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Abstract: We prove pure point spectrum with exponentially decaying eigenfunctions
at all band edges for Sabdinger Operators with a periodic potential plus a random
potential of the formV,(z) = Y ¢;(w) f(z — i), wheref decays at infinity likdz|™"™

for m > 4d resp.m > 3d depending on the regularity ¢gf The random variableg are
supposed to be independent and identically distributed. We assume that their distribution
has a bounded density of compact support.

1. Introduction

At least since the groundbreaking work of Lifshitz in the early 60s it is widely accepted
among physicists that random models of solid state physics should exhibit pure point
spectrum near fluctuation boundaries. The latter are those parts of the spectrum which
are determined by rather rare events. To present a more concrete picture consider a
Schibdinger operator of the form-A + V., + V,, describing a periodic solid with
additional impurities given by the random perturbation. The spectrum will typically
consist of a union of closed intervals, bands, whose edges correspond to the unlikely
events that the random perturbation takes on its maximal respectively minimal value.
Thus these band edges form the fluctuation boundaries.

Mathematical rigorous proofs of localization in multidimensional models have so far
been restricted to Anderson type models with additional technical restrictions. They go
back to the pioneering works for the discrete case ([12, 11, 5, 20])Wyith= 0 which
found considerable simplification in [6]. The first paper which treated the continuum
case was [13] which was extended and simplified substantially in [3, 14, 17]. In the latter
paper the case of a non-trivial periodic background potential was considered for the first
time; however, as in the other articles mentioned so far, the results showed localization
near the bottom of the spectrum, only.
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Localization near arbitrary band edges was investigated in a series of papers [8, 9,
1, 16, 21]: In [8] a discrete Schdinger operator was considered, while [9] treats a
divergence form model for acoustic waves and contains most of the technique necessary
for the Schodinger case (in [21] an extension of the results for anisotropic models is
given). In[1] a fairly general situation is considered, including $dirger operators of
the above type under some mild assumptions on the coefficients. In our recent paper [16]
we also studied the latter case (allowing more genggal and f) using among other
ingredients a multi-scale analysis which is based on a variation of ideas from [3, 9].

To point out the progress achieved in the present note we recall that alloy type models
have the form

V(@) =) ai(w)f(z — i), (1.1)

where we will assume that thg for i € Z¢ are independent identically distributed
random variables which have a bounded dengsitie suppose that supp(s an interval
and denote by_ andg. its infimum and supremum respectively. The functjoe 0O,
f > ¢ > 0on an open set, is assumed to belongté?) with p = 2 ford < 3,p > g
ford > 4.

Also let Hy = —A + V)¢, WhereV,,, € L is aZ®-periodic potential withp as
above. We will study the random Sdldinger operatof,, = Hp + V..

Despite some discussion in [3, 14], localization had so far been settled for compactly
supportedf only, even in the cas¥,., = 0. Here we will prove localization for long
range interactiorf with

[f(@)] < Cla|™™  for || large

wherem will be chosen suitably. We will follow the general strategy for proving local-
ization which was used for discrete models in [6] and adapted in [9] to the continuous
case. A few changes will be implemented into this strategy, which, as a by-product,
lead to streamlined proofs of some of the results of [9] (see the comment at the end
of Sect. 5). In addition, we will use some results from [16] respectively [3, 1]. Peter
Hislop has announced results (joint work with Combes and Mourre, in preparation) on
the problem of localization for long rangeas well.

The difficulties one has to overcome are caused by the facvii{a) andV,,(y) are
statistically correlated even if the distance betweemdy is large. For other results on
localization for correlated potentials, see e.qg. [7, 10].

A simple extension of the argument given in [16] shows th@{,,) = X for almost
everyw, where

2= |J o(Ho+q > f(-—k).
k

q€lgq—,g+]

If m > 4d we will prove pure point spectrum with exponentially decaying eigen-
functions near the bottom ir of the spectrum. If we impose the conditions of [1] or
[3] we may even have: > 3d since their Wegner estimate is stronger. Note that[1, 3]in
particular assume boundednesg offnder slightly stronger assumptions on the density
g we can prove localization near all band edges of the spectrum.

Let us formulate the main results of this paper.

Theorem 1.1. If m > 4d then for almost every the spectrum of{,, is pure point in
a neighborhood oinf X with exponentially decaying eigenfunctions.
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Theorem 1.2. Assume thatn > 4d and that there exists > d/2 such thaty satisfies

~q_+h Qs
/ g(s) ds +/ g(s) ds < h™ for smallh. (1.2)
q— +—h
Then for almost every the spectrum off,, is pure point in a neighborhood &fx with
exponentially decaying eigenfunctions.

In our proof the particular form of the Wegner bound turns out to be crucial. In the
Wegner estimate we take from [14] and [16] the Wegner bound behaves quadratic in
the volume term. The above results rely on this type of Wegner estimate. Barbaroux,
Combes, Hislop and Mourre ([1, 3] and [4]) prove a Wegner estimate that is linear in
the volume. In their case our proof below requires anly> 3d instead ofn > 4d.

One of us has found a simple proof of a Wegner estimate fildét continuous
distribution of the coupling constant [22]. This implies that the above theorems remain
valid under this more general assumption. For discrete models, a Wegner estimate was
proven in [2] which allows for l8lder continuous measures and even certain measures
with non-zero discrete parts.

We mention here without proof that the assumptiormeican be weakened at the
cost of a somewhat worse result on eigenfunction decay. In fact, by using the ideas
described below in a somewhat different type of multiscale analysis (as used in [16]
and based on methods from [20] and [3]) it can be shown that Theorems 1.1 and 1.2
hold form > 3d (respectivelym > 2d under the conditions of [1, 3]), but merely with
eigenfunctions which decay more rapidly than any inverse polynomial. Of course, the
optimal assumption, which we were not able to get, shoulchhe d.

The additional assumption (1.2) in Theorem 1.2 could be dropped if Lifshitz tail
behavior of the integrated density of states would be known at internal band edggs of
(a property known at inE and used in the proof of Theorem 1.1, compare in particular
the proof of Proposition 4.2 in [16]). Klopp has recently shown in [18] that internal
Lifshitz tails appear if and only if the integrated density of states at the corresponding
band edge of the periodic operatfdp is “non-degenerate” (see [18]).

2. Preliminaries and Strategy of Proof

In this paper we use the structure of the probability sigaoéthe random variables which
still has product structure although the random potential itself might be (and typically
will be) deterministic in the sense of the technical definition of this term (see [15]). The
strategy of our proof is to make probabilistic estimates for the box-hamiltofians,
(see below) which are valigniformlyin ¢; for thosei with dist@, A;(z)) > r; for some
“security distance’;.

To define this procedure more precisely note that our probability s{facg, P)
is given byQ = ®;c745, 5 C R, F = ®;czaB(S), P = ®;cz4Po, WherePy is the
distribution of gy and S its (compact) support. For any subsetof R? we define the
projectionTT, : @ — ®;canzaS by (Maw); = w; fori € A N7,

Definition 2.1. If A € F is an event and\ C R? we define
Ay ={w |3 € A Mo =Mw} =Y, A). (2.2)

Proposition 2.2. If A;NA,NZY=0, A,B¢c FthenAj} andBj, are independent
events.
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Proof. The eventd} is a (A1 N Z%)-cylinder set, whileBj  is a (A2 N Z)-cylinder.
Thus they are independentAf, N A, N Z<4 = 0. O

In order to explain the key role of this elementary fact in extending known multiscale
methods to the case of long range interactions we first introduce some notation and
terminology.

We denote by, = H, (w) the operatoH,, = Hy+V,, restricted to the cuba with
periodic boundary conditions and B, (2) its resolvent. ByA,;(x) we denote the cube

of sidelengthl € 2N + 1 around the point € Z?. We will drop the letter %” whenever
it is understood which center is meant otifs the origin. For fixed: denote

A= Ny, AP = A\ Ao

Also let ;™" := Xpine andyy“t := Xaout be the corresponding indicator functions.

Definition 2.3. A cubeA, is called(r, E)-good forw € €, if
X7 R, (B)xi™ || < e,
whereE € R\ o(Hj,(w)) is understood.

If the potentialf is compactly supported then the evefits: A;is not (y, £)-good}
and{w : A;is not &y, F)-good} are independent if the distance of the cubgandA;
is sufficiently large. This has been crucial in multiscale techniques as for example in [6]
and [9], but does not hold in the long range case. Our basic idea to solve this problem is
to do a multiscale analysis with “uniformly good” rather than “good” cubes:

Definition 2.4. LetG (v, E) := {w|A;is (v, E)-good;. The cube\; is called uniformly
(v, E)-good for a certairw, if o' € G(v, E) for all w’ with IT;0’" = 1w, where
M = A4l.

Thus
{w|A; is not uniformly ¢, £)-good: = {w|A; is not (y, E)-good}}, ,

which implies independence éf| A;(z) is not uniformly ¢, E)-good: and
{w|A(y) is not uniformly ¢, E)-good} if d(z,y) > 4l by Proposition 2.2. Herd(, -)
denotes theo-metric.

In order to make a multiscale analysis work with the stronger requirement of uni-
formly good cubes (see Sect. 4), we also need uniform versions of the two basic ingre-
dients into the multiscale technique, the Wegner estimate and the initial scale estimate.
These are provided in the next section, where only the Wegner estimate needs a little
extra thought.

To understand how the concept of good cubes respectively uniformly good cubes
will be used in the proof of localization in Sect. 5, we record the follovéiggenfunction
decay inequalityn part a) of the following Lemma. For this we recall that a function
¥ € W2 is called ageneralized eigenfunctidor H = —A+V (V € L? ,pas above)
to E € R, if for every p € C5°(R?),

(Vip, Vo) + (Vb o) = E(¥, ).

1/
We use the notatiofiV||,.ioc,unif = SUR, (fAl(z) [V ()P dy) p. Part b) is age-

ometric resolvent inequalitysed to comparé?, and R, for different cubes in the
multiscale analysis of Sect. 4.
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Lemma 2.5. LetH = —A+V be suchthal V||, joc,uniy < M. Thenforevery bounded
setU C R there is a constant’y 5, such that

a) every generalized eigenfunctignof H to F € U satisfies
XA < Coar xR Ra(EWXE" XK, (2.2)

b) if A C A’ are cubes with centers iA¢ and sidelengths i@N + 1, and if A ¢ A",
BcC A\ AandE € U, then

IxBRA(E)xall < CumlixsRa(B)X3 | X3 Ra(E)xall- (2.3)

The proofs of these results involve the resolvent identity, the introduction of smooth
cut-off functions and gradient estimates. Very similar results are provided in [9, Lemma
26 and Lemma 27]. An elementary discussion can also be found in [23], so we omit the
proof.

3. Wegner Estimates and Initial Scale Estimate

Let us setd = A(F,l,e) = {w|dist(E,c(H,,)) < €}. The Wegner Lemma tells us
that this event has small probability, more precisely

Proposition 3.1. ([14, 16]) Under the assumptions of Theorem 1.1det 9%. Then
there exists a neighborhodd of ¢ and a constan€ > 0 such that forE' € U,

P(A(E, 1,¢)) < Ce |A]*. (3.1)

As usual| M| denotes the Lebesgue-measure of thel$et
Combes-Hislop [3] and Barbaroux-Combes-Hislop [1] have a better Wegner estimate

which gives|A, | instead of A;|? on the right-hand side of (3.1):

Proposition 3.2. ([3, 1]) Under the assumptions in [3] resp. [1] we have férin a
neighborhood’ of a € 0% that

P(A(E, 1,)) < Ce | Ay (3.2)

We will need a "uniform” Wegner-Lemma, i.e. an estimate4jf, (whereA =
A(E, L €))-

Proposition 3.3 niform Wegner-estimate). F@& € U as in Proposition 3.1 it holds
that

P(Af,,) < Cle +r~ D) A2 (3:3)
Moreover in the case of Proposition 3.2 we have
P(A},,) < Ce +r~ =Dy |A,]. (3.4)

Note that the estimates (3.3) respectively (3.4) remain true if the eviesteplaced
by {w| dist(M, c(H,)) < e} andM C U is such that diam/ < e.
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Proof. Supposev € A7, then there exists an’ € A such that

l+r
HAl+7‘w/ = HAHrw'
Consequently, for any € A; we have

Vo@) = V@) < > (la:@)] +|ai@))]) f@ =)

TN
<C DY |p—dT" < ),

IEA L
Thus dist, o (Hy, (w"))) < € implies distE, o(Ha,(w))) < & + /r~™=9 and hence
P(Af,) < P(A(L e +'r= D)),
The latter probability can be estimated by (3.1) und (3.2) respectively]

The induction in the multiscale method of [6] does not directly use a Wegner estimate
but a consequence on the distance of the spectra of hamiltonians on disjoint boxes, see
the estimate (4.4) in [6]. In the following we adapt this estimate to our situation.

Let 7 be aninterval such th@tc U for the neighborhoo® found in Proposition 3.1
respectively Proposition 3.2. For/a= A;(x) define

1 1
or(Hp) =o(Hp) N |1+ (*élf(mfd)v Eli(mfd)) .

Note thato;(H,) C U for [ sufficiently large.
Let A; = Ay, (1) and A, = Ay, (z2) be cubes such thaty, (x1) N Ag,(z2) = 0. For
fixedw € Q andw; = My, @yw, © = 1,2, we introduce the “uniform distance”

d(or(Hn,), 01(Ha,)) =
. inf dist(o7(Ha, (w1, 1)), o1(Ha,(w2,02))) -
W1 € IMrayay, (21)
w2 € I_I]R”l\/\zuz(ﬂ?z)Q

We consider the event
A= {w| CZ(O'I(HAl)aO'I(HAZ)) < min{ll’lz}—(m—d)}.

Lemma 3.4. There is a constan€ > 0 independent ofy, I, such that under the
assumptions of Propositon 3.1,

max{ll, lz}d

PA) <C———— .
( ) - Cmin{ll, 12}m73d’ (3 5)
and under the assumptions of Proposition 3.2,
d
p(4) < 0 Ml o} (3.6)

min{ll, lz}mfzd '
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Proof. For subsets\ of R? we write P, for the probability®;c  ~z4Po on I, 2 and
E, for its expectation.
We may assumg < l,. The eventd is a (A4, U Aa,)-cylinder and thus

P(A) = PAulUAuz (A) = EAMZPAMI (A) (37)

Keepingws, fixed for a moment, we pick an arbitrawp e Mga\s,,$2. From Weyl's

asymptotic formula we conclude that(H (w2, ©2)) has at mosC14 elements (uni-
formly in w;). The decay assumption ofiimplies that forz € A, and alld, €
HRd\AMzQ’

View 2@ — Vien.z(@)| < €15 "=,

Thuso(Ha, (w2, 02)) C S.,, wheres,,, is independent ab; and a union of at most
C14 intervals, each of lengtk C’lz_(’”_d). We conclude

IP’AAH(A) < PA% {wl :_ inf QdiS’[(aI(HAl(cul,le)), S.,) < ll(md)}

I
wW1€lgd \Agyy

*

= p {w  distor(Ha, (@), S.,) < z;(m—d)} (3.8)

4y
The setS,,, can be covered by at mostld intervals of length< %l; (m—d)
%ll_(’"_d). Thus an additivity argument and the uniform Wegner estimate (3.3) with

e = 1™~ (respectively the remark following Proposition 3.3) show that the r.h.s. of
(3.8) can be further estimated by

ld
<oy o= ot
1

Since all constants are uniformdmn, (3.5) is now a direct consequence of (3.7). Using
(3.4) instead of (3.3) we get (3.6). O

The other important tool for the multiscale analysis is an initial scale estimate, aresult
saying that with high probability the distance of the spectrum of finite box hamiltonians
to 0% is nottoo small. If, as assumed hefex 0, then proofs of this result (e.qg. [6, 3, 9])
directly extend to the long range case by a monotonicity argument. It is more difficult
to incorporate that we only want to assume tfiat ¢ > 0 on some open set (rather
than f > cxa, ). Under this assumption a proof of the following result was given in
Propositions 4.1 and 4.2 of [16]. It again extends to the long range case considered here
by monotonicity. In fact, this shows that the following results hold for the uniform events
from Definition 2.1.

Proposition 3.5. (a) Under the assumptions of Theorem 1.kletinf 3. Then for any
&> 0andfp € (0,2) there is an* = [*(&, Bp) such that

P {dist(o(H(w)),a) < 1272}, <1°¢

for A = Aj(0)andl > [*.
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(b) Under the assumptions of Theorem 1.2det 0%.
Then for any € (0,27 — d) there is a8y > 0 andi* = I*(r, £) such that

P {dist(o(Ha(w)) N (a,00), a) < 150‘2}; <17¢ ifaisalower band edge
and
P {dist(o(H(w)) N (—00,a), a) < 1772}, <17¢ if ais an upper band edge
for A = Ay(0)andl > [*.

Note thato(H,(w)) € X holds for every cube\ = A;(0) (see e.g. the proof of
o(H,) = £ a.s.in[16]) and thus part b) implies thafdist(e(H, (w)), a) < 1°=2}; <
1~¢ for every band edge and sufficiently largé.

4. Multiscale Analysis

In this section we adapt the type of multiscale analysis which was used in [23] (which in
turn is based upon [6] and [9]) to our situation. With the preparations from Sects. 2 and 3
at hand, the detailed proofs of the following results are very similar to the considerations
in [6]. Thus we will only outline the main ideas and refer to [23] for a more detailed
account.

In this and the next section we prove Theorems 1.1 and 1.2 under the assumption
m > 4d. Simple modifications show that onty > 3d is needed if the stronger form of
the Wegner estimate is available.

For anintervall ¢ R,[ € 2N+ 1,y > 0, and¢ > 0, we say that the estimate
G(I,1,v,€) is satisfied if for all pairs;, y € Z¢ with d(z, y) > 4l it holds that

P {VE ¢ I the cubeA(z) or A;(y) is uniformly (y, E)-good forw} > 1 — 7%,

Note that by our general assumptions there is a bdind,. + V., ||, i0c,unif < M
uniformly inw € Q.

Theorem 4.1. Let U be the neighborhood ef € 0% as given in Proposition 3.3. Fix
§ € (0,7 —d]andg € (0,1). Then there exist = a(d, §) € (1,2), 1" =1*(d,&, 3, m),
c1 = ci(d, Cy,ar) (with Cy s from (2.2) respectively (2.3)); = ca2(d, m) and auniversal
constant such that the following implication holds:

If 7 is an open interval with ¢ U and for! > [* and~y > [°~! the estimate
G(I,1,~,¢) is satisfied, then als6'(I, L, vy, &) is true, where

(i)
1° < L<[+86,
(i
T (4.1)

Moreover, fora and¢ we have thafo — 1)d < 2¢€.
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The proof of Theorem 4.1 starts by picking = «a(d,&) € (1,2) such that
4d(5=1) < ¢andL € 3N\ 6N such thai® < L < I*+6. WithT", = o + 47 we
now define the event

Qa(x) = {w € Q : VE € I there are no four cubes;(b;) C Ap(z)
with b; € T'y, i =1,...,4 andd(b;, b;) > 4l for i Z j such that
Aq(b;) is not uniformly ¢, E)-good fori = 1,. .. ,4}.

Using the remark on independence following Definition 2.4 af(d4-1)/(2—a) <
¢ <m/4— d it can be seen that

P@e() > 1 L% 4.2)

for [ sufficiently large. Simple geometrical considerations also show that €2 (z)
andE € I there are disjoint cubes;, (b;) C Ar(z), ¢ =1,2,3, such that

(i) & € £:={0,50,10/ (10 +3)l, 15, (15 +3)I, (15 +3)I},

(i) 5.1 <(15+2),

(iii) if b e I’y andA(b) is not uniformly ¢, E)-good, thenA;(b) C U, Ay, (bs),

(V) d(AL (), Ay (b)) > 5 fori 7.

Now fix z,y € Z® with d(z,y) > 4L and define

A1 CAL(x), 1 €Ty, Ao CALWY), 22€ Ty, l; € LU{L}
andJ(UI(HA1)7UI(HAz)) < min{ly, lz}_(m_d)}.

P(22y) can be estimated by counting the number of possible centers and sidelengths
in question, and by using Lemma 3.4 for a fixed pair of baxegnd A . Applying the
definition ofa, L and¢ one gets that

P(@w) < 3L % 4.3)

for [ sufficiently large. Using (4.2) and (4.3) the theorem now follows from

Lemma 4.2. If [ is sufficiently large and € Q¢ (z) N Qe (y) N QY. then for arbitrary
E € Ithereisz € {z,y} such thaf",(z) is uniformly(yr, E)-good, wherey, satisfies
(4.12).

Proof. The proof of this result is very similar to the arguments in Sect. 4 of [6] respec-
tively their adaptation to the continuum in Sect. 6 of [9]. A detailed account of the proof
of this result for the case of compactly supported single site potefisahlso given in

[23]. However, to adjust these arguments to the long range case, it has to be shown that
the required estimate fdr9“ R, (E)x""|| with A, = A (2) holds uniformly for all

W' € QWith Tgay 5, w = Tgay 4, w'. TO this end one starts by usinge Qy to show

that for eitherz = = or z = y all cubesAj(u) C Ap(z) withu € T, and/ € £ are
uniformly non-resonani.e. satisfy
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. 1-
distlo(Hag), B) = 51"~

Uniformly for all w’ with HRd\AM.(u)w = HRd\Ad(u)w’.

For thisz it can now be shown that ;(z) is uniformly (v, E)-good. This uses
w € Qg(z) and aniteration procedure similar to the argumentin [6], where the geometric
resolventinequality (2.3) is applied repeatedly. We omit further details and refer to either
[6] or [23]. O

We now combine Proposition 3.5 and Theorem 4.1 to get

Theorem 4.3. Leta = inf X under the assumptions of Theorem 1.4 @ 0% under the
assumptions of Theorem 1.2. Then there exists an open infecaataininga, £ > 0,
v >0, a € (1,2), and a sequenciy)rcn Of length scales such that

i) (a—1d <2,
(i) I <+ <1 +6forall &,
(i) G(,lx,~,¢&) is satisfied for allk.

Proof. Proposition 3.5 shows the existencedaf> 0 and¢ > 0 (which may be picked
smaller thann/4 — d) such that forl sufficiently large and? € I := (a — 31572 a +

31%=2) one has

P{dist(E,a(HAl)) < ;zﬁo—z} <I7¢
41

Here,o(H,,) can get closer tha{}'nlf’o*2 to E from only one side since from the fact
thato(H,,) C X it follows that there is a gap-(s) of o(H,,) such thatE' € (r, s) and
either dist¢, F) > c or dist(s, £) > ¢ for a constant which does not depend/@ndw.

An improved version of the Combes-Thomas estimate introduced in [1] (see also
[16, Lemma A.1]) can be used to conclude that

J
¢ 382

130—26

X7 Ra, (E)x|™"|| <

uniformly in the components of outsideA 4 with probabilityP > 1 — [~¢. Choosing
B € (0, Bo/2) this implies thatG(1, 1, v, £) is satisfied fod > [* and~y, = 1°~%, where
independence was used.

We pickl; = [ and can now complete the proof of Theorem 4.3 by an inductive
application of Theorem 4.1. Iy was picked sufficiently large, it can be checked by
using (4.1) that there isa > 0 with -y, > ~ for all k. a

5. Proof of Localization

In this section we complete the proof of localization by adapting the line of reasoning
from [23], where an improved continuum version of the arguments from Sect. 3 of [6]
is presented.

For an operatof/ = —A +V, whereV € Lj ..., p as above, it is true that
for alImost everyly with respect to a spectral measure fdithere exists a polynomially
bounded generalized eigenfunction fére.g. [19]. Therefore the proof of Theorems 1.1

and 1.2 is completed once we have shown
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Proposition 5.1. Let I be an interval as provided by Theorem 4.3. Then it holds with
probability one that every polynomially bounded generalized eigenfungtfon 4, to
an FE € I is exponentially decaying, in fact

lim supkif;(j}gl;)| < =3,

wherey > 0is the decay rate found in Theorem 4.3.

(5.1)

(Note that they given in Theorem 4.3 describes the decay of the “averaged Green’s
function” || x¢“! R;(E)xi""|| between the cubg, 3 and the boundary ok, i.e. over a
distance /3 in oo-metric. Thus the factor 3 on the r.h.s. of (5.1) shows thdecays at

the same rate as the Green'’s function.)

Proof. With small modifications we follow the lines of the proof of Lemma 3.1 in [6].
Forxzg € Z< let

Ap+1(z0) = Agbiy.; (70) \ Asiy (o)
for b > 1 to be chosen later, and consider the event

FEi(xo) = {There is somé’ € I andx € Ag+1(xo) N Tk such that

Ay, (o) and Ay, (z) are not §, E)—good},

wherel'y, = zo+ %Zd. SinceG(1, &, 1, v) holds andA .41 (o) N Ty has< Cp(lr+1/1x)?
elements, we can estimate

P(Ex(x0)) < eply 215,

This is summable over by Theorem 4.3 and thus by Borel-Cantelli and stationarity we
get thatP(2o) = 1 for

Qo = {w: Vz € Z% 3k, € Nsuch thaty ¢ Ej(z) fork >k, } .

If w € Qo andy # 0 is a polynomially bounded generalized eigenfunctionAoto

E € I, then it is shown as in [6] thaa;, (z) is (v, E)-good for allk > ko(w) and

x € Ap+1(xo) N Tk (Ixzt ]| replacesy(xo)| from the discrete case and (2.2) is used).
Continuing the argument as in [6] and with> 11%’; for somep € (0,1) it can be

shown that fony € Akﬂ(xo) (defined as in [6] with factors 2 replaced by 8) and some

n > %pd(y, Zp) it holds that

Ixy ¥l < e ¥l < (Cop@ = Ve ™Y Ix, vl j=1,....n.

Hereyo, ..., yn is @ sequence i, N Ap+1(zo) With y € Ay, 3(yo) andd(y;, y;+1) <
l/3.

The lower estimate faor and the polynomial bound farimply that for everyy < 3y
we have

Ixy¥ < C(p, d, p,7)eT0Hu-20),

Sincep € (0,1) andy < 3y were arbitrary, (5.1) follows from a subsolution estimate
W) < Crmlixydl (e.9.[19]). O
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We point out that some of the changes in the above argument compared to [6] and
[9] can also be used to streamline the proof of Theorem 6 in [9] as was already observed
in [23]:

Note that our result in Theorem 4.3 is actually somewhat stronger than the corre-
sponding results in [6] respectively [9], even in the case of compactly suppfriee
difference is that in the definition of-good cubes we work with;"" = A; /3 as the
inner cube, while [6] and [9] use unit cubes around the center in the same context. This
has the effect that in the estimate #(E(xo)) above we can work with the counting
factor (x+1/1x)?, where the proof of [6, Lemma 3.1] neelds,. A consequence of this
fact is that we can now directly complete the proof of exponential decaygwithO
as provided in Theorem 4.3, while the reasoning in [6] needs d in this context.

In the proof of their Theorem 6 on band edge localization in [9] (which in the case of
compactly supported corresponds to our Theorem 1.2), Figotin and Klein provide an
alternative argument to show that, roughly speaking, a result as Theorem 4£3:with
implies that the same result holds for sogne d. This requires an additional multiscale
analysis, which can be dropped by using our more direct argument.

AcknowledgementWe thank the referee for pointing out to us that the results in an earlier version of this
paper could be improved to lead to exponential decay of the eigenfunctions.
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