ(1, xj)]
if F (xj) > 0, respectively Kj = [xj , ϕ(r, xj)] if F (xj) < 0. In particular µ(Kj) > 0.
From Theorem 5 it follows that for the compact subset K := ∪1≤j≤mKj of Ω there
are a sequence of measurable subsets (Ln)n∈N of K and a sequence of positive
numbers (tn)n∈N such that

lim
n→∞

µ(K ∩ Lcn) = lim
n→∞

νp,tn(Ln) = lim
n→∞

νp,−tn(Ln) = 0.

Since T is weakly mixing, it follows from Proposition 3 that ω > 0, because other-
wise {‖T (t)‖; t ≥ 0} was bounded, implying the boundedness of each orbit under
T . Defining Ln,j := Ln ∩Kj , n ∈ N, 1 ≤ j ≤ m we obtain from Proposition 8 and
Lemma 7 that for some constant Cj > 0

νp,−tn(Ln,j) =

∫
Ln,j

h−ptn (y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|
ρ(y)

dµ(y)

≥ Cjh
−p
tn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)|µ(Ln,j).

Because limn→∞ µ(Ln,j) = µ(Kj) > 0 it follows from limn→∞ νp,tn(Ln,j) = 0 that

lim
n→∞

h−ptn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)| = 0

for all j = 1, . . . ,m and the continuity of (s, y) 7→ hs(y), ϕ, and ∂2ϕ together with
Lemma 7 imply that (tn)n∈N has to converge to infinity.

Furthermore, we get from Proposition 8 and Lemma 7

νp,tn(Ln,j) =

∫
Ln,j

hptn(ϕ(−tn, y))ρ(ϕ(−tn, y))|∂2ϕ(−tn, y)|
ρ(y)

χ
ϕ(tn,Ω)

(y) dµ(y)

≥ Cjh
p
tn(ϕ(−tn, xj))ρ(ϕ(−tn, xj))|∂2ϕ(−tn, xj)|χϕ(tn,Ω)

(xj)µ(Ln,j)
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which shows by the same arguments as above that

lim
n→∞

hptn(ϕ(−tn, xj))ρ(ϕ(−tn, xj))|∂2ϕ(−tn, xj)|χϕ(tn,Ω)
(xj) = 0.

In order to show that iii) implies i) let K be a compact subset of Ω. Since
obviously Lp(Ω, µ) = Lp(Ω\{F = 0}, µ) and ϕ(t,Ω\{F = 0}) ⊂ Ω\{F = 0} for all
t ≥ 0 we can assume without loss of generality that K ⊂ Ω\{F = 0}.

Therefore, there are finitely many intervals [aj , bj ] ⊂ Ω\{F = 0} such that each
[aj , bj ] is contained in a different component of Ω\{F = 0} and K ⊂ ∪1≤j≤m[aj , bj ].
We define xj := aj if F|[aj ,bj ] > 0, respectively xj := bj if F|[aj ,bj ] < 0, where
without loss of generality we assume iii) to be true for x1, . . . , xm. Let (tn)n∈N be
a sequence of positive numbers according to iii) for x1, . . . , xm. From Lemma 7 it
follows that for some Cj > 0

νp,−tn(K) ≤
m∑
j=1

νp,tn([aj , bj ]) =

m∑
j=1

∫
[aj ,bj ]

h−pt (y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|
ρ(y)

dµ(y)

≤
m∑
j=1

Cjµ([aj , bj ])h
−p
tn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)|

so that limn→∞ νp,tn(K) = 0.
Analogously, one shows that limn→∞ νp,tn(K) = 0 as well. Now i) follows from

Theorem 5. �

In order to prove an analogue of Theorem 9 for spaces of continuous functions,
we need the following lemma. Its proof is so similar to that of Lemma 7 that we
omit it.

Lemma 10. Let Ω ⊂ R be open and [a, b] ⊂ {F 6= 0}. Assume that ρ : Ω→ (0,∞)
satisfies ht(x)ρ(x) ≤Meωtρ(ϕ(t, x)) for some M ≥ 1, ω ∈ R and all x ∈ [a, b], t ≥ 0.

Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a, b] and

hpt (ϕ(−t, c))ρ(ϕ(−t, c))χ
ϕ(t,Ω)

(c) ≤ Chpt (ϕ(−t, y))ρ(ϕ(−t, y))χ
ϕ(t,Ω)

(y)

≤ C2hpt (ϕ(−t, d))ρ(ϕ(−t, d))χ
ϕ(t,Ω)

(d)

as well as

h−pt (c)ρ(ϕ(t, c)) ≤ Ch−pt (y)ρ(ϕ(t, y))

≤ C2h−pt (d)ρ(ϕ(t, d)).

for all t ≥ 0 and all y ∈ [a, b], where c := a, d := b if F|[a,b] > 0, respectively
c := b, d := a if F|[a,b] < 0.

Using the above lemma we can now prove the following theorem.

Theorem 11. Let Ω ⊂ R be open and assume that the function ρ : Ω→ (0,∞) is
C0-admissible for F and h, and satisfies infx∈K ρ(x) > 0 for every K ⊂ Ω compact,
as well as ht(x)ρ(x) ≤Meωtρ(ϕ(t, x)) for some M ≥ 1, ω ∈ R and all x ∈ Ω, t ≥ 0.

The following are equivalent.

i) The C0-semigroup T defined via (T (t)f)(x) = ht(x)f(ϕ(t, x)) is hypercyclic
on C0,ρ(Ω).

ii) The C0-semigroup T is weakly mixing on C0,ρ(Ω).
iii) {F = 0} = ∅ and for every x ∈ Ω there is a sequence of positive numbers

(tn)n∈N such that

lim
n→∞

ρ(ϕ(tn, x))

htn(x)
= 0
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as well as

lim
n→∞

htn(ϕ(−tn, x))ρ(ϕ(−tn, x))χ
ϕ(tn,Ω)

(x) = 0.

Proof: Obviously, i) implies ii) by Theorem 6. To show that ii) implies iii)
observe that {F = 0} = ∅ by the same reasoning as in the proof of Theorem 9.
Let x ∈ Ω. We define K := {ϕ(t, x); 0 ≤ t ≤ 1}. Then K is a compact interval
contained in Ω. From Theorem 6 it follows that for K there is a sequence of positive
numbers (tn)n∈N such that

lim
n→∞

sup
y∈K

htn(ϕ(−tn, y))ρ(ϕ(−tn, y))χ
ϕ(tn,Ω)

(y) = lim
n→∞

sup
y∈K

ρ(ϕ(tn, y))

htn(y)
= 0.

From this, iii) follows immediately, since x ∈ K.
In order to show that iii) implies i) let K be a compact subset of Ω and [a, b] ⊂ Ω

such that K ⊂ [a, b]. We define x := a if F > 0, respectively x := b if F < 0. Let
(tn)n∈N be a sequence of positive numbers according to iii) for x. Now it follows
with Lemma 10 as in the proof of Theorem 9 that

lim
n→∞

sup
y∈K

htn(ϕ(−tn, y))ρ(ϕ(−tn, y))χ
ϕ(tn,Ω)

(y) = lim
n→∞

sup
y∈K

ρ(ϕ(tn, y))

htn(y)
= 0.

Theorem 6 now implies i). �

Remark 12. Combining Lemma 7, resp. Lemma 10, with [12, Theorem 5.1], one
obtains an easy characterization of when T is mixing, i.e. for every pair of non-
empty open subsets U, V there is t0 > 0 such that T (t)(U) ∩ V 6= ∅ for all t ≥ t0.

Analogously to Theorem 9, one can prove for Ω ⊂ R open, F continuously differ-
entiable, and p-admissible measure µ with positive Lebesgue density ρ that T (t)f =
htf(ϕ(t, ·)) defines a mixing C0-semigroup on Lp(µ) if and only if λ1(F = 0) = 0
and for λ1-almost every x ∈ Ω\{F = 0} one has

lim
t→∞

h−pt (x)ρ(ϕ(t, x))∂2ϕ(t, x) = 0

as well as

lim
t→∞

hpt (ϕ(−t, x))ρ(ϕ(−t, x))∂2ϕ(−t, x)χ
ϕ(t,Ω)(x) = 0.

Analogously to Theorem 11, one proves that for Ω ⊂ R open, ρ C0-admissible
satisfying ht(x)ρ(x) ≤ Meωtρ(ϕ(t, x)), that T (t)f = htf(ϕ(t, ·)) defines a mixing
C0-semigroup on C0,ρ(Ω) if and only if {F = 0} = ∅ and for every x ∈ Ω

lim
t→∞

ρ(ϕ(t, x))

ht(x)
= 0

as well as

lim
t→∞

ht(ϕ(−t, x))ρ(ϕ(−t, x))χ
ϕ(t,Ω)

(x) = 0.

The special case when F ≡ 1 and h ≡ 0 gives ϕ(t, x) = x+ t and ht ≡ 1 so that
(T (t)f)(x) = f(x + t), i.e. the so called left translation semigroup. From ht ≡ 1 it
follows from Proposition 3 that for a locally finite measure µ on Ω ∈ {R, [0,∞)}
with positive Lebesgue density ρ, that µ is p-admissible for some p ∈ [1,∞) if
and only if it is p-admissible for all p ∈ [1,∞) if and only if there are constants
M ≥ 1 and ω ∈ R such that ρ(x + t) ≤ Meωtρ(x) for all t ≥ 0 and almost all
x ∈ Ω. Moreover, in case of continuous functions, the left translation semigroup is
a well-defined C0-semigroup on C0,ρ(Ω) if and only if there are constants M ≥ 1
and ω ∈ R such that ρ(x+ t) ≤Meωtρ(x) for all t ≥ 0 and x ∈ Ω.
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Hypercyclicity and mixing of the left translation semigroup was characterized in
[7, Theorems 4.7 and 4.8], respectively [2, Theorem 4.3]. We obtain these results
as corollaries of Theorems 9, 11, and Remark 12, respectively. Note however, that
in case of continuous functions the aforementioned results deal with C0,ρ([0,∞))
instead of C0,ρ((0,∞)). It is shown in [12, Example 3.16] that when regarding
hypercyclicity, resp. mixing, of the left translation semigroup there is no difference
between C0,ρ([0,∞)) and C0,ρ((0,∞)). Obviously the spaces Lp((0,∞), ρ dλ) and
Lp([0,∞), ρ dλ) are the same.

Corollary 13. ([7, Theorems 4.7 and 4.8], [2, Theorem 4.3]) Let Ω ∈ {R, [0,∞)}
and ρ : Ω→ (0,∞) be such that ρ(x+ t) ≤Meωtρ(x) for all t ≥ 0 and for (almost)
all x ∈ Ω with constants M ≥ 1 and ω ∈ R.

a) The following are equivalent.
i) The left translation semigroup is hypercyclic on Lp(µ), resp. C0,ρ(Ω).
ii) For every x ∈ Ω there is a sequence of positive numbers (tending to

infinity) (tn)n∈N such that

lim
n→∞

ρ(x+ tn) = lim
n→∞

ρ(x− tn)χ
Ω

(x− tn) = 0.

b) The following are equivalent.
i) The left translation semigroup is mixing on Lp(µ) resp. C0,ρ(Ω).

ii) We have limt→∞ ρ(t) = limt→∞ ρ(−t)χ
Ω

(−t) = 0.

Proof: We only consider the Lp-case. The case of continuous functions is dealt
with in the same way. In order to prove a) just observe that Ω\{F = 0} = Ω
has only one component so that a) follows from Theorem 9. In order to prove
b) observe that for every x ∈ Ω we have limt→∞ ρ(t) = limt→∞ ρ(x + t) and
limt→∞ ρ(−t)χ

Ω
(−t) = limt→∞ ρ(x− t)χ

Ω
(x− t) so that b) follows from remark 12.

�

4. Hypercyclic evolution families

As C0-semigroups are related to autonomous abstract Cauchy problems, evolu-
tion families are related to non-autonomous abstract Cauchy problems.

Recall that a mapping U : {(t, s) ∈ R2; t ≥ s} → L(X), where X is a Banach
space, is called an evolution family, if it satisfies

i) U(s, s) = id for all s ∈ R
ii) U(t, r) ◦ U(r, s) = U(t, s) for all s ≤ r ≤ t

iii) U is continuous when we equip L(X) with the strong operator topology.

If T is a C0-semigroup it is trivial to observe that U(t, s) := T (t − s), s ∈ R, t ≥ s
defines an evolution family.

Furthermore, let D(A(t)) ⊂ X be dense subspaces and A(t) : D(A(t)) → X be
linear mappings, t ∈ R. The evolution family U is said to solve the non-autonomous
Cauchy problem

(nCP)
d

dt
u(t) = A(t)u(t)

u(s) = x, x ∈ X, t ≥ s

(on the spaces Xt) if there are dense subspaces (Xt)t∈R of X such that U(t, s)Xs ⊂
Xt ⊂ D(A(t)), t ≥ s, and the function t 7→ U(t, s)x solves (nCP) for fixed s ∈
R, x ∈ Xs (cf. [8, Chapter VI.9]).
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The results of section 2 can also be used to characterize when the evolution
family U = (U(t, s))s∈R,t≥s of non-autonomous Cauchy problems of the form

∂

∂t
u(t, s, x) = 〈F (t, x),∇xu(t, s, x)〉+ h(t, x)u(t, s, x), t ≥ s, x ∈ Ω

u(s, s, x) = us(x), s ∈ R,

is transitive, where again Ω ⊂ Rd is open, F : R × Ω → Ω is locally Lipschitz
continuous with respect to x and h : R× Ω→ R is continuous.

We assume that for every s ∈ R and every x0 ∈ Ω the unique solution ϕ(·, s, x0)
of the initial value problem

ẋ(t) = F (t, x(t)), x(s) = x0

exists on all R. The uniqueness of the solution implies that ϕ(t, s, ·) is a bijective
mapping on Ω and that its inverse mapping is given by ϕ(s, t, ·).

Let µ again be a locally finite Borel measure on Ω. We define ht,s(x) :=

exp(
∫ t
s
h(r, ϕ(r, s, x)) dr), t ≥ s, and observe that ht,s is measurable, real-valued

and satisfies 1/ht,s ∈ L∞loc(µ).
We assume that the mappings U(t, s)f := ht,s(·)f(ϕ(t, s, ·)), t ≥ s, are well-

defined linear operators on Lp(µ) for all s ∈ R and t ≥ s. It is obvious, that
U(s, s)f = f for all s ∈ R and that U(t, r)(U(r, s)f) = U(t, s)f for all s ≤ r ≤ t,
so that U is an evolution family if and only if the mapping {(u, v) ∈ R2;u ≥ v} →
Lp(µ), (t, s) 7→ U(t, s)f is continuous for every f ∈ Lp(µ).

For s ∈ R and t ≥ s we define as in section 2 the Borel measures

νp,(t,s)(A) :=

∫
ϕ(s,t,A)

hpt,s dµ

and

νp,−(t,s)(A) :=

∫
ϕ(t,s,A)

1/hpt,s(ϕ(s, t, ·)) dµ.

Theorem 14. Assume that (U(t, s)f)(x) := ht,s(x)f(ϕ(t, s, x)) defines a continu-
ous linear operator on Lp(µ) for every (t, s) ∈ {(u, v) ∈ R2;u ≥ v}.

a) For the family U := (U(t, s))s∈R,t≥s of linear operators on Lp(µ) the fol-
lowing are equivalent.

i) U is weakly mixing on Lp(µ).
ii) U is transitive on Lp(µ).

iii) For every compact subset K of Ω there are a sequence of measurable
subsets (Ln)n∈N of K and a sequence ((tn, sn))n∈N in {(u, v) ∈ R2;u ≥
v} such that limn→∞ µ(K\Ln) = 0 as well as

lim
n→∞

νp,(tn,sn)(Ln) = lim
n→∞

νp,−(tn,sn)(Ln) = 0.

b) For a fixed s ∈ R the following are equivalent.
i) {U(t, s); t ≥ s} is weakly mixing on Lp(µ).
ii) {U(t, s); t ≥ s} is transitive on Lp(µ).

iii) For every compact subset K of Ω there are a sequence of measur-
able subsets (Ln)n∈N of K and a sequence (tn)n∈N in [s,∞) such that
limn→∞ µ(K\Ln) = 0 as well as

lim
n→∞

νp,(tn,s)(Ln) = lim
n→∞

νp,−(tn,s)(Ln) = 0.

Proof: Having in mind that ϕ(t, s,Ω) = Ω and ϕ(t, s, ·)−1 = ϕ(s, t, ·) for all
t, s ∈ R the theorem is a direct consequence of Theorem 1. �
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If F and h are continuously differentiable, it is straight forward to show that in
case of U being an evolution family, it solves the non-autonomous Cauchy problem

∂

∂t
u(t, s, ·) = 〈F (t, ·),∇xu(t, s, ·)〉+ h(t, ·)u(t, s, ·), t ≥ s,

u(s, s, ·) = f0

on the spaces Xt := C1
c (Ω), t ∈ R, in Lp(µ).

Example. Let Ω = R, F ≡ 1, h(t, x) := 2ct where c ∈ R and let µ be the finite
Borel measure with Lebesgue density ρ(x) := e−|x|. It then follows that ϕ(t, s, x) =
x + (t − s), ht,s(x) = exp(c(t2 − s2)) and obviously U(t, s)f := ht,s(·)f(ϕ(t, s, ·))
defines an evolution family on Lp(µ). Moreover, each operator U(t, s) has dense
range, since U(t, s)(Cc(Ω)) = Cc(Ω) and the operators of U commute so that U is
transitive if and only if U is hypercyclic by the results of Peris [13] mentioned in the
introduction. The same holds obviously for the family of operators {U(t, s); t ≥ s}
for fixed s ∈ R.

It is readily seen that νp,(t,s) has Lebesgue density exp(pc(t2− s2)− | ·−(t− s)|)
while νp,−(t,s) has Lebesgue density exp(−pc(t2−s2)−|·+(t−s)|) for all s ∈ R, t ≥ s.

For a bounded, measurable subset B of R with λ1(B) > 0 and a sequence (tn)n∈N
in [s,∞) we have limn→∞ νp,(tn,s)(B) = 0 if and only if (tn)n∈N converges to infinity
and pc ≤ 0 because for sufficiently large tn

νp,(tn,s)(B) = exp(pc(t2n − s2)− (tn − s))
∫
B

exp(x) dx.

Furthermore, we have limn→∞ νp,−(tn,s)(B) = 0 if and only if (tn)n∈N converges
to infinity and pc ≥ 0 because for sufficiently large tn

νp,−(tn,s)(B) = exp(−pc(t2n − s2)− (tn − s))
∫
B

exp(−x) dx.

From this and Theorem 14 b) it follows that for fixed s ∈ R the family of
operators (U(t, s))t≥s is hypercyclic on Lp(µ) if and only if c = 0.

On the other hand, if t > 0 is sufficiently large and s := −t we have

νp,(t,−t)(B) = exp(−2t)

∫
B

exp(x) dx

and

νp,−(t,−t)(B) = exp(−2t)

∫
B

exp(−x) dx,

which both converge to 0 when t tends to infinity, so that by Theorem 14 a) the
family (U(t, s))s∈R,t≥s is hypercyclic on Lp(µ) for all values of c.

Finally, for fixed (t, s) ∈ {(u, v) ∈ R2; u > v} we have for each n ∈ N that
U(t, s)nf = exp(cn(t2 − s2))f(· + n(t − s)). Setting hn := exp(cn(t2 − s2)) and
ϕ(n, x) = x+n(t−s) and adapting the notation from section 2 we get for sufficiently
large n

νp,n(B) = exp(n(cp(t2 − s2)− (t− s)))
∫
B

exp(x) dx,

and

νp,−n(B) = exp(−n(cp(t2 − s2) + (t− s)))
∫
B

exp(−x) dx.

Therefore, for a sequence (nk)k∈N of natural numbers both νp,nk(B) and νp,−nk(B)
converge to 0 as k tends to infinity if and only if (nk)k∈N converges to infinity and
cp(t2 − s2)− (t− s) < 0 as well as cp(t2 − s2) + (t− s) > 0. Hence, by Theorem 1,
U(t, s) is a hypercyclic operator on Lp(µ) if and only if |c(t+ s)| < 1/p.
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So by fixing c = 1 this gives an example of an evolution family (U(t, s))s∈R,t≥s on
Lp(µ) which is hypercyclic but for which for fixed s none of the families (U(t, s))t≥s
is hypercyclic and for which a single operator U(t, s), t > s, is hypercyclic on Lp(µ)
if and only if |t+ s| < 1/p.

References
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