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1. Introduction

In this note, we present a very simple approach to proving Lifshitz asymptotics
for random operators and apply it to Schrédinger operators with Anderson and
Poisson potentials. Let us first briefly recall what Lifshitz asymptotics is about:
considerHy, = —A onR? and a random potential teriin,. The operatoHy + V,,

is to be thought of as the effective Hamiltonian of fixed a realization of a random
solid. If we assume that thg, are bounded below uniformly iw, V,, > 0 say,

the restriction(Hy + V,,) » of Hy + V,, to an open cubé with Neumann boundary
conditions has compact resolvent. Therefore, the spectral counting function

n(E, (Ho+ Vu)a) := [ x0,51(Ho + Vo) |

which gives the number of eigenvalues beléiwcounted with multiplicity, is fi-

nite. This function bears important information about the random potential under
consideration. In fact, its limit aa exhausts the whole space has an asymptotic
behaviour characteristic of disorder. To see that, let us first recall that by the cel-
ebrated Weyl asymptotic formula, in absence of disorder, i.eVipr= 0, we

have

n(E, (Ho)p) = CaE?(|Al +o(|A])) E >0

(where we useA | for the volume of the cube) which means that

H i . _ d/2
lim n(E, (Hp)p) =: No(E) = C,EY>.
ARE A
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A submultiplicative ergodic theorem implies that the respective limit

. 1

N(E) := lim —n(E, (Ho+ V,)a)
AR A

exists for a.ew under some mild and very natural ergodicity assumptiori/gn

(see [4]). Moreover, this limit is independent of the choicevofutside some set

of measure zero and equals

o1
N(E) = l?\f mE{n(E, (Ho+ Vo) )}

Now the right-hand side above is readily interpreted as the expected number of
energy levels per unit volume below. Clearly, this quantity is of importance
both mathematically and from the physicists point of view. In his landmark work,
Lifshitz predicted an asymptotic behaviour®f E) which differs drastically from

the dimension-dependent power law decayMy{ E). Namely, he claimed that

for nontrivial V,, which obeys some spatial independence (this will be explained
below),

N(E) ~ exp(—yE~%?) asE \, 0.

(Here we assume that 0 is the inf of the spectrunHgf+ V,, a.e. for notational
convenience.) His reasoning is as follows:

firstof alln(E, (Ho+ V,)a) < n(E, (Hp)a) as the nonnegative potential term
shifts the eigenvalues to the right. Therefore, with(...) denoting the bottom
eigenvalue of the operator in question, we have

1
N(E) < m /n(E, (Ho + V) A) X{Ex((Ho+V,) ) <E} AP(@)
< CEY?Plw: E1((Ho+ V.)a) < E}.

Now we want to estimate the probability of having small eigenvalueg. if a
normalized eigenfunction @fH,+V,,) » with eigenvaluet ~ 0 it must be localized

to a region wheréd/,, = 0, ask = (—A¢|¢) + (V,¢|d). As the kinetic energy of

a function localized to a set of diametRris at least of ordeR 2, there must be a
ball of radius E~%? on which V,, vanishes essentially. The spatial independence
referred to above means that we assume that the restrictiows & disjoint
subsets are independent of each other. In that case, the probabilit, trextishes

on a ball of radiusk goes to zero exponentially in the volun®€¢ of the ball asR
goes to infinity. Inserting the length = E~/2 found above, we get that

P{w: E1((Ho + V,,)a) < E} < constexp—y E~4/?).

Of course, this is not a mathematically rigorous proof. The point which certainly
has to be made precise is the existence of a large enough region Whete0.
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For due to tunneling effectg, might still live on parts of space whe#g, > 0. Of
course,V,, may not increase the potential energy too much.

Our way around that difficulty goes as follows: LAt(w) = Hy + V,, be a
random Schrddinger operator with, > 0. By what we said above, Lifshitz be-
haviour for the integrated density of states can be deduced from an estimate of the
following form, whereH  (w) denotesty+ V,, in L?(A), with Neumann boundary
condition (b.c.),A = A;(0) an open cube with sidelengtin R? andE4(-) the first
eigenvalue.

P{E1(Ha(w)) < E1(Ho) + bl72} < dexp—19y). (1.1)

This latter inequality states in precise terms that it is very unlikely to find really
small eigenvalues aff, (w). In order to prove such an inequality, one has to over-
come the following main problem: for a simple-minded lower bound on the first
eigenvalue one would need a uniform lower bound on the perturb&tjoisuch
uniform lower bounds only hold with small probability. On the other hand, what
one knows by standard probabilistic tools are lower bounds for the me&p) of
for typical . So what we need is a relation between the meaW,adnd the first
eigenvalue. In our approach we choose a derivative related Ayitt) as such a
link. As you will see, that provides a conceptually simple proof of inequality (1.1).
More precisely, let us consider

Hy(w,t) = Hy+1tV, onL?(A) with Neumann b.c.
Then the first eigenvalug; (w, t) of this operator behaves like

E1(Hp(w)) = Ei(w,t) ~ E1(Ho) + tE{(w,0) for smallz, 1.2)
with

Ej(®,0) = (Vi,¢oldo),

wheregy is the normalized ground state Hf.

Now, let us take a closer look at (1.2). We have to find out just how large we
may taker. Analytic perturbation theory suggests- /=2, as this is the distance of
E1(Hp) to E»(Hy) for typical Schrddinger operators. With this choice @&small
enough, fromE;(w) < E1(Hp) + bl~2 it follows that E}(w, 0) has to be small.
But, in the Anderson case,

1
Ej(w, 0) = (Vudolgo) = (m > w(i))const. (1.3)

ieA

is essentially the mean of a sum|a@f| = /¢ i.i.d. variables. The probability that

this mean differs from the expectation by some fixed constant goes to zero expo-
nentially in the number of independent copies, i.e.(exp|A]) which is exactly

the decay we need. For Poisson potentials, we provide a rather elementary large
deviation estimate, reducing it to something like (1.3). The above considerations
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constitute already the main idea of our method which we call ‘linear coupling of
disorder’ for obvious reasons. The rest of the paper is devoted to carrying out the
details needed to turn the above heuristics into a rigorous proof.

In principle, this requires three steps: firstly, the standard procedure to deduce
Lifshitz tails from (1.1) above. To prove (1.1) we need, of course, large deviation
results for(V,¢ol¢do). As a last ingredient, a remainder estimate for the first-order
approximation taE: (w, 1) is needed, which, again, is quite standard.

As all three steps are rather straightforward, the expert reader could stop at
this point. (But please, read on.) To appreciate the simplicity of our approach, the
reader should compare it with the proofs available so far; see [1, 10], where detailed
references to the literature can be found. Usually, there is some tricky part when
it comes down to showing the main point: sméall(w) come from large deviation
from the typicalw.

For the Anderson model, Temple’s or Thirring’s inequality is used at that point.

The Poisson model was treated using the celebrated work of Donsker and Varad-
han [2] on the asymptotics of the Wiener sausage. A beautiful introduction to this
circle of ideas can be found in [8].

In our approach we single out a very convenient link, naniglg, 0).

This enabled us to apply our method to a random quantum waveguide model [5],
quite reminiscent of the Anderson model. For this model, however, determining the
derivative E; (w, 0) is harder (and more interesting), and the methods using Tem-
ple’s or Thirring’s inequality fail. Despite of all the advertisement for our method,
we should stress that, so far, we haven't achieved ‘the right constant’ in the Poisson
case.

2. Lifshitz Tails for Anderson and Poisson Models

Let us first fix the notation and the basic assumptions. Throughout the following,
A = A;(x) denotes an open cube of sidelenftentered at. Moreover,p is an
exponent such thas > d/2ford > 4 andp = 2ford < 3, andf € L?(RY),
f > 0and supp ¢ A1(0). We will consider the following random potentials:

(A) THE ANDERSON MODEL. LetS > 0 andu be a probability measure on
[0, S] with O € suppu andM = [xdu > O, i.e.u is not justs. Denote its
variance byv = [x2du. LetQ = [0, S, P = Z* and defineV/(x) =
Yieza @) f(x —1i).

(P) THE POISSON MODEL. Lef2 denote the point measures B andP the
Poisson measure a2, which is concentrated ofd_, dx,; for some discrete se-
quence(X;)}. Define

Vi@ = fro@ =) fix—Xi).
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These two random measures correspond to quite different types of disorder:
while V4 is used to model solids with defects, with some periodicity still present
in the random potentialy,” describes an amorphous medium in which the nuclei
(at X; (w)) are distributed erratically in space.

As many of the following considerations apply to both the Anderson and the
Poisson model, we will often writ&, to denote either of them, and use a super-
scripts A, P to distinguish between them. With this convention, dendi@) =
—A 4V, in L?(RY) and byH, (w) the restriction of this operator tb?(A) with
Neumann boundary conditions.

Theintegrated density of statdésr H (w) is given by

. 1
N = int =E {tr [xoatHa@)]}

= Ali/rgd %tr [x0.1(Ha(w))] P-as.
We refer to [1, 4, 10] for a discussion of this very important quantity. Note that the
trace appearing above simply counts the number of eigenvalues betmthat
N(¢) is interpreted as the number of energy levels per unit volum& @f). The
fact that
%E {tr [x10.1(Ha(®))]}
decreases aA increases is due to our choice of the boundary condition. Since
we are working with Neumann boundary conditions the spectral counting func-
tion is subadditive on disjoint open sets. It is also possible to work with Dirichlet
boundary conditions instead, in which case the spectral counting function is super-
additive. For reasonably well definég the limits are in fact the same. See [4] for
a thorough discussion of this point.

The estimate given in the next theorem is usually referred to as Lifshitz tail
behaviour and is one of the central topics of disordered systems ever since Lifshitz’
seminal contribution [9]:

THEOREM 2.1. The integrated density of statdg) satisfies

=T -V (2.1)
for somey > 0. For the Anderson mode}, = y4 depends uporf, M, S and for
the Poisson mode}; = yp» depends uporf.

The inequality (2.1) will easily follow from the next result, as we will show at
the end of this section. In the supplement given there one can see the dependence
quite clearly. Note that we writ&,(-) for the first eigenvalue of the operator in
guestion.

PROPOSITION 2.2. (AThere exist universal constantsK > 0 such that with
ca=c-S-1flp/lfll, for every
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(72 Mm?
b<minj—, — (>
4 c4

we have

P{EL(H} () < b-17%)

M — b S (M — b
< K exp M —eavb jog (14 2 ZOA (2.2)
K-S v
(P) There exists a universal constantsuch that, forM = (e — 1) /e = v,
;N
cp==¢C - R
’ 11
and every
72 M?
b < min {— —}
4 C%
we have

P{EL(HS (w)) < b-17%
M — cp —(lidz)d \/E

M- Cpﬁﬁ)}.(zs)
v

<K exp[—(l —2) Iog(l +
Let us first single out an important step in the proof of Proposition 2.2. To this
end, fixV e LY . (A),let H(t) = —A +¢ - V in L?(A) with Neumann b.c. and

loc,unif

denote its first eigenvalue k¥, (r). Note thatk,(0) = 0.

LEMMA 2.3. There exists a universal constaiisuch that forr = C-|| V||;’1|0c,unif
and0 < 7 < t/~2 we have

0 <772 2 2
|E1(2) — tEq( )I\E-l - 1°.

Proof. To estimate the remainder term in the Taylor expansion we want to use
[3], formula 11(3.6). The isolation distanceé defined as the distance @f (0) to
the rest of the spectrum @ (0) is given byd = 72/12.

As T" we choose a circle aroungly with radius?/2. We need an estimate for
therg appearing in [3], 11(3.3), which means that we have to consider

r@Q)=IIVHQO) —¢) 1™t for¢ eTl.

As (H(0) — ¢)~! mapsL? to the Sobolev spac#?? with norm controlled by
dist(¢, o (H(0))) > /2, we have by Sobolev’s inequality that

, 2
HWerﬁYW<c-5WVMme
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so that
ro=minr () > C” ,
0 ¢el 3 ||V||p,loc,unif
and an appeal to [3], estimate 11(3.6) finishes the proof. a

We are now ready to present the proof of Proposition 2.2.

Proof of Proposition 2.2DenoteH (w, t) = —A+t-V,, in L?(A) with Neumann
b.c. and denote by (w, 1) its first eigenvalue. From the remainder estimate in
Lemma 2.3 we have

7.[2
Er@, D) =1+ Ey(@, 0] < g - 1217 0<t <2l
T
where
1 1
=C-——— >C-———
||Vw||p,loc,unif S- ||f||p

is bounded away from 0, independently f Assume thatE;(w) < b - 172 for
b < m?/4. Then the above inequality yields

2
t-Ej(w,0) < % 224 b-17% forall0<r < 7l 2
T
Insertingt = stl/~2 we get

7'[25

b
Ei(w,00< — + — forall0<s <1
4t TS
Optimizing w.r.t.s we gets = 24/b and
Ej(@,0) < =+,
T

which implies

T
<mmw<;ﬁ,
where
1
o = WXA .

We now specialize to the case (A):
Then

1
(%%W@=WMGEE}WQ.

ieA
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Define
_ S0 fly
C-lfllr °

so that
T

<CA
<
”f”l[

Now, if 0 < b < M?/c? it follows that

P{Ei(w, 1) <b-17%} < P{%'Zw(i)gcm/l;}
ieA
< PH% Za)(i)—M‘ >M—cAJE}.
ieA

By [11], Thm. 1.4, this latter probability can be estimated by
M — (M -
Kexp[ _ld%sﬁ log (1+ S-( CA\/E))]’
. v

the assertion.

To treat case (P), we want to use a similar calculation and subdiviéo the
unit cubesA 1 (m), wherem runs througha,;(0) N Z<.

We introduce the random variables

1, ifthereis anX;(w) € A1(m),
0, else,

Yp(w) = {

form € A;_»(0). By the properties of the Poisson process, these r.v. are i.i.d. with
expectation and variance equal® = (e — 1)/e = v. We define an auxiliary
random potential by

Wox) = Y V(@) f(x = Xign (@),

meA;_2(0)

whereX; (@) is one of the Poisson points iy (m), if ¥, (w) = 1, and zero else.
Clearly,

W,(x) < V,(x) forallw e Q,x € RY,
and, hence,
P{E1(Ha(w)) < b-17% < P{E((-A+W,) < b-17%.

Now the latter probability can be estimated by the same calculation as in the case
(A) above, since

(I —2)7 1
(Wotolgo) > Il i— ((l ;Ym)

—2)d
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and

||W ||p|oc unif < 3d ||f||p,

where for the last inequality we counted the neighbouring boxes and thus the max-
imal number of nontrivial terms in the sum which defiri&s. Thus, we are again
left with applying a large deviation result for sums of i.i.d. variables. We get, with

o Sl
cp = —- )
C \flh
that
P{Ei(w,1) <b }
<p 1 Z 14 Jb
h (l - Z)d meA;_p " \ -2y (l N Z)d
> =l
Y. M‘ —cP— b}
| mGA[ 2 z)d
M —c l—«/g M —c L\/l_a
<K exp[ — (-2 P[g_z)d log <1+ a2 )]
v
by [11], Thm. 1.4. 0

It remains to prove the theorem. In order to give more precise information on
the exponent, let us introduce some notation. Denote
M — b S (M — b

forx = A, P, whereM, v, S are defined i{A) for the Anderson case and =
v=(e—1)/e, S = 1linthe Poisson case.

Ve (b) = b/?
v

SUPPLEMENT TO THEOREM 2.1. Inequality(2.1) holds for
7% M?
Vi = max{y*(b); 0<b<min {Z —H
Cx

Proof.We first deduce inequality (1.1) withbadependent exponept(b), where
b is as in Proposition 2.2. The result above will then follow by optimizing with
respect to.

First note that

1
N@) = inf WE {tr [x10.1(Ha ()]}

o1
< I?\f mP{El(HA(w)) St)ec- Al
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by Weyl's law, referred to in the introduction; choosing: b - 12 with

7% M?
O<b<mini—, —1, and A = A;(0),
4
we get the assertion. a

3. Concluding Remarks

Of course, one could shorten the above proof if one isn't interested in the exponent.

There are different quite easy perturbation theoretic proofs for Lifshitz tail
asymptotics which use Temple’s or Thirring’s inequality. See [4] for a detailed
explanation and references. The method presented here has the advantage that the
link between spectral and probability theory provided by the derivative allows for
a conceptually more transparent proof, at least in our opinion. Moreover, the deriv-
ative is in many cases easy to calculate or at least easy to guess, which provides a
road map for the rigorous proof. An example is the application of the above method
in [5], where we didn’'t see how to use the methods previously available.

So far we haven't been able to strengthen our arguments so as to obtain the
correct value of the exponent which is known to®e y/*, whereC is a known
constant angy, is the lowest eigenvalue of the Dirichlet Laplacian on a ball of unit
volume inR?; see [10] for an extensive discussion. This correct value is related
with isoperimetric inequalities and is obtained by using the celebrated results of
Donsker and Varadhan; see [2, 8, 4, 10].

To date there are more detailed results available for the bottom (i.e. principal)
eigenvalue of a Schrédinger operator with Poissonian obstacles; we refer the reader
to [12] and the literature cited there.

A recent thorough investigation of the attractive Poissonian case (i.e. the case
where f is nonpositive) is given in [7].

Let us further mention recent deep work of Klopp, [6], which deals with what
is called internal Lifshitz tails. Considéfy = — A + Vo, whereV, is aZ?-periodic
potential, and? (w) = Ho+ V. The spectrum ofi, consists of a number of closed
intervals, called bands, separated by open intervals called gaps. The same is true for
H(w), where the bands are usually shifted and somewhat enlarged, depending on
sign and size o¥/. Lifshitz predicted that the behaviour of the integrated density
of statesN, for Hy near band edgeg, should have the same power law decay as
in the casé/y; = 0 at energy O, i.e.

No(Eo + &) ~ No(Ep) + e¥/? ase \( 0

if Eo is the left endpoint of one of the bands. Moreover, for the randomized op-

erator H(w) he claimed that the integrated density of stadesshould exhibit

the exponential decay discussed above for the inf of the spectrum. Interestingly
enough, both claims are still not proved nor disproved in general. Klopps work
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establishes an equivalence between them, saying that at band edges aivyvhich
behaves as predicted so daésPresumably, this can be proven by our methods
above (work in progress, jointly with G. Stolz). However, Klopp’s article gives
more information: expanding the projection of the periodic Hamiltonian onto a
band into Wannier functions he establishes a certain equivalence with a discrete
Schrodinger type operator. This equivalence is used to reduce the proof of Lifshitz
asymptotics near band edges to the proof of Lifshitz asymptotics of an associated
discrete operator at the bottom of the spectrum.
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