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Abstract: We prove pure point spectrum with exponentially decaying eigenfunctions
at all band edges for Schrödinger Operators with a periodic potential plus a random
potential of the formVω(x) =

∑
qi(ω)f (x − i), wheref decays at infinity like|x|−m

form > 4d resp.m > 3d depending on the regularity off . The random variablesqi are
supposed to be independent and identically distributed. We assume that their distribution
has a bounded density of compact support.

1. Introduction

At least since the groundbreaking work of Lifshitz in the early 60s it is widely accepted
among physicists that random models of solid state physics should exhibit pure point
spectrum near fluctuation boundaries. The latter are those parts of the spectrum which
are determined by rather rare events. To present a more concrete picture consider a
Schr̈odinger operator of the form−1 + Vper + Vω describing a periodic solid with
additional impurities given by the random perturbation. The spectrum will typically
consist of a union of closed intervals, bands, whose edges correspond to the unlikely
events that the random perturbation takes on its maximal respectively minimal value.
Thus these band edges form the fluctuation boundaries.

Mathematical rigorous proofs of localization in multidimensional models have so far
been restricted to Anderson type models with additional technical restrictions. They go
back to the pioneering works for the discrete case ([12, 11, 5, 20]) withVper = 0 which
found considerable simplification in [6]. The first paper which treated the continuum
case was [13] which was extended and simplified substantially in [3, 14, 17]. In the latter
paper the case of a non-trivial periodic background potential was considered for the first
time; however, as in the other articles mentioned so far, the results showed localization
near the bottom of the spectrum, only.
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Localization near arbitrary band edges was investigated in a series of papers [8, 9,
1, 16, 21]: In [8] a discrete Schrödinger operator was considered, while [9] treats a
divergence form model for acoustic waves and contains most of the technique necessary
for the Schr̈odinger case (in [21] an extension of the results for anisotropic models is
given). In [1] a fairly general situation is considered, including Schrödinger operators of
the above type under some mild assumptions on the coefficients. In our recent paper [16]
we also studied the latter case (allowing more generalVper andf ) using among other
ingredients a multi-scale analysis which is based on a variation of ideas from [3, 9].

To point out the progress achieved in the present note we recall that alloy type models
have the form

Vω(x) =
∑

qi(ω)f (x− i), (1.1)

where we will assume that theqi for i ∈ Zd are independent identically distributed
random variables which have a bounded densityg. We suppose that supp(g) is an interval
and denote byq− andq+ its infimum and supremum respectively. The functionf ≥ 0,
f ≥ c > 0 on an open set, is assumed to belong tol1(Lp) with p = 2 for d ≤ 3, p > d

2
for d ≥ 4.

Also letH0 = −1 + Vper, whereVper ∈ Lploc is aZd-periodic potential withp as
above. We will study the random Schrödinger operatorHω = H0 + Vω.

Despite some discussion in [3, 14], localization had so far been settled for compactly
supportedf only, even in the caseVper = 0. Here we will prove localization for long
range interactionf with

|f (x)| ≤ C|x|−m for |x| large,

wherem will be chosen suitably. We will follow the general strategy for proving local-
ization which was used for discrete models in [6] and adapted in [9] to the continuous
case. A few changes will be implemented into this strategy, which, as a by-product,
lead to streamlined proofs of some of the results of [9] (see the comment at the end
of Sect. 5). In addition, we will use some results from [16] respectively [3, 1]. Peter
Hislop has announced results (joint work with Combes and Mourre, in preparation) on
the problem of localization for long rangef as well.

The difficulties one has to overcome are caused by the fact thatVω(x) andVω(y) are
statistically correlated even if the distance betweenx andy is large. For other results on
localization for correlated potentials, see e.g. [7, 10].

A simple extension of the argument given in [16] shows thatσ(Hω) = 6 for almost
everyω, where

6 =
⋃

q∈[q−,q+]

σ(H0 + q ·
∑
k

f (· − k)).

If m > 4d we will prove pure point spectrum with exponentially decaying eigen-
functions near the bottom inf6 of the spectrum. If we impose the conditions of [1] or
[3] we may even havem > 3d since their Wegner estimate is stronger. Note that [1, 3] in
particular assume boundedness off . Under slightly stronger assumptions on the density
g we can prove localization near all band edges of the spectrum.

Let us formulate the main results of this paper.

Theorem 1.1. If m > 4d then for almost everyω the spectrum ofHω is pure point in
a neighborhood ofinf 6 with exponentially decaying eigenfunctions.
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Theorem 1.2. Assume thatm > 4d and that there existsτ > d/2 such thatg satisfies∫ q−+h

q−
g(s) ds +

∫ q+

q+−h
g(s) ds ≤ h τ for smallh. (1.2)

Then for almost everyω the spectrum ofHω is pure point in a neighborhood of∂6 with
exponentially decaying eigenfunctions.

In our proof the particular form of the Wegner bound turns out to be crucial. In the
Wegner estimate we take from [14] and [16] the Wegner bound behaves quadratic in
the volume term. The above results rely on this type of Wegner estimate. Barbaroux,
Combes, Hislop and Mourre ([1, 3] and [4]) prove a Wegner estimate that is linear in
the volume. In their case our proof below requires onlym > 3d instead ofm > 4d.

One of us has found a simple proof of a Wegner estimate for Hölder continuous
distribution of the coupling constant [22]. This implies that the above theorems remain
valid under this more general assumption. For discrete models, a Wegner estimate was
proven in [2] which allows for Ḧolder continuous measures and even certain measures
with non-zero discrete parts.

We mention here without proof that the assumption onm can be weakened at the
cost of a somewhat worse result on eigenfunction decay. In fact, by using the ideas
described below in a somewhat different type of multiscale analysis (as used in [16]
and based on methods from [20] and [3]) it can be shown that Theorems 1.1 and 1.2
hold form > 3d (respectivelym > 2d under the conditions of [1, 3]), but merely with
eigenfunctions which decay more rapidly than any inverse polynomial. Of course, the
optimal assumption, which we were not able to get, should bem > d.

The additional assumption (1.2) in Theorem 1.2 could be dropped if Lifshitz tail
behavior of the integrated density of states would be known at internal band edges ofHω

(a property known at inf6 and used in the proof of Theorem 1.1, compare in particular
the proof of Proposition 4.2 in [16]). Klopp has recently shown in [18] that internal
Lifshitz tails appear if and only if the integrated density of states at the corresponding
band edge of the periodic operatorH0 is “non-degenerate” (see [18]).

2. Preliminaries and Strategy of Proof

In this paper we use the structure of the probability space�of the random variables which
still has product structure although the random potential itself might be (and typically
will be) deterministic in the sense of the technical definition of this term (see [15]). The
strategy of our proof is to make probabilistic estimates for the box-hamiltoniansH3l(x)
(see below) which are validuniformlyin qi for thosei with dist(i,3l(x)) ≥ rl for some
“security distance”rl.

To define this procedure more precisely note that our probability space(�,F ,P)
is given by� = ⊗i∈ZdS, S ⊂ R, F = ⊗i∈ZdB(S), P = ⊗i∈ZdP0, whereP0 is the
distribution ofq0 andS its (compact) support. For any subset3 of Rd we define the
projection53 : � −→ ⊗i∈3∩ZdS by (53ω)i = ωi for i ∈ 3 ∩ Zd.

Definition 2.1. If A ∈ F is an event and3 ⊂ Rd we define

A∗
3 = {ω | ∃ω′ ∈ A 53ω

′ = 53ω } = 5−1
3 (53A). (2.1)

Proposition 2.2. If 31 ∩32 ∩ Zd = ∅, A,B ∈ F thenA∗
31

andB∗
32

are independent
events.
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Proof. The eventA∗
31

is a (31 ∩ Zd)-cylinder set, whileB∗
32

is a (32 ∩ Zd)-cylinder.
Thus they are independent if31 ∩ 32 ∩ Zd = ∅. �

In order to explain the key role of this elementary fact in extending known multiscale
methods to the case of long range interactions we first introduce some notation and
terminology.

We denote byH3 = H3(ω) the operatorHω = H0 +Vω restricted to the cube3 with
periodic boundary conditions and byR3(z) its resolvent. By3l(x) we denote the cube
of sidelengthl ∈ 2N + 1 around the pointx ∈ Zd. We will drop the letter “x” whenever
it is understood which center is meant or ifx is the origin. For fixedx denote

3inn
l := 3l/3, 3out

l := 3l \ 3l−2.

Also letχinnl := χ3inn
l

andχoutl := χ3out
l

be the corresponding indicator functions.

Definition 2.3. A cube3l is called(γ,E)-good forω ∈ �, if

‖χoutl R3l
(E)χinnl ‖ ≤ e−γl,

whereE ∈ R \ σ(H3l
(ω)) is understood.

If the potentialf is compactly supported then the events{ω : 3l is not (γ,E)-good}
and{ω : 3̃l is not (γ,E)-good} are independent if the distance of the cubes3l and3̃l

is sufficiently large. This has been crucial in multiscale techniques as for example in [6]
and [9], but does not hold in the long range case. Our basic idea to solve this problem is
to do a multiscale analysis with “uniformly good” rather than “good” cubes:

Definition 2.4. LetGl(γ,E) := {ω|3l is (γ,E)-good}. The cube3l is called uniformly
(γ,E)-good for a certainω, if ω′ ∈ Gl(γ,E) for all ω′ with 5Mω

′ = 5Mω, where
M = 34l.

Thus

{ω|3l is not uniformly (γ,E)-good} = {ω|3l is not (γ,E)-good}∗
34l
,

which implies independence of{ω|3l(x) is not uniformly (γ,E)-good} and
{ω|3l(y) is not uniformly (γ,E)-good} if d(x, y) > 4l by Proposition 2.2. Hered(·, ·)
denotes the∞-metric.

In order to make a multiscale analysis work with the stronger requirement of uni-
formly good cubes (see Sect. 4), we also need uniform versions of the two basic ingre-
dients into the multiscale technique, the Wegner estimate and the initial scale estimate.
These are provided in the next section, where only the Wegner estimate needs a little
extra thought.

To understand how the concept of good cubes respectively uniformly good cubes
will be used in the proof of localization in Sect. 5, we record the followingeigenfunction
decay inequalityin part a) of the following Lemma. For this we recall that a function
ψ ∈ W 1,2

loc is called ageneralized eigenfunctionforH = −1+V (V ∈ Lploc, p as above)
toE ∈ R, if for everyϕ ∈ C∞

0 (Rd),

〈∇ψ,∇ϕ〉 + 〈V ψ, ϕ〉 = E〈ψ,ϕ〉.

We use the notation‖V ‖p,loc,unif := supx
(∫

31(x) |V (y)|p dy
)1/p

. Part b) is age-

ometric resolvent inequalityused to compareR3 andR3′ for different cubes in the
multiscale analysis of Sect. 4.
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Lemma 2.5. LetH = −1+V be such that‖V ‖p,loc,unif ≤ M . Then for every bounded
setU ⊂ R there is a constantCU,M such that

a) every generalized eigenfunctionψ ofH toE ∈ U satisfies

‖χinn3 ψ‖ ≤ CU,M‖χout3 R3(E)χinn3 ‖ ‖χout3 ψ‖, (2.2)

b) if 3 ⊂ 3′ are cubes with centers inZd and sidelengths in2N + 1, and ifA ⊂ 3inn,
B ⊂ 3′ \ 3 andE ∈ U , then

‖χBR3′ (E)χA‖ ≤ CU,M‖χBR3′ (E)χout3 ‖ ‖χout3 R3(E)χA‖. (2.3)

The proofs of these results involve the resolvent identity, the introduction of smooth
cut-off functions and gradient estimates. Very similar results are provided in [9, Lemma
26 and Lemma 27]. An elementary discussion can also be found in [23], so we omit the
proof.

3. Wegner Estimates and Initial Scale Estimate

Let us setA = A(E, l, ε) = {ω |dist(E, σ(H3l
)) < ε} . The Wegner Lemma tells us

that this event has small probability, more precisely

Proposition 3.1. ([14, 16]) Under the assumptions of Theorem 1.1 leta ∈ ∂6. Then
there exists a neighborhoodU of a and a constantC > 0 such that forE ∈ U ,

P(A(E, l, ε)) ≤ Cε |3l|2 . (3.1)

As usual|M | denotes the Lebesgue-measure of the setM .
Combes-Hislop [3] and Barbaroux-Combes-Hislop [1] have a better Wegner estimate

which gives|3l| instead of|3l|2 on the right-hand side of (3.1):

Proposition 3.2. ([3, 1]) Under the assumptions in [3] resp. [1] we have forE in a
neighborhoodU of a ∈ ∂6 that

P(A(E, l, ε)) ≤ Cε |3l| . (3.2)

We will need a ”uniform” Wegner-Lemma, i.e. an estimate ofA∗
l+r (whereA =

A(E, l, ε)).

Proposition 3.3 (uniform Wegner-estimate). ForE ∈ U as in Proposition 3.1 it holds
that

P(A∗
l+r) ≤ C(ε + r−(m−d)) |3l|2 . (3.3)

Moreover in the case of Proposition 3.2 we have

P(A∗
l+r) ≤ C(ε + r−(m−d)) |3l| . (3.4)

Note that the estimates (3.3) respectively (3.4) remain true if the eventA is replaced
by {ω| dist(M,σ(H3l

)) < ε} andM ⊂ U is such that diamM < ε.
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Proof. Supposeω ∈ A∗
l+r then there exists anω′ ∈ A such that

53l+r
ω′ = 53l+r

ω.

Consequently, for anyx ∈ 3l we have

|Vω(x) − Vω′ (x)| ≤
∑
i6∈3l+r

(|qi(ω)| + |qi(ω′)|) f (x− i)

≤ C
∑
i6∈3l+r

|x− i|−m ≤ C ′r−(m−d).

Thus dist(E, σ(H3l
(ω′))) < ε implies dist(E, σ(H3l

(ω))) < ε + c′r−(m−d), and hence

P(A∗
l+r) ≤ P(A(l, ε + c′r−(m−d))).

The latter probability can be estimated by (3.1) und (3.2) respectively.�

The induction in the multiscale method of [6] does not directly use a Wegner estimate
but a consequence on the distance of the spectra of hamiltonians on disjoint boxes, see
the estimate (4.4) in [6]. In the following we adapt this estimate to our situation.

LetI be an interval such thatI ⊂ U for the neighborhoodU found in Proposition 3.1
respectively Proposition 3.2. For a3 = 3l(x) define

σI (H3) = σ(H3) ∩
[
I + (−1

2
l−(m−d),

1
2
l−(m−d))

]
.

Note thatσI (H3) ⊂ U for l sufficiently large.
Let 31 = 3l1(x1) and32 = 3l2(x2) be cubes such that34l1(x1) ∩ 34l2(x2) = ∅. For

fixedω ∈ � andωi := 534li
(xi)ω, i = 1, 2, we introduce the “uniform distance”

d̃(σI (H31), σI (H32)) :=

inf
ω̃1 ∈ 5Rd\34l1(x1)�

ω̃2 ∈ 5Rd\34l2(x2)�

dist
(
σI (H31(ω1, ω̃1)), σI (H32(ω2, ω̃2))

)
.

We consider the event

A :=
{
ω| d̃(σI (H31), σI (H32)) ≤ min{l1, l2}−(m−d)

}
.

Lemma 3.4. There is a constantC > 0 independent ofl1, l2, such that under the
assumptions of Propositon 3.1,

P(A) ≤ C
max{l1, l2}d

min{l1, l2}m−3d
, (3.5)

and under the assumptions of Proposition 3.2,

P(A) ≤ C
max{l1, l2}d

min{l1, l2}m−2d
. (3.6)
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Proof. For subsets3 of Rd we writeP3 for the probability⊗i∈3∩ZdP0 on 53� and
E3 for its expectation.

We may assumel1 ≤ l2. The eventA is a (34l1 ∪ 34l2)-cylinder and thus

P(A) = P34l1∪34l2
(A) = E34l2

P34l1
(A). (3.7)

Keepingω2 fixed for a moment, we pick an arbitrary ˜ω0
2 ∈ 5Rd\34l2

�. From Weyl’s

asymptotic formula we conclude thatσI (H32(ω2, ω̃
0
2)) has at mostCld2 elements (uni-

formly in ω2). The decay assumption onf implies that forx ∈ 32 and all ω̃2 ∈
5Rd\34l2

�, ∣∣∣V(ω2,ω̃0
2)(x) − V(ω2,ω̃2)(x)

∣∣∣ ≤ Cl−(m−d)
2 .

ThusσI (H32(ω2, ω̃2)) ⊂ Sω2, whereSω2 is independent of ˜ω2 and a union of at most
Cld2 intervals, each of length≤ Cl−(m−d)

2 . We conclude

P34l1
(A) ≤ P34l1

{
ω1 : inf

ω̃1∈5Rd\34l1
�

dist(σI (H31(ω1, ω̃1)), Sω2) ≤ l−(m−d)
1

}
= P

{
ω : dist(σI (H31(ω)), Sω2) ≤ l−(m−d)

1

}∗

4l1
. (3.8)

The setSω2 can be covered by at mostCld2 intervals of length≤ 1
2l

−(m−d)
2 ≤

1
2l

−(m−d)
1 . Thus an additivity argument and the uniform Wegner estimate (3.3) with

ε = l−(m−d)
1 (respectively the remark following Proposition 3.3) show that the r.h.s. of

(3.8) can be further estimated by

≤ Cld2 l
−(m−d)
1 l2d1 = C

ld2
lm−3d
1

.

Since all constants are uniform inω2, (3.5) is now a direct consequence of (3.7). Using
(3.4) instead of (3.3) we get (3.6). �

The other important tool for the multiscale analysis is an initial scale estimate, a result
saying that with high probability the distance of the spectrum of finite box hamiltonians
to∂6 is not too small. If, as assumed here,f ≥ 0, then proofs of this result (e.g. [6, 3, 9])
directly extend to the long range case by a monotonicity argument. It is more difficult
to incorporate that we only want to assume thatf ≥ c > 0 on some open set (rather
thanf ≥ cχ31(0)). Under this assumption a proof of the following result was given in
Propositions 4.1 and 4.2 of [16]. It again extends to the long range case considered here
by monotonicity. In fact, this shows that the following results hold for the uniform events
from Definition 2.1.

Proposition 3.5. (a) Under the assumptions of Theorem 1.1 leta = inf 6. Then for any
ξ > 0 andβ0 ∈ (0, 2) there is anl∗ = l∗(ξ, β0) such that

P
{

dist(σ(H3(ω)), a) ≤ lβ0−2
}∗

4l
≤ l−ξ

for 3 = 3l(0) andl ≥ l∗.
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(b) Under the assumptions of Theorem 1.2 leta ∈ ∂6.
Then for anyξ ∈ (0, 2τ − d) there is aβ0 > 0 andl∗ = l∗(τ, ξ) such that

P
{

dist(σ(H3(ω)) ∩ (a,∞), a) ≤ lβ0−2
}∗

4l
≤ l−ξ if a is a lower band edge

and

P
{

dist(σ(H3(ω)) ∩ (−∞, a), a) ≤ lβ0−2
}∗

4l
≤ l−ξ if a is an upper band edge

for 3 = 3l(0) andl ≥ l∗.

Note thatσ(H3(ω)) ⊂ 6 holds for every cube3 = 3l(0) (see e.g. the proof of
σ(Hω) = 6 a.s. in [16]) and thus part b) implies thatP{dist(σ(H3(ω)), a) ≤ lβ0−2}∗

4l ≤
l−ξ for every band edgea and sufficiently largel.

4. Multiscale Analysis

In this section we adapt the type of multiscale analysis which was used in [23] (which in
turn is based upon [6] and [9]) to our situation. With the preparations from Sects. 2 and 3
at hand, the detailed proofs of the following results are very similar to the considerations
in [6]. Thus we will only outline the main ideas and refer to [23] for a more detailed
account.

In this and the next section we prove Theorems 1.1 and 1.2 under the assumption
m > 4d. Simple modifications show that onlym > 3d is needed if the stronger form of
the Wegner estimate is available.

For an intervalI ⊂ R, l ∈ 2N + 1, γ > 0, andξ > 0, we say that the estimate
G(I, l, γ, ξ) is satisfied if for all pairsx, y ∈ Zd with d(x, y) ≥ 4l it holds that

P {∀E ∈ I the cube3l(x) or 3l(y) is uniformly (γ,E)-good forω} ≥ 1 − l−2ξ.

Note that by our general assumptions there is a bound‖Vper + Vω‖p,loc,unif ≤ M
uniformly in ω ∈ �.

Theorem 4.1. LetU be the neighborhood ofa ∈ ∂6 as given in Proposition 3.3. Fix
ξ ∈ (0, m4 − d] andβ ∈ (0, 1). Then there existα = α(d, ξ) ∈ (1, 2), l∗ = l∗(d, ξ, β,m),
c1 = c1(d, CU,M ) (withCU,M from (2.2) respectively (2.3)),c2 = c2(d,m) and a universal
constantc such that the following implication holds:

If I is an open interval withI ⊂ U and for l ≥ l∗ and γ ≥ lβ−1 the estimate
G(I, l, γ, ξ) is satisfied, then alsoG(I, L, γL, ξ) is true, where

(i)

lα ≤ L ≤ lα + 6,

(ii)

γL ≥ γ(1 − cl1−α) − c1l
−1 − c2

lnL
L

≥ Lβ−1. (4.1)

Moreover, forα andξ we have that(α− 1)d < 2ξ.
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The proof of Theorem 4.1 starts by pickingα = α(d, ξ) ∈ (1, 2) such that

4d
(
α−1
2−α

)
≤ ξ andL ∈ 3N \ 6N such thatlα ≤ L ≤ lα + 6. With 0x := x + l

3Zd we

now define the event

�G(x) :=
{
ω ∈ � : ∀E ∈ I there are no four cubes3l(bi) ⊂ 3L(x)

with bi ∈ 0x, i = 1, . . . , 4 andd(bi, bj) > 4l for i 6= j such that

3l(bi) is not uniformly (γ,E)-good fori = 1, . . . , 4
}
.

Using the remark on independence following Definition 2.4 and 4d(α−1)/(2−α) ≤
ξ ≤ m/4 − d it can be seen that

P(�G(x)) ≥ 1 − 1
3
L−2ξ (4.2)

for l sufficiently large. Simple geometrical considerations also show that forω ∈ �G(x)
andE ∈ I there are disjoint cubes3li (bi) ⊂ 3L(x), i = 1, 2, 3, such that

(i) li ∈ L := {0, 5l, 10l, (10 + 1
3)l, 15l, (15 + 1

3)l, (15 + 2
3)l},

(ii)
∑3
i=1 li ≤ (15 + 2

3)l,
(iii) if b ∈ 0x and3l(b) is not uniformly (γ,E)-good, then3l(b) ⊂ ⋃

i 3li (bi),
(iv) d(3li (bi),3lj (bj)) ≥ l

3 for i 6= j.
Now fix x, y ∈ Zd with d(x, y) ≥ 4L and define

�W :=
{
ω ∈ � : ∃31 = 3l1(z1), 32 = 3l2(z2) with

31 ⊂ 3L(x), z1 ∈ 0x, 32 ⊂ 3L(y), z2 ∈ 0y, li ∈ L ∪ {L}
andd̃(σI (H31), σI (H32)) ≤ min{l1, l2}−(m−d)

}
.

P(�W ) can be estimated by counting the number of possible centers and sidelengths
in question, and by using Lemma 3.4 for a fixed pair of boxes31 and32. Applying the
definition ofα, L andξ one gets that

P(�W ) ≤ 1
3
L−2ξ (4.3)

for l sufficiently large. Using (4.2) and (4.3) the theorem now follows from

Lemma 4.2. If l is sufficiently large andω ∈ �G(x) ∩�G(y) ∩�c
W , then for arbitrary

E ∈ I there isz ∈ {x, y} such that0L(z) is uniformly(γL, E)-good, whereγL satisfies
(4.1).

Proof. The proof of this result is very similar to the arguments in Sect. 4 of [6] respec-
tively their adaptation to the continuum in Sect. 6 of [9]. A detailed account of the proof
of this result for the case of compactly supported single site potentialf is also given in
[23]. However, to adjust these arguments to the long range case, it has to be shown that
the required estimate for‖χoutL R3L

(E)χinnL ‖ with 3L = 3L(z) holds uniformly for all
ω′ ∈ � with 5Rd\34L

ω = 5Rd\34L
ω′. To this end one starts by usingω ∈ �W to show

that for eitherz = x or z = y all cubes3l̃(u) ⊂ 3L(z) with u ∈ 0z and l̃ ∈ L are
uniformly non-resonant, i.e. satisfy
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dist(σ(H3l̃(u)), E) ≥ 1
2
l̃−(m−d)

uniformly for all ω′ with 5Rd\34l̃(u)ω = 5Rd\34l̃(u)ω
′.

For thisz it can now be shown that3L(z) is uniformly (γL, E)-good. This uses
ω ∈ �G(z) and an iteration procedure similar to the argument in [6], where the geometric
resolvent inequality (2.3) is applied repeatedly. We omit further details and refer to either
[6] or [23]. �

We now combine Proposition 3.5 and Theorem 4.1 to get

Theorem 4.3. Leta = inf 6 under the assumptions of Theorem 1.1 ora ∈ ∂6 under the
assumptions of Theorem 1.2. Then there exists an open intervalI containinga, ξ > 0,
γ > 0, α ∈ (1, 2), and a sequence(lk)k∈N of length scales such that

(i) (α− 1)d < 2ξ,
(ii) lαk ≤ lk+1 ≤ lαk + 6 for all k,
(iii) G(I, lk, γ, ξ) is satisfied for allk.

Proof. Proposition 3.5 shows the existence ofβ0 > 0 andξ > 0 (which may be picked
smaller thanm/4 − d) such that forl sufficiently large andE ∈ I := (a − 1

2l
β0−2, a +

1
2l
β0−2) one has

P
{

dist(E, σ(H3l
)) ≤ 1

2
lβ0−2

}∗

4l

≤ l−ξ.

Here,σ(H3l
) can get closer than12l

β0−2 toE from only one side since from the fact
thatσ(H3l

) ⊂ 6 it follows that there is a gap (r, s) of σ(H3l
) such thatE ∈ (r, s) and

either dist(r, E) ≥ c or dist(s, E) ≥ c for a constant which does not depend onl andω.
An improved version of the Combes-Thomas estimate introduced in [1] (see also

[16, Lemma A.1]) can be used to conclude that

‖χoutl R3l
(E)χinnl ‖ ≤ c′

lβ0−2
e−c′′l

1
2 (β0−2)·l

uniformly in the components ofω outside34l with probabilityP ≥ 1 − l−ξ. Choosing
β ∈ (0, β0/2) this implies thatG(I, l, γl, ξ) is satisfied forl ≥ l∗ andγl = lβ−1, where
independence was used.

We pick l1 = l and can now complete the proof of Theorem 4.3 by an inductive
application of Theorem 4.1. Ifl1 was picked sufficiently large, it can be checked by
using (4.1) that there is aγ > 0 with γlk ≥ γ for all k. �

5. Proof of Localization

In this section we complete the proof of localization by adapting the line of reasoning
from [23], where an improved continuum version of the arguments from Sect. 3 of [6]
is presented.

For an operatorH = −1 + V , whereV ∈ Lploc,unif , p as above, it is true that
for almost everyE with respect to a spectral measure forH there exists a polynomially
bounded generalized eigenfunction forH, e.g. [19]. Therefore the proof of Theorems 1.1
and 1.2 is completed once we have shown
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Proposition 5.1. Let I be an interval as provided by Theorem 4.3. Then it holds with
probability one that every polynomially bounded generalized eigenfunctionψ forHω to
anE ∈ I is exponentially decaying, in fact

lim sup
x→∞

log |ψ(x)|
d(x, 0)

≤ −3γ, (5.1)

whereγ > 0 is the decay rate found in Theorem 4.3.

(Note that theγ given in Theorem 4.3 describes the decay of the “averaged Green’s
function” ‖χoutl Rl(E)χinnl ‖ between the cube3l/3 and the boundary of3l, i.e. over a
distancel/3 in ∞-metric. Thus the factor 3 on the r.h.s. of (5.1) shows thatψ decays at
the same rate as the Green’s function.)

Proof. With small modifications we follow the lines of the proof of Lemma 3.1 in [6].
Forx0 ∈ Zd let

Ak+1(x0) = 38blk+1(x0) \ 38lk (x0)

for b > 1 to be chosen later, and consider the event

Ek(x0) :=
{

There is someE ∈ I andx ∈ Ak+1(x0) ∩ 0k such that

3lk (x0) and3lk (x) are not (γ,E)-good
}
,

where0k = x0 + lk
3 Zd. SinceG(I, ξ, lk, γ) holds andAk+1(x0)∩0k has≤ Cb(lk+1/lk)d

elements, we can estimate

P(Ek(x0)) ≤ cbl
−2ξ
k ld(α−1)

k .

This is summable overk by Theorem 4.3 and thus by Borel-Cantelli and stationarity we
get thatP(�0) = 1 for

�0 :=
{
ω : ∀x ∈ Zd ∃kx ∈ N such thatω 6∈ Ek(x) for k ≥ kx

}
.

If ω ∈ �0 andψ 6= 0 is a polynomially bounded generalized eigenfunction forH to
E ∈ I, then it is shown as in [6] that3lk (x) is (γ,E)-good for allk ≥ k0(ω) and
x ∈ Ak+1(x0) ∩ 0k (‖χx0ψ‖ replaces|ψ(x0)| from the discrete case and (2.2) is used).

Continuing the argument as in [6] and withb > 1+ρ
1−ρ for someρ ∈ (0, 1) it can be

shown that fory ∈ Ãk+1(x0) (defined as in [6] with factors 2 replaced by 8) and some
n ≥ 3

lk
ρd(y, x0) it holds that

‖χyψ‖ ≤ ‖χinny0,lk
ψ‖ ≤ (Cψ(3d − 1)e−γlk )j‖χoutlk,yj

ψ‖, j = 1, . . . , n.

Herey0, . . . , yn is a sequence in0k ∩ Ak+1(x0) with y ∈ 3lk/3(y0) andd(yj , yj+1) ≤
lk/3.

The lower estimate forn and the polynomial bound forψ imply that for every ˜γ < 3γ
we have

‖χyψ‖ ≤ C(ψ, d, ρ, γ̃)e−γ̃ρd(y,x0).

Sinceρ ∈ (0, 1) andγ̃ < 3γ were arbitrary, (5.1) follows from a subsolution estimate
|ψ(y)| ≤ CI,M‖χyψ‖ (e.g. [19]). �
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We point out that some of the changes in the above argument compared to [6] and
[9] can also be used to streamline the proof of Theorem 6 in [9] as was already observed
in [23]:

Note that our result in Theorem 4.3 is actually somewhat stronger than the corre-
sponding results in [6] respectively [9], even in the case of compactly supportedf . The
difference is that in the definition ofγ-good cubes we work with3inn

l = 3l/3 as the
inner cube, while [6] and [9] use unit cubes around the center in the same context. This
has the effect that in the estimate forP(Ek(x0)) above we can work with the counting
factor (lk+1/lk)d, where the proof of [6, Lemma 3.1] needsldk+1. A consequence of this
fact is that we can now directly complete the proof of exponential decay withξ > 0
as provided in Theorem 4.3, while the reasoning in [6] needsξ > d in this context.
In the proof of their Theorem 6 on band edge localization in [9] (which in the case of
compactly supportedf corresponds to our Theorem 1.2), Figotin and Klein provide an
alternative argument to show that, roughly speaking, a result as Theorem 4.3 withξ > 0
implies that the same result holds for someξ > d. This requires an additional multiscale
analysis, which can be dropped by using our more direct argument.

Acknowledgement.We thank the referee for pointing out to us that the results in an earlier version of this
paper could be improved to lead to exponential decay of the eigenfunctions.
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