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Abstract. We give characterizations of chaos for C0-semigroups induced by
semiflows on Lpρ(Ω) for open Ω ⊆ R similar to the characterizations of hyper-
cyclicity and mixing of such C0-semigroups proved in [18]. Moreover, we char-

acterize hypercyclicity, mixing, and chaos for these classes of C0-semigroups

on W 1,p
∗ (I) for a bounded interval I ⊂ R and prove that these C0-semigroups

are never hypercyclic on W 1,p(I). We apply our results to concrete first order

partial differential equations, such as the von Foerster-Lasota equation.

1. Introduction

The aim of this article is to characterize certain dynamical properties of C0-
semigroups induced by weighted semiflows on different function spaces. Recall that
a C0-semigroup T on a separable Banach space X is called hypercyclic if there is
x ∈ X with its orbit {T (t)x; t ≥ 0} under T being dense in X. T is called chaotic
if T is hypercyclic and the set of periodic points, i.e. {x ∈ X; ∃t > 0 : T (t)x = x},
is dense in X. It is well-known, that a C0-semigroup T on a separable Banach
space X is hypercyclic if and only if T is (topologically) transitive, i.e. for any pair
of non-empty, open subsets U, V of X there is t > 0 such that T (t)(U) ∩ V 6= ∅.
If for any pair of non-empty, open subsets U, V of X there is t0 > 0 such that
T (t)(U)∩ V 6= ∅ whenever t ≥ t0 then T is called mixing, while T is weakly mixing
if the direct sum C0-semigroup T ⊕ T is transitive on X ⊕X.

The study of chaotic properties for C0-semigroups has attracted the attention of
many researchers. We refer the reader to Chapter 7 of the monograph by Grosse-
Erdmann and Peris [15] and the references therein. Some recent papers in the topic
are [1, 3, 4, 5, 13, 16, 22, 25]

For Ω ⊆ R open and a Borel measure µ over Ω admitting a strictly positive
Lebesgue density ρ we consider C0-semigroups T on Lp(Ω, µ), 1 ≤ p < ∞, of the
form

T (t)f(x) = ht(x)f(ϕ(t, x)),

where ϕ is the solution semiflow of an ordinary differential equation

ẋ = F (x)

in Ω and

ht(x) = exp
( ∫ t

0

h(ϕ(s, x))ds
)

with h ∈ C(Ω). Such C0-semigroups appear in a natural way when dealing with
initial value problems for linear first order partial differential operators. While
characterizations of hypercyclicity, (weak) mixing, and chaos of such C0-semigroups
where obtained for open Ω ⊆ Rd for arbitrary dimension d in [17], evaluation of these
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conditions in concrete examples is sometimes rather involved. In contrast to general
dimension the case d = 1 allows for significantly simplified characterizations. In [18]
these were given for hypercyclicity and mixing. In section 2, we give a simplified
characterization of chaos for such C0-semigroups. Moreover, we further evaluate
and extend the conditions obtained in [18].

In section 3 we investigate the above kind of C0-semigroups on the Sobolev spaces
W 1,p(a, b), where (a, b) ⊆ R is a bounded interval. In case of F (a) = 0 we show that
hypercyclicity never occurs while we characterize hypercyclicity, (weak) mixing,

mixing, and chaos on the closed subspace W 1,p
∗ (a, b) = {f ∈W 1,p(a, b); f(a) = 0}.

In order to illustrate our results, we consider concrete initial value problems for
first order partial differential operators in section 4. Among them, we consider the
linear von Foerster- Lasota equation

(1)
∂u

∂t
+ x

∂u

∂x
= h(x)u(x) t ≥ 0, x ∈ [0, 1]

with initial condition
u(x, 0) = v(x) x ∈ [0, 1],

where v belongs to a suitable function space.
(1) is a particular case of the equation

(2)
∂u

∂t
+ c(x)

∂u

∂x
= f(x, u) t ≥ 0, x ∈ [0, 1]

that was introduced in [20] to describe the reproduction of a population of red
blood cells, mainly in connection with studies about anemia. After the paper
[19], this problem has already been studied in different function spaces by sev-
eral authors either with an ergodic theoretical approach (see [25] and the references
quoted therein) or by explicitly constructing hypercyclic and periodic solutions (see
[11, 8, 10], or by investigating spectral properties of the differential operator asso-
ciated to the equation (1) (see [27, 26] and the applications in [9]). In the present
paper the results will follow from the characterizations proved in section 3.

2. Characterizations of dynamical properties of C0-semigroups on
Lp(Ω, µ) induced by weighted semiflows

Let Ω ⊆ R be an open set and F : Ω → R be a C1-function. Hence, for every
x0 ∈ Ω there is a unique solution ϕ(·, x0) of the initial value problem

ẋ = F (x), x(0) = x0.

Denoting its maximal domain of definition by J(x0) it is well-known that J(x0)
is an open interval containing 0. Throughout this section we make the general
assumption that [0,∞) ⊂ J(x0) for every x0 ∈ Ω, i.e. ϕ : [0,∞) → Ω. From the
uniqueness of the solution it follows that ϕ(t, ·) is injective for every t ≥ 0 and
ϕ(t+ s, x) = ϕ(t, ϕ(s, x)) for all x ∈ Ω and s, t ∈ J(x) with s+ t ∈ J(x). Moreover,
for every t ≥ 0 and x ∈ ϕ(t,Ω) we have [−t,∞) ⊂ J(x) and for all s ∈ [0, t] we have
ϕ(−s, x) = ϕ(s, ·)−1(x). Since F is a C1-function it is well-known that the same is
true for ϕ(t, ·) on Ω and ϕ(−t, ·) on ϕ(t,Ω) for every t ≥ 0. We denote by ∂2ϕ(t, ·)
its derivative. Moreover we recall that a subset M ⊆ Ω is positively invariant under
ϕ if for every x ∈M and for every t ∈ J(x0)∩]0,∞[ it holds that ϕ(t, x) ∈M .

We refer to the monograph of Amann [2] for further results on this topic.
Additionally, fix h ∈ C(Ω). We define for t ≥ 0

ht : Ω→ C, x 7→ exp(

∫ t

0

h(ϕ(s, x)) ds).

It is easily seen, that because of ϕ(t + s, x) = ϕ(t, ϕ(s, x)) we have ht+s(x) =
ht(x)hs(ϕ(t, x)) for all s, t ≥ 0 and x ∈ Ω.
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For a measurable function ρ : Ω→ (0,∞) we want to define a C0-semigroup on
Lp(Ω, µ) via (T (t)f)(x) := ht(x)f(ϕ(t, x)), where 1 ≤ p < ∞ and µ denotes the
Borel measure on Ω with Lebesgue density ρ. The next theorem gives a character-
ization of when this is possible. For its proof see [17, Theorem 4.7 and Proposition
4.12]. Although in [17] h is assumed to be real valued the proofs of [17, Theorem
4.7 and Proposition 4.12] are valid for complex valued h, too. Observe that for real
valued h we have ht = |ht| for all t ≥ 0. From now on we write Lpρ(Ω) instead of
Lp(Ω, µ) and simply Lp(Ω) in case of ρ = 1.

Theorem 1. Let F, h, and ρ be as above and p ∈ [1,∞). Then the following are
equivalent.

i) For t ≥ 0 the operators

T (t) : Lpρ(Ω)→ Lpρ(Ω), (T (t)f)(x) := ht(x)f(ϕ(t, x))

are well-defined, linear and continuous and define a C0-semigroup TF,h :=
(TF,h(t))t≥0 := (T (t))t≥0 on Lpρ(Ω).

ii) There are M ≥ 1, ω ∈ R such that for every t ≥ 0

|ht(x)|pρ(x) ≤Meωtρ(ϕ(t, x))|∂2ϕ(t, x)| holds λ-a.e. on Ω,

where λ denotes Lebesgue measure.

Moreover, if ii) holds the generator of the above C0-semigroup is an extension of
the operator

C1
c (Ω)→ Lpρ(Ω), f 7→ Ff ′ + hf

in Lpρ(Ω), where C1
c (Ω) denotes the space of compactly supported, continuously dif-

ferentiable functions on Ω. Additionally, if h is bounded and F is such that for
every x0 ∈ Ω the maximal domain of ϕ(·, x0) equals R, then C1

c (Ω) is a core for the
generator of the C0-semigroup TF,h.

Definition 2. In what follows, we call a measurable function ρ : Ω → (0,∞) p-
admissible for F and h (p ∈ [1,∞)) if there are constants M ≥ 1, ω ∈ R such
that

∀ t ≥ 0, x ∈ Ω : |ht(x)|pρ(x) ≤Meωtρ(ϕ(t, x))|∂2ϕ(t, x)|.
Since |ht(x)| = exp(

∫ t
0

Reh(ϕ(s, ·))ds), p-admissibility of ρ only depends on F and
Reh. By the above theorem, we have for a p-admissible ρ for F and h the well-
defined C0-semigroup TF,h on Lpρ(Ω).

Our first aim in this section is to give a characterization of chaos for TF,h on
Lpρ(Ω) similar to the characterizations of hypercyclicity and mixing for those C0-
semigroups proved in [18]. Before we do so we make the following observation.

Remark 3. (i) Let ρ be p-admissible for F and h. If for x0 ∈ Ω we have F (x0) = 0
it clearly follows that ϕ(t, x0) = x0 for every t ≥ 0. Since we have uniqueness for
the solutions of the initial value problems

ẋ = F (x), x(0) = x0 (x0 ∈ Ω),

this immediately implies for {F = 0} := {x ∈ Ω; F (x) = 0} that

∀ t ≥ 0 : ϕ(t,Ω\{F = 0}) = ϕ(t,Ω)\{F = 0} ⊆ Ω\{F = 0}.
Hence we can consider F|Ω\{F=0} and h|Ω\{F=0} on Ω\{F = 0} and ρ|Ω\{F=0} is p-
admissible for F|Ω\{F=0} and h|Ω\{F=0}. For notational convenience we write again
TF,h and Lpρ(Ω\{F = 0}) instead of TF|Ω\{F=0},h|Ω\{F=0} and Lpρ|Ω\{F=0}

(Ω\{F = 0}).
Finally, if λ({F = 0}) = 0 it follows that Lpρ(Ω) and Lpρ(Ω\{F = 0}) can be
identified in a canonical way.

(ii) ϕ(t, ·) : Ω → ϕ(t,Ω) is bijective for t ≥ 0 with inverse ϕ(−t, ·) : ϕ(t,Ω) →
Ω. For x0 ∈ Ω we define Z(x0) to be the connected component of Ω\{F = 0}
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containing x0 if F (x0) 6= 0 and Z(x0) := {x0} if F (x0) = 0. It is well-known that
ϕ(t, Z(x0)) ⊆ Z(x0) for every t ≥ 0, more precisely

∀x0 ∈ Ω : ϕ([0,∞), x0) =

{
Z(x0) ∩ [x0,∞) if F (x0) ≥ 0

Z(x0) ∩ (−∞, x0] if F (x0) ≤ 0.

Herefrom and from the injectivity, it follows easily that ϕ(t, ·) : Ω → Ω is strictly
increasing for all t ≥ 0 and thus ϕ(−t, ·) : ϕ(t,Ω) → Ω is strictly increasing, too.
Since

∀ t ≥ 0, x ∈ Ω : x = ϕ(−t, ϕ(t, x))

we obtain
∀ t ≥ 0, x ∈ Ω : 1 = ∂2ϕ(−t, ϕ(t, x))∂2ϕ(t, x)

so that
∀ t ≥ 0, x ∈ Ω : ∂2ϕ(t, x) > 0

as well as
∀ t ≥ 0, x ∈ ϕ(t,Ω) : ∂2ϕ(−t, x) > 0.

In order to formulate our result in a convenient way we introduce the following
notions.

Definition 4. If ρ is p-admissible for F and h we define for t ≥ 0

ρt,p : Ω→ [0,∞), ρt,p(x) := χϕ(t,Ω)(x)|ht(ϕ(−t, x))|pρ(ϕ(−t, x))∂2ϕ(−t, x)

as well as

ρ−t,p : Ω→ [0,∞), ρ−t,p(x) := |ht(x)|−pρ(ϕ(t, x))∂2ϕ(t, x).

Obviously, ρt,p and ρ−t,p depend on F and h but in order to keep notation
simple we will not take this into account notationally as there will be no danger of
confusion. Observe that ρ0,p = ρ. The next lemma will be a crucial tool. For its
proof see [18, Lemma 7].

Lemma 5. Let F be as above and h ∈ C(Ω) real valued. Let ρ be p-admissible for
F and h and let [a, b] ⊂ Ω\{F = 0}. Setting α := a, β := b if F|[a,b] > 0, respectively
α := b, β := a if F|[a,b] < 0, there is a constant C > 0 such that

∀x ∈ [a, b] :
1

C
≤ ρ(x) ≤ C

as well as

∀ t ≥ 0, x ∈ [a, b] :
1

C
ρt,p(α) ≤ ρt,p(x) ≤ Cρt,p(β)

and

∀ t ≥ 0, x ∈ [a, b] :
1

C
ρ−t,p(α) ≤ ρ−t,p(x) ≤ Cρ−t,p(β).

We can now prove a characterization of chaos for the C0-semigroup TF,h on
Lpρ(Ω) for real valued h. We denote m-dimensional Lebesgue measure by λm and

set λ := λ1.

Theorem 6. Let Ω ⊆ R be open, F ∈ C1(Ω) as above, h ∈ C(Ω) real valued, and
ρ : Ω → (0,∞) be a measurable function which is p-admissible for F and h. Then
the following are equivalent.

i) TF,h is chaotic on Lpρ(Ω).
ii) λ({F = 0}) = 0 and for every m ∈ N for which there are m different

connected components C1, . . . , Cm of Ω\{F = 0}, for λm-almost all choices
of (x1, . . . , xm) ∈ Πm

j=1Cj there is t > 0 such that

m∑
j=1

∑
l∈Z

ρlt,p(xj) <∞.
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Proof. We first show that i) implies ii). Since for all x ∈ {F = 0} and any t ≥ 0 we
have ϕ(t, x) = x it follows

∀ f ∈ Lpρ(Ω) :
(
T (t)f

)
|{F=0} =

(
exp(t h)f

)
|{F=0}

so that (T (t)f)t≥0 cannot be dense in Lpρ(Ω) for any f ∈ Lpρ(Ω) if λ({F = 0}) >
0. Hence, since TF,h is chaotic, we conclude λ({F = 0}) = 0. As described in
Remark 3 i) we are therefore actually dealing with TF,h on Lpρ(Ω\{F = 0}). Now,
if K ⊂ Ω\{F = 0} is compact there is tK > 0 such that ϕ(t,K) ∩K = ∅ whenever
t > tK . Hence, we can apply [17, Theorem 5.3] saying that, because TF,h is chaotic
on Lpρ(Ω\{F = 0}) for every compact K ⊂ Ω\{F = 0} there are a sequence
(tn)n∈N in [0,∞) and a sequence of measurable subsets (Ln)n∈N of K such that
limn→∞ µ(Ln) = µ(K) and

lim
n→∞

( ∞∑
l=1

∫
Ln

ρltn,p dλ+

∫
Ln

ρ−ltn,p dλ
)

= 0.

(Recall that µ denotes the Borel measure on Ω with Lebesgue density ρ!) We will
apply this condition to special compact sets in order to derive ii).

Let x1, . . . , xm be each from different connected components of Ω\{F = 0}. As
Ω\{F = 0} is open, there is r < 0 such that ϕ(t, xj) is well-defined for all t ∈ [r,∞)
and every 1 ≤ j ≤ m. For each 1 ≤ j ≤ m we set Kj := {ϕ(t, xj); t ∈ [0, 1]} if
F (xj) > 0, respectively Kj := {ϕ(t, xj); t ∈ [r, 0]} if F (xj) < 0. It follows that
Kj = [xj , ϕ(1, xj)] if F (xj) > 0, respectively Kj = [ϕ(r, xj), xj ] if F (xj) < 0. In
particular λ(Kj) > 0 and thus µ(Kj) > 0 for every j.
K := ∪mj=1Kj ⊂ Ω\{F = 0} is compact so that there are (tn)n∈N and (Ln)n∈N

as above. Let Ln,j := Ln ∩Kj for 1 ≤ j ≤ m and n ∈ N. Applying Lemma 5 to
Kj it follows that there are Cj > 0 (1 ≤ j ≤ m) such that for all n ∈ N∫

Ln,j

ρltn,p(y) dλ(y) =

∫
Ln,j

ρltn,p(y)

ρ(y)
dµ(y) ≥ Cjρltn,p(xj)µ(Ln,j)

and analogously ∫
Ln,j

ρ−ltn,p(y) dλ(y) ≥ Cjρ−ltn,p(xj)µ(Ln,j).

Since for n large enough

∞ >

∞∑
l=1

(∫
Ln

ρltn,p dλ+

∫
Ln

ρ−ltn,p dλ
)

=

m∑
j=1

∞∑
l=1

(∫
Ln,j

ρltn,p dλ+

∫
Ln,j

ρ−ltn,p dλ
)

≥
m∑
j=1

Cjµ(Ln,j)

∞∑
l=1

(
ρltn,p(xj) + ρ−ltn,p(xj)

)
and limn→∞ µ(Ln,j) = µ(Kj) > 0 we deduce for n large enough

m∑
j=1

∑
l∈Z

ρltn,p(xj) <∞.

Since for t = 0 we have ρt,p = ρ > 0 the above tn has to be strictly positive. Thus,
ii) is proved.

It remains to show that ii) implies i). Since λ({F = 0}) = 0 we consider TF,h on
Lpρ(Ω\{F = 0}), as explained in Remark 3 i). If K ⊂ Ω\{F = 0} is compact there
is tK > 0 such that ϕ(t,K)∩K = ∅ whenever t > tK . Hence, we can again use [17,
Theorem 5.3]. For fixed compact K ⊂ Ω\{F = 0} there are finitely many intervals
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[aj , bj ] ⊂ Ω\{F = 0} such that each [aj , bj ] is contained in a different connected
component of Ω\{F = 0} and K ⊆ ∪mj=1[aj , bj ]. We define xj := aj if F|[aj ,bj ] > 0,
respectively xj := bj if F|[aj ,bj ] < 0. Moreover, without loss of generality, we can
assume by ii) that there is t > 0 with

m∑
j=1

∑
l∈Z

ρlt,p(xj) <∞.

Now it follows from Lemma 5 that for some constants Cj > 0 (1 ≤ j ≤ m) with
tn := nt, n ∈ N
∞∑
l=1

(∫
K

ρltn,p dλ+

∫
K

ρ−ltn,p dλ
)
≤

m∑
j=1

∞∑
l=1

(∫
[aj ,bj ]

ρltn,p dλ+

∫
[aj ,bj ]

ρ−ltn,p dλ
)

=

m∑
j=1

∞∑
l=1

(∫
[aj ,bj ]

ρltn,p
ρ

dµ+

∫
[aj ,bj ]

ρ−ltn,p
ρ

dµ
)

≤
m∑
j=1

Cjµ([aj , bj ])

∞∑
l=1

(
ρlnt,p(xj) + ρ−lnt,p(xj)

)
so that

lim
n→∞

∞∑
l=1

(∫
K

ρltn,p dλ+

∫
K

ρ−ltn,p dλ
)

= 0.

With Ln := K, n ∈ N it follows from [17, Theorem 5.3] that TF,h is chaotic on
Lpρ(Ω\{F = 0}). This proves the theorem. �

Example 7. (i) Let Ω = R, F = 1, and h = 0 so that ϕ(t, x) = x + t and
ht(x) = 1. Then a measurable function ρ : R → (0,∞) is p-admissible for F and
h for some p ∈ [1,∞) if the same holds for every p ∈ [1,∞) and the corresponding
C0-semigroup TF,h is the (bilateral) left translation semigroup on Lpρ(R) and given
by (T (t)f)(x) = f(x+ t), its generator being an extension of

C1
c (R)→ Lpρ(R), f 7→ f ′.

Moreover, we have

ρt,p(x) = ρ(x+ t) and ρ−t,p = ρ(x− t).

Since {F = 0} = ∅ we have only a single connected component of R\{F = 0} so
that by Theorem 6 the left translation semigroup on Lpρ(R) is chaotic if and only if
for λ-a.e. x ∈ R there is t > 0 such that∑

l∈Z
ρ(x+ lt) <∞.

This weight condition is originally due to Matsui et al. [23, Theorem 2] (see also
Chapter 7 and related exercises, in [15]). Note that chaos is independent of p ∈
[1,∞).

(ii) Let again Ω = R. Moreover, F (x) := 1 − x, h(x) = 0 (x ∈ R) so that
ϕ(t, x) = 1 + (x − 1)e−t, ht(x) = 1, and ∂2ϕ(t, x) = e−t. Then a measurable
function ρ : R→ (0,∞) is again p-admissible for F and h for some p ∈ [1,∞) if the
same holds for every p ∈ [1,∞) and the corresponding C0-semigroup TF,h is given
by (T (t)f)(x) = f(1 + (x− 1)e−t) with generator being an extension of

C1
c (R)→ Lpρ(R), f 7→

(
x 7→ (1− x)f ′(x)

)
.

Furthermore, R\{F = 0} = (−∞, 1) ∪ (1,∞) has two connected components and

∀ t ∈ R : ρt,p(x) = ρ(1 + (x− 1)et)et,
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so that TF,h is chaotic on Lpρ(R) if and only if for λ2-a.e. (x1, x2) ∈ (−∞, 1)×(1,∞)
there is t > 0 such that

2∑
j=1

∑
l∈Z

ρ(1 + (xj − 1)elt)elt <∞.

Again, the occurrence of chaos is independent of p ∈ [1,∞) as h = 0.

Analogous characterizations of hypercyclicity and mixing for TF,h on Lpρ(Ω) for
some p-admissible ρ for F and real valued h were proved in [18]. Since we will
use them in sequel, we include them here for the reader’s convenience. For the
proofs see [18, Theorem 9 and Remark 12]. It is worth observing that, by applying
Theorem 8 to the left translation semigroup as stated in Example 7(i), one recovers
the characterizations of hypercyclicity and mixing originally proved in [12] and [6]
respectively.

Theorem 8. Let Ω ⊆ R be open, F ∈ C1(Ω) as usual, h ∈ C(Ω) real valued, and
ρ : Ω→ (0,∞) be a measurable function which is p-admissible for F and h.

a) For the C0-semigroup TF,h on Lpρ(Ω) the following are equivalent.
i) TF,h is hypercyclic.
ii) TF,h is weakly mixing.

iii) λ({F = 0}) = 0 and for every m ∈ N for which there are m differ-
ent connected components C1, . . . , Cm of Ω\{F = 0}, for λm-almost
all choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is a sequence of positive
numbers (tn)n∈N tending to infinity such that

∀ 1 ≤ j ≤ m : lim
n→∞

ρtn,p(xj) = lim
n→∞

ρ−tn,p(xj) = 0.

b) For the C0-semigroup TF,h on Lpρ(Ω) the following are equivalent.
i) TF,h is mixing.
ii) λ({F = 0}) = 0 and for λ-almost every x ∈ Ω one has

lim
t→∞

ρt,p(x) = lim
t→∞

ρ−t,p(x) = 0.

So far, we have only characterizations of hypercyclicity, mixing, and chaos of TF,h
in case of real valued h. In order to obtain some results for at least some complex
valued h let us recall the so-called comparison principle which is a useful tool in
order to identify hypercyclic, (weakly) mixing, or chaotic C0-semigroups. Let T be
a C0-semigroup on a Banach space Y and S is a C0-semigroup on a Banach space X
which is quasi-conjugate to T , i.e. there is a continuous mapping Φ : Y → X with
dense range such that Φ ◦ T (t) = S(t) ◦ Φ for every t ≥ 0. Then, S is hypercyclic,
(weakly) mixing, or chaotic respectively, if the same holds for T , see for Example
[15, Proposition 7.7]. Recall that T and S are said to be conjugate, if the above Φ
is a homeomorphism.

Let F ∈ C1(Ω) be as above and h, g ∈ C(Ω) with g real valued. Moreover,
let ρ be p-admissible for F and h as well as for F and g. We want to find some
measurable function ψ : Ω → C such that exp ◦ψ induces a continuous, invertible
multiplication operator M on Lpρ(Ω) for which the C0-semigroups TF,h and TF,g are
conjugate via M , i.e.

∀ t ≥ 0, f ∈ Lpρ(Ω) : exp(ψ)TF,h(t)(f) = TF,g(t)(exp(ψ)f)

Being TF,g(t)(Mf) = exp(ψ(ϕ(t, ·))) gtht
TF,h(f), this is satisfied, if for each x ∈ Ω

(3) ∀ t ≥ 0 : ψ(ϕ(t, x))−
∫ t

0

(h(ϕ(s, x))− g(ϕ(s, x))) ds = ψ(x).
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Now, if x ∈ {F = 0} it follows from ϕ(t, x) = x that the above expression reduces
to

∀ t ≥ 0 : ψ(x)− t(h(x)− g(x)) = ψ(x).

Thus, it is necessary that h and g coincide on {F = 0}.
Moreover, for x ∈ {F 6= 0} we also have F (ϕ(t, x)) 6= 0 for every t ≥ 0 so

∀ t ≥ 0 : ψ(ϕ(t, x))−
∫ t

0

h(ϕ(s, x))− g(ϕ(s, x))ds

= ψ(ϕ(t, x))−
∫ t

0

h(ϕ(s, x))− g(ϕ(s, x))

F (ϕ(s, x))
∂1ϕ(s, x)ds

=

{
ψ(ϕ(t, x))−

∫ ϕ(t,x)

x
h(y)−g(y)
F (y) dy , if F (x) > 0

ψ(ϕ(t, x)) +
∫ x
ϕ(t,x)

h(y)−g(y)
F (y) dy , if F (x) < 0.

Hence, if Ω is connected, α := inf Ω, ω := sup Ω, and the function Ω → R, y 7→
h(y)−g(y)
F (y) belongs to L1((α, β)) for every β ∈ Ω, or to L1((β, ω)) for every β ∈ Ω we

can set

ψ : Ω→ R, ψ(x) =

∫ x

α

h(y)− g(y)

F (y)
dy,

or

ψ : Ω→ R, ψ(x) = −
∫ ω

x

h(y)− g(y)

F (y)
dy,

respectively, and it follows from the above calculation that (3) holds on {F 6= 0}
for this ψ.

Proposition 9. Let Ω ⊆ R be an open interval, F ∈ C1(Ω) as above and h ∈ C(Ω).
Moreover, let ρ be p-admissible for F and h and set α := inf Ω, ω := sup Ω. Consider
the following conditions.

1) ∀x ∈ {F = 0} : h(x) ∈ R.

2a) The function Ω→ R, y 7→ Imh(y)
F (y) belongs to L1((α, β)) for all β ∈ Ω.

2b) The function Ω→ R, y 7→ − Imh(y)
F (y) belongs to L1((β, ω)) for all β ∈ Ω.

If 1) and 2 a) are satisfied, let ψ : Ω → R, ψ(x) = i
∫ x
α

Imh(y)
F (y) dy, if 1) and 2 b)

hold, set ψ : Ω → R, ψ(x) = −i
∫ ω
x

Imh(y)
F (y) dy. Then exp ◦ψ defines a continuous,

invertible multiplication operator M on Lpρ(Ω) such that the C0-semigroups TF,h
and TF,Reh on Lpρ(Ω) are conjugate via M .

Proof. By the observation preceding the proposition applied to h and g = Reh
we only have to show that exp ◦ψ defines a continuous, invertible multiplication
operator on Lpρ(Ω). But this is obvious because | exp(ψ(x))| = 1 for all x ∈ Ω. �

Remark 10. From the above proposition and the comparison principle it follows
immediately, that in Theorems 8 and 6 we can replace the hypothesis of h being
real valued by the weaker conditions

1) ∀x ∈ {F = 0} : h(x) ∈ R.

2) With α := inf Ω and ω := sup Ω the function Ω → R, y 7→ Imh(y)
F (y) belongs

to L1((α, β)) for all β ∈ Ω or to L1((β, ω)) for all β ∈ Ω.

As is seen in Theorems 6 and 8, the dynamical properties of TF,h on Lpρ(Ω) are
determined by the asymptotic behavior of the functions

R 7→ R, t 7→ ρt,p(x),

where x ∈ Ω is fixed. In the definition of ρt,p the term ∂2ϕ(t, x) appears. We
have the following representation of ∂2ϕ(t, x) at our disposal which not only makes
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it sometimes easier to evaluate the characterizations of the different dynamical
properties of TF,h but will also be very useful in section 3.

Proposition 11. Let Ω ⊆ R be open and F ∈ C1(Ω) as above. Then for every
x ∈ Ω we have

∀ t ≥ 0 : ∂2ϕ(t, x) = exp
( ∫ t

0

F ′(ϕ(s, x)) ds
)
.

Moreover, for every x ∈ ϕ(r,Ω), r ≥ 0,

∀ t ∈ [0, r] : ∂2ϕ(−t, x) = exp
(
−
∫ 0

−t
F ′(ϕ(s, x)) ds

)
.

Proof. For x ∈ Ω we have ∂2ϕ(t, x) > 0 by hypothesis on F and Remark 3 ii). Since
F is C1 it is well-known that ∂1∂2ϕ exists and is continuous and ∂2ϕ(0, x) = 1 for
all x ∈ Ω. Hence,

∀ t ≥ 0 :

∫ t

0

F ′(ϕ(s, x)) ds =

∫ t

0

F ′(ϕ(s, x))∂2ϕ(s, x)

∂2ϕ(s, x)
ds =

∫ t

0

∂
∂x (F ◦ ϕ(s, ·))(x)

∂2ϕ(s, x)
ds

=

∫ t

0

∂
∂x

∂
∂sϕ(s, x)

∂2ϕ(s, x)
ds =

∫ t

0

∂
∂s∂2ϕ(s, x)

∂2ϕ(s, x)
ds

= ln ∂2ϕ(t, x)− ln ∂2ϕ(0, x) = ln ∂2ϕ(t, x).

Therefore, exp
( ∫ t

0
F ′(ϕ(s, x)) ds

)
= ∂2ϕ(t, x) for each t ≥ 0. Now, if x ∈ ϕ(r,Ω)

with r ≥ 0 it follows as above for t ∈ [0, r]

−
∫ 0

−t
F ′(ϕ(s, x)) ds = −(ln ∂2ϕ(0, x)− ln ∂2ϕ(−t, x)) = ln ∂2ϕ(−t, x).

�

Corollary 12. Let Ω ⊆ R be open, F ∈ C1(Ω) be as usual, h ∈ C(Ω), and let ρ be
p-admissible for F and h. Then we have for all t ≥ 0 and x ∈ Ω

ρt,p(x) = χϕ(t,Ω)(x) exp
(
p

∫ 0

−t
Reh(ϕ(s, x))− 1

p
F ′(ϕ(s, x))ds

)
ρ(ϕ(−t, x))

=

{
exp

(
pt(Reh(x)− 1

pF
′(x)

)
ρ(x), x ∈ {F = 0},

χϕ(t,Ω)(x) exp
(
p
∫ x
ϕ(−t,x)

Reh(y)− 1
pF
′(y)

F (y) dy
)
ρ(ϕ(−t, x)), x ∈ {F 6= 0}

and

ρ−t,p(x) = exp
(
− p

∫ t

0

Reh(ϕ(s, x))− 1

p
F ′(ϕ(s, x))ds

)
ρ(ϕ(t, x))

=

{
exp

(
− pt(Reh(x)− 1

pF
′(x)

)
ρ(x), x ∈ {F = 0},

exp
(
− p

∫ ϕ(t,x)

x

Reh(y)− 1
pF
′(y)

F (y) dy
)
ρ(ϕ(t, x)), x ∈ {F 6= 0}

Proof. While a straightforward calculation gives

ρt,p(x) = χϕ(t,Ω)(x) exp
(
p

∫ 0

−t
Reh(ϕ(s, x))− 1

p
F ′(ϕ(s, x))ds

)
ρ(ϕ(−t, x))

and

ρ−t,p(x) = exp
(
− p

∫ t

0

Reh(ϕ(s, x))− 1

p
F ′(ϕ(s, x))ds

)
ρ(ϕ(t, x))

we observe that for x ∈ {F = 0} we have ϕ(t, x) = x for each t so that in {F = 0}

ρt,p(x) = exp
(
pt(Reh(x)− 1

p
F ′(x)

)
ρ(x)
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as well as

ρ−t,p(x) = exp
(
− pt(Reh(x)− 1

p
F ′(x)

)
ρ(x).

For x ∈ {F 6= 0} it is well-known that ϕ(t, x) ∈ {F 6= 0} so that in {F 6= 0}

ρ−t,p(x) = exp
(
− p

∫ t

0

Reh(ϕ(s, x))− 1
pF
′(ϕ(s, x))

F (ϕ(s, x))
∂1ϕ(s, x)ds

)
ρ(ϕ(t, x))

= exp
(
− p

∫ ϕ(t,x)

x

Reh(y)− 1
pF
′(y)

F (y)
dy
)
ρ(ϕ(t, x))

and similarly

ρt,p(x) = χϕ(t,Ω)(x) exp
(
p

∫ x

ϕ(−t,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)
ρ(ϕ(−t, x)).

�

We finish this section by taking a closer look at the case ρ = 1 for some special
cases which are of particular interest in section 4.

Theorem 13. Let I ⊆ R be an open interval, F ∈ C1(I) as usual with F (x) < 0
for each x ∈ I and such that ϕ(t, I) 6= I for some t > 0. Moreover, let h ∈ C(I) be
such that with α := inf I and ω := sup I the function

I → R, x 7→ Imh(x)

F (x)

belongs to L1((α, β)) for every β ∈ I or to L1((β, ω)) for every β ∈ I. Furthermore,
let ρ = 1 be p-admissible for F and h for some 1 ≤ p <∞.

a) For the C0-semigroup TF,h on Lp(I) the following are equivalent.
i) TF,h is hypercyclic.
ii) TF,h is weakly mixing.

iii) There is a sequence (αn)n∈N in I converging to α such that for some
x0 ∈ I

lim
n→∞

∫ x0

αn

Reh(y)− 1
pF
′(y)

F (y)
dy = −∞.

b) For the C0-semigroup TF,h on Lp(I) the following are equivalent.
i) TF,h is mixing.
ii) For some x0 ∈ I∫ x0

α

Reh(y)− 1
pF
′(y)

F (y)
dy = −∞.

c) For the C0-semigroup TF,h on Lp(I) the following are equivalent.
i) TF,h is chaotic.
ii) There is some x0 ∈ I such that for every x ∈ I there is t > 0 such that

∞∑
l=1

exp
(
p

∫ x0

ϕ(lt,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)
<∞.

Proof. From Corollary 12 it follows

∀ t ≥ 0, x ∈ I : ρt,p(x) = χϕ(t,I)(x) exp
(
p

∫ x

ϕ(−t,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)

and

∀ t ≥ 0, x ∈ I : ρ−t,p(x) = exp
(
− p

∫ ϕ(t,x)

x

Reh(y)− 1
pF
′(y)

F (y)
dy
)
.
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As is well-known, for each x ∈ I the trajectory {ϕ(t, x); t ≥ 0} is either an open
subinterval of I or equals {x}. Since the later occurs if and only if F (x) = 0 it
follows from F (x) < 0 that inf{ϕ(t, x); t ≥ 0} = α for every x ∈ I. Moreover,
the assumption ϕ(t, I) 6= I for some t > 0 implies that for every x ∈ I there is
t0 > 0 such that χϕ(t,I)(x) = 0 whenever t > t0. In particular, for all x ∈ I we have
ρt,p(x) = 0 for sufficiently large t.

Proof of part a). It follows from Remark 10 and Theorem 8 that i) and ii)
in a) are equivalent and by the preceding observation they hold if and only if for
λ-a.e. x ∈ I there is a sequence (tn)n∈N in (0,∞) tending to infinity such that

0 = lim
n→∞

ρ−tn,p(x) = exp
(
p

∫ x

ϕ(tn,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)
.

Being ϕ(·, x) strictly decreasing and α = inf{ϕ(t, x); t ≥ 0} for every x ∈ I,
the above relation obviously holds if and only if for some sequence (αn)n∈N in
I converging to α we have

lim
n→∞

∫ x0

αn

Reh(y)− 1
pF
′(y)

F (y)
dy = −∞

for some (and then any) x0 ∈ I. Thus a) is proved.
The proofs of parts b) and c) go along the same lines as the one of part a) by

applying Theorem 8 b) and Theorem 6, respectively, instead of Theorem 8 a), so
that we omit them. �

Remark 14. i) If under the hypotheses of the above theorem we have ϕ(t0, I) = I
for some t0 > 0 it is easily seen that the same holds for every t > 0 so that

ρt,p(x) = exp
(
p

∫ x

ϕ(−t,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)
.

It follows by the same kind of arguments as in the above proof that TF,h is hyper-
cyclic on Lp(I) if and only if TF,h is weakly mixing if and only if there are sequences
(αn)n∈N and (ωn)n∈N in I converging to α and ω respectively, such that for some
x0 ∈ I

lim
n→∞

∫ x0

αn

Reh(y)− 1
pF
′(y)

F (y)
dy = −∞, lim

n→∞

∫ ωn

x0

Reh(y)− 1
pF
′(y)

F (y)
dy =∞.

Mixing of TF,h then occurs if and only if∫ x0

α

Reh(y)− 1
pF
′(y)

F (y)
dy = −∞,

∫ ω

x0

Reh(y)− 1
pF
′(y)

F (y)
dy =∞,

while TF,h is chaotic if and only if there is some x0 ∈ I such that for every x ∈ I
there is t > 0 such that

∞∑
l=1

exp
(
p

∫ x0

ϕ(lt,x)

Reh(y)− 1
pF
′(y)

F (y)
dy
)

+

∞∑
l=1

exp
(
− p

∫ ϕ(−lt,x)

x0

Reh(y)− 1
pF
′(y)

F (y)
dy
)
<∞.

ii) Of course it is possible to characterize hypercyclicity, mixing, and chaos of TF,h
in case of F being strictly positive on I, too. The other hypotheses of Theorem 12
unchanged it follows for example that TF,h is hypercyclic if and only if there is a
sequence (ωn)n∈N in I converging to ω = sup I such that for some x0 ∈ I

lim
n→∞

∫ ωn

x0

Reh(y)− 1
pF
′(y)

F (y)
dy =∞.
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It should be obvious how the conditions characterizing and mixing and chaos
change, respectively, so that we do not state them explicitly.

To conclude this section we give a concrete description of the generator of TF,h
in case of ρ = 1, at least under some mild additional assumptions on F and h.

Theorem 15. Let F, h be as above, 1 ≤ p < ∞ and assume that ρ = 1 is p-
admissible for F and h. Assume that additionally h ∈ L∞(Ω) and that F can be
extended as a C1-function to R such that

i) F, F ′ ∈ L∞(R),
ii) Ω is positively invariant under the flow ϕ(·, ·) associated with the problem

ẋ = F (x), x(0) = x0 (defined on R⊗ R by the assumptions on F ).

Then the generator (A,D(A)) of the C0-semigroup TF,h on Lp(Ω) is given by

D(A) = {f ∈ Lp(Ω); Ff ′ ∈ Lp(Ω)}
and

A : D(A)→ Lp(Ω), Af = Ff ′ + hf,

where f ′ denotes the distributional derivative of f .

Proof. Let D := {f ∈ Lp(Ω); Ff ′ ∈ Lp(Ω)} and

B : D → Lp(Ω), Bf := Ff ′.

We first observe that the operator (B,D) is a closed operator. Indeed, let (un)n∈N
be a sequence such that limn→∞ un = f and limn→∞Bun = g in Lp(Ω). Since
F ∈ C1(Ω) we obtain for the distributional derivative of Fun

(Fun)′ = F ′un + Fu′n = F ′un +Bun

which converges in Lp(Ω) to F ′f+g because F ′ ∈ L∞(Ω). It follows limn→∞ Fu′n =
g in Lp(Ω). On the other hand (Fu′n)n∈N converges in the sense of distributions
to Ff ′ and thus Ff ′ = g ∈ Lp(Ω). Hence f ∈ D and Bf = g, so that (B,D) is a
closed operator.

Next we show that

D1 := {f ∈ C1(Ω) ∩ Lp(Ω); f ′ ∈ Lp(Ω)}.
is a core for (B,D). Being F ∈ L∞(Ω), we have D1 ⊆ D. Let ψ ∈ C∞c (R) be
such that ψ ≥ 0 and

∫
R
ψ(x) dx = 1 and set ψn(x) := nψ(nx), n ∈ N. In what

follows we extend all functions from Lp(Ω) by 0 to all R. Fix f ∈ Lp(Ω). Then
ψn ∗ f ∈ C∞(R) ∩ Lp(R), thus its restriction to Ω belongs to C1(Ω). Moreover,
as is well-known (ψn ∗ f)′ = ψ′n ∗ f ∈ Lp(R) and therefore (ψn ∗ f) ∈ D1 with
limn→∞(ψn ∗ f)|Ω = f in Lp(Ω). Since we assumed F to be extendable to R
such that F ∈ C1(R) with F, F ′ ∈ L∞(R) it follows from [28, Lemma 1.2.5] (see
also [24, pp. 313-315]) that F (ψn ∗ f)′ − ψn ∗ (Ff ′) ∈ Lp(R) for all n ∈ N and
limn→∞ F (ψn ∗ f)′ − ψn ∗ (Ff ′) = 0 in Lp(R). As Ff ′ ∈ Lp(R) by f ∈ D we have

F (ψn ∗ f)′ − Ff ′ =
(
ψn ∗ (Ff ′)− Ff ′

)
+
(
F (ψn ∗ f ′)− ψn ∗ (Ff ′)

)
,

so limn→∞ F (ψn ∗ f)′|Ω = Ff ′ in Lp(Ω) implying that (B(ψn ∗ f)|Ω)n∈N converges

to Bf in Lp(Ω). Hence D1 is dense in D equipped with the graph norm of B, i.e.
D1 is a core of (B,D).

Since we assume h ∈ L∞(Ω) it follows that |ht(x)| ≥ e−t‖h‖∞ for all x ∈ Ω.
Since ρ = 1 is p-admissible for F and h we conclude that

∀x ∈ Ω : 1 ≤Me(ω+p‖h‖∞)t|∂2ϕ(t, x)|
so that ρ = 1 is p-admissible for F and 0, too. Denote the generator of the
C0-semigroup TF,0 = (TF,0(t))t≥0 on Lp(Ω) by (A0, D(A0)). Using Lebesgue’s
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dominated convergence theorem it is straightforward to verify that D1 ⊆ D(A0)
and A0f = Bf for all f ∈ D1.

Next we show that D1 is also a core for (A0, D(A0)). Indeed, as C1
c (Ω) ⊆ D1 it

follows that D1 is dense in Lp(Ω). Moreover, it follows immediately from TF,0(t)f =
f(ϕ(t, ·)) that D1 is invariant under TF,0 because of the additional hypothesis ii).
Applying [14, Proposition II.1.7] we conclude that D1 is a core for (A0, D(A0)).
As both operators (B,D) and (A0, D(A0)) are closed and coincide on the common
core D1, we obtain (A0, D(A0)) = (B,D).

As h ∈ L∞(Ω), the operator

Mh : Lp(Ω)→ Lp(Ω), f 7→ hf

is well-defined and continuous. Being a bounded perturbation of (A0, D(A0))

C : D(A0)→ Lp(Ω), f 7→ A0f +Mhf = Bf +Mh

generates a C0-semigroup S on Lp(Ω) (see e.g. [14, Theorem III.1.3]) and D1 is a
core of (C,D(A0)).

Now, let (A,D(A)) be the generator of the C0-semigroup TF,h. As above for the
special case h = 0 one shows that D1 ⊆ D(A) and that A and C coincide on D1.
Moreover, if α ∈ ρ(A) ∩ ρ(C), it follows from D1 being a core for (C,D(A0)) that

(α−A)(D1) = (α− C)(D1) = Lp(Ω).

From [14, Exercise II.1.15 (2)] we derive that D1 is a core for (A,D(A)). Since
(A,D(A)) and (C,D(A0)) are both closed operators coinciding on the common
core D1 we finally obtain the assertion.

�

Remark 16. Conditions on F that ensure that ii) holds can be found in [2],
Theorem 16.9 and Corollary 16.10. In particular if Ω = (a, b), then ii) holds if
F (a) ≥ 0 and F (b) ≤ 0.

3. Dynamical properties of C0-semigroups on Sobolev spaces
generated by first order differential operators

In what follows let I = (a, b) be a bounded open interval in R. For 1 ≤ p <∞ we
denote as usual by W 1,p(I) the first order Sobolev space of p-integrable functions
on I, i.e.

W 1,p(I) = {u ∈ Lp(I);u′ ∈ Lp(I)},
where u′ denotes the distributional derivative of u. We equip W 1,p(I) with its usual
norm turning it into a Banach space. It is well-known that W 1,p(I) ⊆ C[a, b] and
that for any x ∈ [a, b] the point evaluation δx in x is a continuous linear form on
W 1,p(I). We will use the following closed subspace of W 1,p(I),

W 1,p
∗ (I) := ker δa.

For the boundedness of I we have the topological direct sum

W 1,p(I) = W 1,p
∗ (I)⊕ span {11},

where 11 denotes the constant function with value 1.

Lemma 17. Let I = (a, b) be a bounded open interval in R and 1 ≤ p <∞. Then

Φ : Lp(I)→W 1,p
∗ (I),Φ(f)(x) :=

∫ x

a

f(y) dy

is a well-defined, linear and continuous bijection with continuous inverse

Φ−1 : W 1,p
∗ (I)→ Lp(I),Φ−1(f) = f ′.
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Proof. A straightforward application of Jensen’s inequality gives that∫ b

a

|Φ(f)(x)|p dx ≤
∫ b

a

(x− a)p−1 dx

∫ b

a

|f(y)|p dy

=
1

p
(b− a)p

∫ b

a

|f(y)|p dy(4)

Moreover, as in [7, Lemma 8.2] it follows that the distributional derivative of Φ(f)
equals f , so that Φ is in fact well-defined, obviously linear, and by (4) and Φ(f)′ = f
continuous. Injectivity of Φ follows from Φ(f)′ = f . Additionally, from Φ(u′) = u

for every u ∈ W 1,p
∗ (I) we obtain the surjectivity of Φ. Obviously, Φ−1(f) = f ′ for

all W 1,p
∗ (I). �

The comparison principle and Lemma 17 imply the next result.

Proposition 18. Let I = (a, b) be a bounded open interval, 1 ≤ p < ∞, and
let Φ be as in Lemma 17. Moreover, let T be a C0-semigroup of Lp(I). Then

S := (Φ◦T (t)◦Φ−1)t≥0 is a C0-semigroup on W 1,p
∗ (I) which is hypercyclic, (weakly)

mixing, or chaotic respectively, if and only if the same holds for T .

Proof. Clearly, S is a C0-semigroup on W 1,p
∗ (I) by Lemma 17. The rest of the

assertion follows immediately from the comparison principle. �

Now, let F : [a, b] → R be a C1-function on the bounded closed interval [a, b].
As in section 2 we assume that for every x0 ∈ I = (a, b) the unique solution ϕ(·, x0)
of the initial value problem

ẋ = F (x), x(0) = x0

is defined on [0,∞).

Lemma 19. Let I = (a, b) be a bounded interval and F : [a, b]→ R a C1-function as
above. Then the function ρ = 1 is p-admissible for F and F ′ for every 1 ≤ p <∞,
i.e. via

∀ t ≥ 0, f ∈ Lp(I) : (T (t)f)(x) := exp
( ∫ t

0

F ′(ϕ(s, x)) ds
)
f(ϕ(t, x))

we have a C0-semigroup TF,F ′ on Lp(I).

Proof. Since F is C1 on [a, b] there is ω ∈ R such that F ′(x) ≤ ω for all x ∈ [a, b].
Hence, for t ≥ 0 and x ∈ (a, b) we have

0 ≤ ∂2ϕ(t, x) = 1 +

∫ t

0

∂

∂t
∂2ϕ(s, x) ds = 1 +

∫ t

0

∂

∂x

∂

∂t
ϕ(s, x) ds

= 1 +

∫ t

0

F ′(ϕ(s, x))∂2ϕ(s, x) ds ≤ 1 + ω

∫ t

0

∂2ϕ(s, x) ds.

An application of Gronwall’s lemma yields

∀x ∈ (a, b), t ≥ 0 : ∂2ϕ(t, x) ≤ eωt.

For 1 ≤ p <∞ it follows from the above inequality, the hypothesis, and Proposition
11 that for every x ∈ (a, b) we have

∀ t ≥ 0 :
(

exp
( ∫ t

0

F ′(ϕ(s, x)) ds
))p

=
(
∂2ϕ(t, x)

)p−1

|∂2ϕ(t, x)|

≤ e(p−1)ωt|∂2ϕ(t, x)|

proving the lemma. �



CHAOTIC C0-SEMIGROUPS INDUCED BY SEMIFLOWS 15

Theorem 20. Let I = (a, b) be a bounded interval and F : [a, b]→ R a C1-function
as above with F (a) = 0. Then for every 1 ≤ p <∞ and γ ∈ R

∀ t ≥ 0, f ∈W 1,p(I) :
(
S(t)f

)
(x) := eγtf(ϕ(t, x))

defines a C0-semigroup SF,γ on W 1,p(I). W 1,p
∗ (I) is SF,γ-invariant. The generator

of SF,γ in W 1,p(I) is given by

B : {f ∈W 1,p(I); Ff ′′ ∈ Lp(I)} →W 1,p(I), Bf = Ff ′ + γf,

while its generator in W 1,p
∗ (I) is

B∗ : {f ∈W 1,p
∗ (I); Ff ′′ ∈ Lp(I)} →W 1,p

∗ (I), B∗f = Ff ′ + γf.

Proof. By the preceding lemma TF,F ′ = (T (t))t≥0 is a well-defined C0-semigroup
on Lp(I) for every 1 ≤ p < ∞. As F (a) = 0 we have ϕ(t, a) = a for all t ≥ 0 so
that for all f ∈ Lp(I) and t ≥ 0 with Φ as in Lemma 17 and the fact that ϕ(t, ·) is
increasing

Φ(T (t)f)(x) =

∫ x

a

f(ϕ(t, y))|∂2ϕ(t, y)| dy =

∫ ϕ(t,x)

a

f(y) dy = Φ(f)(ϕ(t, x)),

where we used Proposition 11. Since Φ is bijective it follows that SF,γ := (S(t))t≥0 =(
Φ◦
(
eγtT (t)

)
◦Φ−1

)
t≥0

defines a C0-semigroup on W 1,p
∗ (I). Clearly, for every t ≥ 0

the mapping

S(t) : span {11} → span {11}, α11 7→ eγt (α11) ◦ ϕ(t, ·)

is well-defined, linear and continuous. It follows that SF,γ is a well-defined C0-

semigroup on W 1,p(I) = W 1,p
∗ (I)⊕ span {11} such that W 1,p

∗ (I) is SF,γ-invariant.
The generator of SF,γ|W 1,p

∗ (I) is given by (Φ◦A◦Φ−1,Φ(D(A))), where (A,D(A))

is the generator of (eγtT (t))t≥0 in Lp(I) which by Theorem 15 is

A : {f ∈ Lp(I); Ff ′ ∈ Lp(I)} → Lp(I), Af = Ff ′ + F ′f + γf.

Therefore

Φ(D(A)) = {f ∈W 1,p
∗ (I); Ff ′′ ∈ Lp(I)}

and

∀ f ∈ Φ(D(A)) : Φ ◦A ◦ Φ−1(f) = Φ(Ff ′′ + F ′f ′ + γf ′) = Ff ′ + γf.

Obviously, span{11} is contained in the domain of the generator (B,D(B)) of SF,γ
with B11 = γ11. Therefore,

D(B) = Φ(D(A))⊕ span{11} = {f ∈W 1,p(I); Ff ′′ ∈ Lp(I)}

and

∀ f ∈ D(B) : Bf = Φ ◦A ◦ Φ−1(f − f(a)11) + γf(a)11 = Ff ′ + γf.

�

Using the above theorem together with the results stated in section 2 we are now
able to prove the following theorem.

Theorem 21. Let I = (a, b) be a bounded interval, 1 ≤ p < ∞, γ ∈ R, and
F : [a, b]→ R a C1-function as above with F (a) = 0. Then the following holds.

a) The C0-semigroup SF,γ is not hypercyclic on W 1,p(I).

b) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,γ .

i) SF,γ is weakly mixing on W 1,p
∗ (I),

ii) SF,γ is hypercyclic on W 1,p
∗ (I),
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iii) λ({F = 0}) = 0 and for every m ∈ N for which there are m differ-
ent connected components C1, . . . , Cm of I\{F = 0}, for λm-almost
all choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is a sequence of positive
numbers (tn)n∈N tending to infinity such that for every 1 ≤ j ≤ m

lim
n→∞

χϕ(tn,I)(xj) e
pγtn ∂2ϕ(−tn, xj)1−p = 0

and

lim
n→∞

e−pγtn
∂2ϕ(tn, xj)

1+p

∂2ϕ(2tn, xj)p
= 0.

c) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,γ .

i) SF,γ is mixing on W 1,p
∗ (I),

ii) λ({F = 0}) = 0 and for λ-almost every x ∈ I

lim
t→∞

χϕ(t,I)(x) epγt ∂2ϕ(−t, x)1−p = lim
t→∞

e−pγt
∂2ϕ(t, x)1+p

∂2ϕ(2t, x)p
= 0.

d) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,γ .

i) SF,γ is chaotic on W 1,p
∗ (I),

ii) λ({F = 0}) = 0 and for every m ∈ N for which there are m different
connected components C1, . . . , Cm of I\{F = 0}, for λm-almost all
choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is t > 0 such that

∞∑
l=1

χϕ(lt,I)(x) epγlt ∂2ϕ(−lt, x)1−p +

∞∑
l=1

e−pγlt
∂2ϕ(lt, x)1+p

∂2ϕ(2lt, x)p
<∞

for every 1 ≤ j ≤ m.

Proof. Let P1 : W 1,p(I)→ span {11}, P1(f) = f(a)11. As F (a) = 0 we have ϕ(t, a) =
a for all t ≥ 0 which implies P1 ◦ S(t) = S(t) ◦ P1. Since there are no hypercyclic
C0-semigroups on finite dimensional spaces (for the single operator analogue of this,
see e.g. [15, Corollary 2.59]) part a) follows from the comparison principle.

Now, let Φ be as in Lemma 17. Since
(
Φ−1 ◦ S(t) ◦ Φ)t≥0 = TF,F ′+γ and

Φ−1
(
W 1,p
∗ (I)

)
= Lp(I) it follows from the comparison principle and Theorem 8

a) for ρ = 1 that i) and ii) in b) are equivalent and that these are equivalent to
hypercyclicity of TF,F ′+γ on Lp(I). For h(x) = F ′(x) + γ and ρ(x) = 1 it follows
that for ρt,p and ρ−t,p from definition 4 we have

∀ t ≥ 0, x ∈ (a, b) : ρt,p(x) = χϕ(t,I)(x)hpt (ϕ(−t, x))∂2ϕ(−t, x)

as well as

∀ t ≥ 0, x ∈ (a, b) : ρ−t,p(x) = h−pt (x)∂2ϕ(t, x).

Observe that for h(x) = F ′(x) + γ we have by Proposition 11

∀ t ≥ 0, x ∈ (a, b) : ht(x) = exp(γt+

∫ t

0

F ′(ϕ(s, x)) ds) = eγt∂2ϕ(t, x).

Moreover, because ϕ(s+ t, x) = ϕ(s, ϕ(t, x)) for all s, t ∈ R and each x ∈ (a, b) for
which the involved quantities are defined it follows

∀ t ≥ 0, x ∈ (a, b) : ∂2ϕ(2t, x) = ∂2ϕ(t, ϕ(t, x))∂2ϕ(t, x)

and thus for every x ∈ (a, b) we have

∀ t ≥ 0 : ∂2ϕ(t, ϕ(t, x)) =
∂2ϕ(2t, x)

∂2ϕ(t, x)

as well as

∀ t ≥ 0 : 1 = ∂2ϕ(t, ϕ(−t, x))∂2ϕ(−t, x)
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for every x ∈ ϕ(t, I). Taking all this into account it follows

∀ t ≥ 0, x ∈ (a, b) : ρt,p(x) = χϕ(t,I)(x) epγt
(
∂2ϕ(t, ϕ(−t, x))

)p
∂2ϕ(−t, x)

= χϕ(t,I)(x) epγt
(
∂2ϕ(−t, x)

)1−p
as well as

∀ t ≥ 0, x ∈ (a, b) : ρ−t,p(x) = e−pγt
(
∂2ϕ(t, ϕ(t, x)

)−p
∂2ϕ(t, x)

= e−pγt
∂2ϕ(t, x)1+p

∂2ϕ(2t, x)p
.

By Theorem 8 a) TF,F ′+γ is hypercyclic on Lp(I) if and only if λ({F = 0}) = 0 and
for every m ∈ N for which there are m different connected components C1, . . . , Cm
of I\{F = 0}, for λm-almost all choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is a sequence
of positive numbers (tn)n∈N tending to infinity such that

∀ 1 ≤ j ≤ m : lim
n→∞

ρtn,p(xj) = lim
n→∞

ρ−tn,p(xj) = 0,

so that by the above considerations b) follows.
The proofs of part c) and d) of the theorem follow by exactly the same arguments

by referring to Theorem 8 b) and Theorem 6, respectively. �

So far, we have only considered γ to be a real constant. If h ∈ W 1,∞(I) we
would like to have similar results to the above for the C0-semigroup on W 1,p(I)
generated by

f 7→ Ff ′ + hf.

Since h ∈W 1,∞(I) it follows that the corresponding multiplication operator

Mh : W 1,p(I)→W 1,p(I),Mh(f) = hf

is well-defined and continuous. If we denote the generator of SF,0 in W 1,p(I) by
(A,D(A)) it follows that (A + Mh, D(A)) generates a C0-semigroup SF,h. By a
well-known pertubation result (see e.g. [14, Theorem III.1.10]) this semigroup is
given by

(5) S(t)f =

∞∑
n=0

Tn(t)f,

where T0(t) = SF,0(t) and

Tn+1(t)f =

∫ t

0

SF,0(t− s)MhTn(s)fds

=

∫ t

0

h(ϕ(t− s, ·))
(
Tn(s)f

)
(ϕ(t− s, ·))ds,

where the integrals are Riemann integrals in W 1,p(I). In order to get an explicit
form of SF,h we use the following well-known elementary observation.

Proposition 22. Let v : [0,∞)→ C be continuous. Then

∀n ∈ N0, t ≥ 0 :

∫ t

0

v(t− s)
(∫ s

0

v(t− s+ r)dr
)n
ds =

1

n+ 1

(∫ t

0

v(s)ds
)n+1

.
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Proof. Setting V (t) :=
∫ t

0
v(s)ds it follows that∫ t

0

v(t− s)
(∫ s

0

v(t− s+ r)dr
)n
ds =

∫ t

0

V ′(t− s)
(
V (t)− V (t− s)

)n
ds

=

n∑
k=0

(
n

k

)
V k(t)(−1)n−k

∫ t

0

V ′(u)V n−k(u)du

=

n∑
k=0

(
n

k

)
V k(t)(−1)n−k

1

n+ 1− k
V n+1−k(t)

=
−1

n+ 1
V n+1(t)

n∑
k=0

(
n+ 1

k

)
(−1)n+1−k

=
1

n+ 1

(∫ t

0

v(s) ds
)n+1

.

�

Using Proposition 22 for t 7→ h(ϕ(t, x)) with fixed x ∈ [a, b] and the fact that
point evaluations in W 1,p(I) are continuous it follows by induction on n that the
above operators Tn(t) in equation (5) are given by

Tn(t)f(x) =
1

n!

(∫ t

0

h(ϕ(s, x))ds
)n
SF,0(t)f(x)

which in turn implies the expected expression for the C0-semigroup SF,h

∀ t ≥ 0, f ∈W 1,p(I) : SF,h(t)f(x) = S(t)f(x) = ht(x)f(ϕ(t, x)),

where again ht(x) = exp(
∫ t

0
h(ϕ(s, x))ds). Thus we obtain the next proposition.

Proposition 23. Let I = (a, b) be a bounded interval, 1 ≤ p <∞, F : [a, b]→ R a
C1-function as above with F (a) = 0 and h ∈W 1,∞(I). Then

A : {f ∈W 1,p(I); Ff ′′ ∈ Lp(I)}, f 7→ Ff ′ + hf

generates the C0-semigroup SF,h on W 1,p(I) which is given by

∀ t ≥ 0 : SF,h(t)f(x) = S(t)f(x) = ht(x)f(ϕ(t, x)).

Moreover, W 1,p
∗ (I) is SF,h-invariant.

Our next aim is to generalize the content of Theorem 21 to the C0-semigroups
SF,h, at least under some mild additional hypothesis. As in section 2 we want to find
a measurable function ψ : [a, b]→ R with exp ◦ψ inducing a continuous, invertible
multiplication operator M on W 1,p(I) such that for some γ ∈ R the C0-semigroups
SF,γ and SF,h are conjugate via M , i.e.

∀ t ≥ 0, f ∈W 1,p(I) : exp(ψ)SF,h(t)(f) = SF,γ(t)(exp(ψ)f).

This is satisfied, if for all x ∈ [a, b]

(6) ∀ t ≥ 0 : ψ(ϕ(t, x))−
∫ t

0

(h(ϕ(s, x))− γ) ds = ψ(x).

Now, if x ∈ {F = 0} it follows from ϕ(t, x) = x for all t ≥ 0

∀ t ≥ 0 : ψ(x)− t(h(x)− γ) = ψ(x).

Thus, since F (a) = 0 it is necessary that h(x) = h(a) for every x ∈ {F = 0}.
As in section 2, if the function [a, b] → R, y 7→ h(y)−h(a)

F (y) belongs to L1(a, b) we
can set

ψ : [a, b]→ R, ψ(x) =

∫ x

a

h(y)− h(a)

F (y)
dy
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and it follows that this function ψ satisfies (6) on {F 6= 0}.

Proposition 24. Let I = (a, b) be a bounded interval, 1 ≤ p <∞, F : [a, b]→ R a
C1-function as usual with F (a) = 0, and h ∈ W 1,∞(I). Assume that the following
conditions are satisfied.

i) ∀x ∈ {F = 0} : h(x) = h(a).

ii) The function [a, b]→ R, y 7→ h(y)−h(a)
F (y) belongs to L∞(I).

Then exp ◦ψ with ψ : [a, b] → R, ψ(x) =
∫ x
a
h(y)−h(a)
F (y) dy defines a continuous,

invertible multiplication operator M such that the C0-semigroups SF,h(a) and SF,h
on W 1,p(I) are conjugate via M .

Proof. By the observation preceding the proposition we only have to show that
exp ◦ψ defines a continuous, invertible multiplication operator on W 1,p(I). First
we note that ψ ∈W 1,∞(I) and therefore exp ◦ψ ∈W 1,∞(I), too. Hence,

M : W 1,p(I)→W 1,p(I),Mf = exp(ψ)f

is a well-defined continuous multiplication operator on W 1,p(I) with continuous
inverse given by exp(−ψ)f . �

Remark 25. In the discussion preceding the above proposition we only required

that [a, b] → R, y 7→ h(y)−h(a)
F (y) belongs to L1(a, b). Nevertheless, it is not hard to

show that this function actually has to belong to L∞(a, b) in order for exp(ψ) to
induce a bounded multiplication operator on W 1,p(I).

Obviously, the multiplication operator M from the above proposition satisfies
M(W 1,p

∗ (I)) = W 1,p
∗ (I) so that the restrictions of the C0-semigroups SF,h(a) and

SF,h to W 1,p
∗ (I) are conjugate via M , too. Combining Theorem 21 with Proposition

24 the next theorem follows directly from the comparison principle.

Theorem 26. Let I = (a, b) be a bounded interval, 1 ≤ p < ∞, F : [a, b] → R a
C1-function as above with F (a) = 0 and h ∈W 1,∞(I). Assume that

1) ∀x ∈ {F = 0} : h(x) = h(a) ∈ R.

2) The function [a, b]→ R, y 7→ h(y)−h(a)
F (y) belongs to L∞(I).

Then the following holds.

a) The C0-semigroup SF,h is not hypercyclic on W 1,p(I).

b) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,h.

i) SF,h is weakly mixing on W 1,p
∗ (I),

ii) SF,h is hypercyclic on W 1,p
∗ (I),

iii) λ({F = 0}) = 0 and for every m ∈ N for which there are m differ-
ent connected components C1, . . . , Cm of I\{F = 0}, for λm-almost
all choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is a sequence of positive
numbers (tn)n∈N tending to infinity such that for every 1 ≤ j ≤ m

lim
n→∞

χϕ(tn,I)(xj) e
ph(a)tn ∂2ϕ(−tn, xj)1−p = 0

and

lim
n→∞

e−ph(a)tn
∂2ϕ(tn, xj)

1+p

∂2ϕ(2tn, xj)p
= 0.

c) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,h.

i) SF,h is mixing on W 1,p
∗ (I),

ii) λ({F = 0}) = 0 and for λ-almost every x ∈ I

lim
t→∞

χϕ(t,I)(x) eph(a)t ∂2ϕ(−t, x)1−p = lim
t→∞

e−ph(a)t ∂2ϕ(t, x)1+p

∂2ϕ(2t, x)p
= 0.
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d) On W 1,p
∗ (I) the following are equivalent for the C0-semigroup SF,h.

i) SF,h is chaotic on W 1,p
∗ (I),

ii) λ({F = 0}) = 0 and for every m ∈ N for which there are m different
connected components C1, . . . , Cm of I\{F = 0}, for λm-almost all
choices of (x1, . . . , xm) ∈ Πm

j=1Cj there is t > 0 such that

∞∑
l=1

χϕ(lt,I)(x) eph(a)lt ∂2ϕ(−lt, x)1−p +

∞∑
l=1

e−ph(a)lt ∂2ϕ(lt, x)1+p

∂2ϕ(2lt, x)p
<∞

for every 1 ≤ j ≤ m.

Instead of formulating analogues to Theorem 12 for W 1,p
∗ (I) we apply our results

to some concrete examples in the next section.

4. Applications to first order partial differential equations

Example 1. As a first application we consider for h ∈ C(0, 1) ∩ L∞(0, 1) the
so-called von Foerster-Lasota equation, that is the first order partial differential
equation

∂

∂ t
u(t, x) + x

∂

∂ x
u(t, x) = h(x)u(t, x), t ≥ 0, 0 < x < 1

with the initial condition

u(0, x) = v(x), 0 < x < 1,

where v is a given function. Because of Theorem 15 it is natural to consider our
results from section 2 for I = (0, 1), F (x) = −x and h and the C0-semigroup TF,h on
Lp(0, 1). We call this C0-semigroup the von Foerster-Lasota semigroup on Lp(0, 1)
associated with h and denote it by Th.

Moreover, if h ∈W 1,∞(0, 1), in view of Proposition 23 it is again natural to apply
our results from section 3. We call the resulting C0-semigroup the von Foerster-
Lasota semigroup on W 1,p(0, 1), respectively W 1,p

∗ (0, 1), associated with h and
denote it by Sh. The dynamical properties of these semigroups are given in the
next theorem.

In case of a real valued h ∈ C[0, 1] with x 7→ h(x)−h(0)
x being in L1(0, 1) it was

already shown by Dawidowicz and Poskrobko in [10] that Th is chaotic on Lp(0, 1)
if and only if Th is hypercyclic if and only if h(0) > − 1

p . In fact, it was even proved

in [10] that Th is strongly stable on Lp(0, 1) for h(0) ≤ − 1
p .

Theorem 27. a) Let h be in C(0, 1) ∩ L∞(0, 1). Then the following prop-
erties of the associated von Foerster-Lasota semigroup Th on Lp(0, 1) are
equivalent.

i) Th is hypercyclic.
ii) Th is weakly mixing.

iii) There is a sequence (αn)n∈N in (0, 1) converging to zero such that for
some x0 ∈ (0, 1)

lim
n→∞

∫ x0

αn

Reh(y) + 1
p

y
dy =∞.

b) Assume that for h ∈ C[0, 1] the function

[0, 1]→ R, x 7→ h(x)− Reh(0)

x

belongs to L1(0, 1). Then the following properties of the associated von
Foerster-Lasota semigroup Th on Lp(0, 1) are equivalent.

i) Th is hypercyclic.
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ii) Th is weakly mixing.
iii) Th is mixing.
iv) Th is chaotic.
v) Reh(0) > − 1

p .

c) Assume that for h ∈W 1,∞(0, 1) the function

[0, 1]→ R, x 7→ h(x)− h(0)

x

belongs to L∞(0, 1) and that h(0) ∈ R. Then the von Foerster-Lasota semi-
group Sh is not hypercyclic on W 1,p(0, 1). For the restriction of Sh to

W 1,p
∗ (0, 1) the following are equivalent.

i) Sh is hypercyclic on W 1,p
∗ (0, 1).

ii) Sh is weakly mixing on W 1,p
∗ (0, 1).

iii) Sh is mixing on W 1,p
∗ (0, 1).

iv) Sh is chaotic on W 1,p
∗ (0, 1).

v) h(0) > 1− 1
p .

Proof. For F (x) = −x we have ϕ(t, x) = xe−t and thus the hypotheses of Theorem
13 are satisfied.

Proof of part a). Since (0, 1) → R, x 7→ Imh(x)
x belongs to L1(β, 1) for each

β ∈ (0, 1) part a) is obviously a direct application of Theorem 13 a).
Proof of part b). Since the hypotheses of a) are satisfied, it follows that i)

and ii) are equivalent and that because of h ∈ C[0, 1] i) holds if and only if

(7) lim
n→∞

∫ 1

αn

Reh(y) + 1
p

y
dy =∞

for some (αn)n∈N in (0, 1) converging to 0. Since∫ 1

αn

Reh(y) + 1
p

y
dy =

∫ 1

αn

Reh(0) + 1
p

y
dy +

∫ 1

αn

Re (h(y)− h(0))

y
dy

= −
(

Reh(0) +
1

p

)
ln(αn) +

∫ 1

αn

Re (h(y)− h(0))

y
dy

it follows from the hypothesis on h that (7) holds if and only if Reh(0) + 1
p > 0.

Hence, i), ii), and v) in b) are equivalent. As iii) and iv) imply i), respectively, it
remains to prove that v) implies iii) and iv).

Let us denote by c the L1(0, 1)-norm of the L1-function x 7→ h(x)−Reh(0)
x . If v)

holds, it follows that for each x ∈ (0, 1), t > 0, and l ∈ N we have

exp
(
p

∫ xe−lt

x

Reh(y) + 1
p

y
dy
)

= exp
(
− p

∫ x

xe−lt

Reh(0) + 1
p

y
dy
)
·

· exp
(
− p

∫ x

xe−lt

Re (h(y)− h(0))

y
dy
)

(8)

≤
(

exp(−pt(Reh(0) +
1

p
))
)l
epc.

Because of v) it follows that for every x ∈ (0, 1) and t > 0

∞∑
l=1

exp
(
p

∫ xe−lt

x

Reh(y) + 1
p

y
dy
)
<∞,

hence Th is chaotic by part c) of Theorem 13.
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In order to show that v) implies iii) we observe that as in inequality (8) we obtain
for each x ∈ (0, 1) and t ≥ 0

exp
(
p

∫ xe−t

x

Reh(y) + 1
p

y
dy
)
≤ exp(−pt(Reh(0) +

1

p
))epc,

so that by part b) of Theorem 13 iii) holds. Hence, b) is proved.
Proof of part c). That Sh is not hypercyclic on W 1,p(0, 1) follows imme-

diately from Theorem 26. As [0, 1]\{F = 0} has only one connected component,
χϕ(t,I)(x) = 0 for every x ∈ (0, 1] for sufficiently large t > 0, and

∀x ∈ (0, 1] : e−ph(0)t ∂2ϕ(t, x)1+p

∂2ϕ(2t, x)p
= e−t

(
1+(h(0)−1)p

)
the rest of c) now follows from Theorem 26 b),c), and d). �

Remark 28. i) Of course Theorem 13 also provides characterizations of mixing
and chaos for Th under the general hypotheses of part a) of the above theorem.
ii) It should be noted that the proof of part b) remains valid if we replace the
hypothesis h ∈ C[0, 1] by h ∈ C(0, 1)∩L∞(0, 1), h continuously extendable into the
origin.
iii) The hypothesis in c) is obviously satisfied if h(0) ∈ R and h is differentiable at
the origin.

Remark 29. In [8, 11] the authors prove that, if h is a continuous real function on

[0, 1] such that
h(x)− h(0)

x
∈ L∞(0, 1), then the restriction of Th is a C0-semigroup

on the space

Vα = {h ∈ hα([0, 1]) | h(0) = 0},
where hα([0, 1]) is the little Hölder space of order α ∈]0, 1[, that is the closure of
C1[0, 1] in the Hölder space Cα[0, 1]. Observe that hα is a separable space (see [21])

and since for p = (1− α)
−1

W 1,p ↪→ Cα[0, 1]

continuosly, it is immediate to show that W 1,p
∗ (0, 1) is continuously embedded with

dense range in Vα.
As a consequence, by Theorem 27, if h(0) > α = 1−1/p, then the C0-semigroup

Th is mixing and chaotic on Vα. Thus we obtain the result of [11, Theorem 2.4]
and [8, Theorem 3.10 and Corollary 3.11].

Example 2. Let us consider for h ∈ C(0, 1)∩L∞(0, 1) and r > 1 the first order
partial differential equation

∂

∂ t
u(t, x) + xr

∂

∂ x
u(t, x) = h(x)u(t, x), t ≥ 0, 0 < x < 1

with the initial condition

u(0, x) = v(x), 0 < x < 1,

where v is a given function. As for F (x) = −xr we have

ϕ(t, x) =
x

1
r−1

(1 + (r − 1)xt)
1

r−1

and therefore ϕ([0,∞), (0, 1)) ⊆ (0, 1), it is again natural to consider our results
from section 2 for I = (0, 1) and h and the C0-semigroup TF,h on Lp(0, 1). We
write Tr,h instead of TF,h.
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Again, if h ∈ W 1,∞(0, 1), in view of Proposition 23 it is natural to apply our
results from section 3. The corresponding C0-semigroup on W 1,p(0, 1), respec-

tively W 1,p
∗ (0, 1) is denoted by Sr,h. The next theorem summarizes the dynamical

properties of these semigroups. Observe that contrary to the von Foerster-Lasota
semigroup the dynamical properties of Sr,h are independent of p!

Theorem 30. a) Let h belong to C(0, 1)∩L∞(0, 1). Then the following prop-
erties of the C0-semigroup Tr,h on Lp(0, 1) are equivalent.

i) Tr,h is hypercyclic.
ii) Tr,h is weakly mixing.

iii) There is a sequence (rn)n∈N in (0, 1) converging to zero such that for
some x0 ∈ (0, 1)

lim
n→∞

∫ x0

rn

Reh(y) + r
py

r−1

yr
dy =∞.

b) Assume that for h ∈ C[0, 1] the function

[0, 1]→ R, x 7→ h(x)− xr−1Reh(0)

xr

belongs to L1(0, 1). Then the following properties of Tr,h on Lp(0, 1) are
equivalent.

i) Tr,h is hypercyclic.
ii) Tr,h is weakly mixing.
iii) Tr,h is mixing.
iv) Tr,h is chaotic.
v) Reh(0) > −r

p .

c) Assume that for h ∈W 1,∞(0, 1) the function

[0, 1]→ R, x 7→ h(x)− h(0)

xr

belongs to L∞(0, 1) and that h(0) ∈ R. Then the C0-semigroup Sr,h is

not hypercyclic on W 1,p(0, 1). For the restriction of Sr,h to W 1,p
∗ (0, 1) the

following are equivalent.
i) Sr,h is hypercyclic on W 1,p

∗ (0, 1).

ii) Sr,h is weakly mixing on W 1,p
∗ (0, 1).

iii) Sr,h is mixing on W 1,p
∗ (0, 1).

iv) Sr,h is chaotic on W 1,p
∗ (0, 1).

v) h(0) > 0.

Proof. For F (x) = −xr we have ϕ(t, x) = x
1

r−1 (1 + (r − 1)xt)
1

1−r and thus the
hypotheses of Theorem 13 are satisfied. The proofs of parts a) and b) are mutatis
mutandis the same as the correspondig parts of Theorem 27. In order to prove part
c) we observe

∀ t ≥ 0, x ∈ (0, 1] : ∂2ϕ(t, x) =
1

r − 1

x
1

r−1−1

(1 + (r − 1)xt)
r

r−1

and thus

∀ t ≥ 0, x ∈ (0, 1] : exp(−ph(0)t)
∂2ϕ(t, x)1+p

∂2ϕ(2t, x)p

= exp(−ph(0)t)t−
r

r−1x
1

r−1−1 ( 1
t + 2(r − 1)x)p

r
r−1

( 1
t + (r − 1)x)(1+p) r

r−1

.

Now the proof follows again as the proof of part c) of Theorem 27. �
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