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For very general generators of diffusion semigroups we show that the essential
and absolutely continuous spectra do not change when one adds an extra Dirichlet
boundary condition on a “small” set. This is done by proving that the corre-
sponding semigroup differences are Hilbert-Schmidt or trace class, respectively.
Our method consists in a factorization argument which is based on calculating the
semigroup difference via the Feynman-Kac formula. We also derive trace class
estimates for differences of resolvent powers, provided the underlying semigroup
has finite local dimension. © 1994 Academic Press, Inc.

1. INTRODUCTION

Consider a Hamiltonian H associated with a regular Dirichlet form
whose semigroup maps L,(X) to L (X). The purpose of this note is to
prove trace class properties of the semigroup difference exp(—tH)—
exp(—tHg), where H; denotes the operator obtained by imposing
Dirichlet boundary conditions on a closed set B := X\ G (the obstacle) of
finite capacity.

In [6] the reader can find various examples which illustrate the physical
interest of such results.

Our Theorem 1 partly extends results from [7], showing that the
difference is Hilbert-Schmidt if B satisfies a condition which is weaker than
requiring that B has finite capacity. In particular, 7 and H; have the same
essential spectrum in this case.

In Theorem 2 we can even show that the semigroup difference is trace
class, provided B satisfies a somewhat stronger condition. In case that H is
the Laplacian on RY there is an extensive literature on these so-called
exterior domain problems for which we refer the reader to [1, 2, 6-8, 12,
14]. Even for this special case, however, our results are not included in the
above-mentioned articles. What seems to be more important is that our
method of proof is new. It is based on a simple idea: Using the Feynman-—
Kac formula, one obtains a suitable factorization for exp( —tH) —exp(—tH),
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from which the result follows by standard operator ideal theory. This not
only allows us to treat a quite general class of Hamiltonians but also gives
explicit bounds on the trace norms which can then be exploited in the dis-
cussion of resolvent powers. More precisely, if H generates a semigroup
which is of finite local dimension d and the obstacle B=X\G is “small
enough,” then (H+1)"*—(Hgz+ 1)~ is Hilbert-Schmidt for s> d/4 and
nuclear for s> d/2.

2. THE RESULTS

Assume that H is a self adjoint non-negative operator on L,(X, m),
where X is a locally compact, second countable space equipped with a
Radon measure m of full support. We are going to use the following
assumptions:

(A.1) The form b defined by D(h) = D(H'?), blu, v] :=
(H'"?u | H'?v) is a regular Dirichlet form (see [107]).

(A.2) For any t> 0, exp(—¢H) induces a bounded operator from L,
to L.

(Note that this is more general than the conditions used in [1, 6, 7].)
Recall that under condition (A.1), exp(—tH) maps L to itself, so that
{A.2) and interpolation imply that exp(—tH) is a bounded operator from
L,to L_.

From the general theory developed in [10] we infer that there exists a
Markov process (£2, (P~; x € X), (X,; t =0)) with state space XU {o0} such
that the semigroup of H can be calculated as

exp(—tH) f(x)=E*(f-X,)

for t20, feL,, and a.e. xeX.

For any open set G the operator H with Dirichlet boundary conditions
on B=X\G is defined as the unique self adjoint operator in L,(G)
associated with the closure of the form § | D(h)~ C (G).

Hence, H and H act in different spaces, L,(X) and L,(G). To consider
the difference between the semigroups we use the restriction mapping
J: Ly(X) = L,(G), whose adjoint J* is the natural inclusion. We want to
study

exp(—tH)— J* exp(—tHg)J.

In order to factorize this difference, we use the Feynman-Kac formula (in
a simple form) which asserts that

exp(—tHg) f(x)=E (N sy - fo X0),
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where
=inf{s>0; X, € B}

denotes the hitting time of B; see [10, Sect. 4.1 and Theorem 4.4.2, p. 111].
Recall that if the capacity (see [10, Sect. 3.1, p. 61 fI.])

cap(B)=inf{b{ £, f1+ /1% f 1, U open, B U}
of the set B is finite,
eg(x) :=E*(exp(—15))

defines an element ez e D(bh), the so-called 1-equilibrium potential of B (see
[10, p. 751 which satisfies cap(B) =b[ez, ep]+ llegl>

As we already mentioned in the introduction, we are going to use
techniques from the theory of operator ideals. More precisely, we will refer
to the following fundamental facts:

An operator T which admits a factorization of the form

L,—— L,

is Hilbert—Schmidt.

We will use this result for order preserving operators 4, B only, in which
case it is not very deep and one even has the inequality |7 ,s <[ 4] || B]
(see [5, 11.2, 11.6]). The general case is a consequence of what is some-
times called the “little Grothendieck theorem” ([5, 11.11] or [21, IILF,
LG}

To understand this properly one has to consider the ideal B, of
absolutely 2-summing operators. An operator T acting between Banach
spaces E and F belongs to B,(E, F) if there exists a constant ¢ such that

12 12
(Z ”Txi”2> <c-sup (Zl(x', xf>|2)

x'€ Bg'

holds for all x, .., x,€ E. The standard reference for operator ideals is
Pietsch’s classic [13]. It is not hard to see that B,(H,, H,) equals
HS(H,, H,), by which we denote the Hilbert—Schmidt operators, provided,
of course, that H, and H, are Hilbert spaces. A considerable strengthening
of the corresponding well-known result on the product of Hilbert-Schmidt
operators can be written as the inclusion B, P, =N, which means that
the composition of two absolutely 2-summing operators is nuclear. Recall
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that the nuclear operators between Hilbert spaces are exactly the trace
operators. Denoting the norms in the above operator ideal by |-, |-l us,
and |- v, respectively, the “littie Grothendieck theorem” reads as foliows:
If E=L, or L, then €(E, L,)="B,(E, L,) and ||T|,<K;||T| for any
Te R(F; L,), where K is the Grothendieck constant.
In the proof of our Theorem 2 we use that every operator T which
admits a factorization of the form

L, —— L,

Lm(u)—-;——’ L(u)

where 7 is the canonical embedding and u a finite measure, is nuclear. Its
nuclear norm satisfies the inequality

ITl N <AL 18I - (1.

This follows, e.g., from [5, 10.6 and D.2] or from [9, p. 258 fI. and p. 248].
To explain this result we would have to introduce the ideal of operators
which are integral in the sense of Grothendieck (introduced in [11]) and
use the fact that Hilbert spaces enjoy the Radon-Nikodym property.
Instead we stop our excursion here and return to our subject matter. We
hope that those readers who are not (yet) familiar with operator ideals
realize the usefulness of the above-mentioned facts.
Our first main result is:

THEOREM 1. Assume that B=X\G satisfies
[ (Prza<to)? dmix)< oo (1)
X

Jfor some t,>0. Then
D(1) :=exp(—tH)—J*exp(—1HgG) Je DS(Ly, L,)
for all t>0. More precisely,
1D(N s <2 1P (rp < #/2)N; lexp(—t/2H): Ly — L. ||

SJor t < 2ty.

Proof. Denote U(t) :=exp(—tH), Ug(t) :=J* exp(—tH;)J. Since

D(21)=D(1) U{t) + Ug (1) D(1),
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it is clear that we may assume ¢ <t,. U(¢) as well as U (¢) map from L,
to L, so that it suffices to prove that D(¢) is bounded from L to L,. In
fact, the first of the above-mentioned factorization arguments will then
imply that both D(r) U(r) and U,(t) D(1)=(D(1) Ug(r))* are in HS.

In order to check that D(t)e &(L ., L,) we calculate

DN l(x)=P*1)-PY(1g>1)
=P¥1g<1t)

Since D(¢) acts order preserving, [|[D(¢f): L — L1 <[P (tz<0],. }

As a remarkable spectral theoretic consequence of Theorem 1 we obtain:

COROLLARY. Under the assumptions of Theorem 1, the essential spectra
of H and H coincide.

Proof. We show that (H+E) '—J*¥(Hi+E) 'J is compact for
E>0, from which the assertion follows by Weyl’s theorem as stated for
example in [15, Theorem XIII.14]. To this end we use an argument
borrowed from [197]:

(H+E)~'— J*H, + E)~! J=f e ED(1) dt.
1]

Using the compactness of D(¢) and the dominated convergence theorem,
we see that the integral maps weak null sequences to norm null
sequences. |

Note that obstacles of finite capacity satisfy the condition in the last
theorem; in fact

PHrg<s)<e' P (e %)
=e’ep(x)

if B has finite capacity. It is interesting to note that ey is even in L, which
implies

j P (< 1) dm(x)< 0.
X

We think that this is the right condition in order to obtain that
exp{ —tH)—exp(—tH) is trace class (in fact, this has been claimed in
[17; there is, however, & gap in the proof). We want to stress the fact that
van Casteren isolated the right sort of condition. In this respect, [1]
influenced the present note considerably, although we use totally different
techniques.
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THEOREM 2. Assume that B=X\G satisfies
| (Prra<to)? dmix) < o 2)
X

for some t,>0. Then
exp(—tH)~—J*exp(~tHg) Je R(L,, L,)
Jor all t>0. More precisely,
ID(I ¥ <2 WP (tp<1/2))'?)l; lexp(—4/2H): Ly > L |

Jor t < 2.

Proof. Since D(2t)=U(t) D(t)+ D(t) Ug(t), we may assume that
t < 2t,. We check that U(t) D(t) can be factorized as in the second diagram
above: Let fe L,, || fil <. Then, for all xe X

1D() fON =BV yp <y o X))
S(PXrg<)2 (B S 12X DY
S (PX(rp<1))2-sup (E¥(| f12- X))

Since U(t) maps L, to L, we arrive at
ID(1) f(x)] S (P¥(tp <) U(): Ly — L |
Write A(x):=(P*(t5<1t))"* and denote by M the operator of multi-
plication by A~ '. Let du :=h dm. Then the last inequality may be restated
in the following way:
A:=MD(t)e 8(Ly(X, m), L (X, 1)), |4l <IU(6): Ly~ L'

Moreover, (Il =u(X)= |k, and

B:=U(t) M~ 'e 8(L,(X, u), L,(X, m))
with norm less than ||U(t): L, —» L,||. This implies that

U(t) D(1)eN(L,, L,),

with nuclear norm estimated by

WP (ra <) 2l - NUW): Ly Lo |- 1 U(): Ly~ Ly |

580/121/2-12
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By Riesz-Thorin, [|[U(f): L, — L,| <|U(t): L, — L_||"% It remains to
check that D(#) Ug(t) is also nuclear, but one can use the arguments above
to prove that its adjoint Ug;(t) D(¢t) is nuclear. |

We should remark that condition (2) is satisfied for any bounded set in
case of the classical Dirichlet form on R“ This is a consequence of the
exponential decay of the resolvent kernel. Moreover, |[(P*(t 5, < ¢))"?||;, = 0
for r - 0 if d=2 (where B(r) is a ball with radius r). Hence it is possible
to give examples of unbounded domains, which can be handled by
successive application of Theorem 2:

ExampLE. Let H= —14 on X:=R% d>2 Assume that B=J B,,
where B, is a set with diameter less than r,. If r, is small enough, then

exp(—tH)—J*exp(—tHg) JeMN

for all > 0.

Note that such a B may even be “dense at infinity” in the sense that
dist(x, B) = 0 for x —» oo. This is somewhat surprising, for (due to results
in [4]) one might be tempted to think that H; has discrete spectrum in
that case. From the above corollary, however, we know that o (Hg)=
[0, cc). Even more is true, namely, o,.(Hg;)= [0, o), which follows from
our next result.

COROLLARY. Under the assumptions of Theorem 2, the wave operators

Q., (H Hz,J):=s- lim e Je ""'P, (H)
t— +/—w
exist and are complete. (P,.(H) denotes the projection onto the absolutely
continuous subspace of H.) In particular, the absolutely continuous spectra of
H and H coincide.

Proof. This follows from the invariance principle; see the discussion in
[12, Sect.2]. |

Next we are going to study differences of resolvent powers instead of
the semigroups. The general method we use is the representation of the
resolvent via the Laplace transform. Demuth has employed this technique
in [6,7] to obtain corresponding results for a perturbation of the
Laplacian on R? and less general obstacles. The idea is the following: Once
one has inequalities like those in Theorem 1 and Theorem 2 one must only
control the singularity of the Hilbert—Schmidt or the trace norm of D(r) as
t—0. Since the latter is essentially governed by the singularity of
lexp(—tH): L, — L || for the nuclear and |exp(—tH): L, — L,] for the
Hilbert-Schmidt norm, it is clear that the following notion is most useful.
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We say that a semigroup (U(t); t 2 0) is of local dimension d, provided
lU(t): L, - L, | <const-t 4> (O<t<tl);

see [3, 18] for background information and related conditions. Clearly,
any semigroup of finite local dimension satisfies our general assumption
(A.2). With this key notion at hand, we can state:

THEOREM 3. Assume that (exp(—tH); t = 0) is of local dimensional d.
(a) Let B=X\G satisfy (1). Then, for s > d/4,
(H+1) =J*(Hs;+1)""Je HC.
(b) Let B satisfy (2). Then, for s> dj2,

(H+1) " —J*(Hg+1)" JeR.

Proof. We only give the proof of (a), since (b) can be verified
analogously. Let us first recall that the Riesz—Thorin convexity theorem
implies that

lexp(—tH): L, = L,| <const -t~ %

From
(H+1)*=I(s)"" j: £ 1ot exp(—tH) dt
and the corresponding formula for H, it follows that
(H4 1) —J*(Hg+1)* J=T(s)"" j: ¢ le='D(1) dt,
so that it suffices to estimate
)™ [ e ID(O) s .

Since
D2e)y=D(t) U(t) + Ug(r) D(1)
for all 4, only the singularity at ¢ =0 plays a role. But

| D()|| s < const - |lexp(~tH): L, —» L, || < const -t =4,
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which implies, for s> d/4,
1
[ e te 1D s de< 0. W
]

As a final remark let us mention that the above methods are also
applicable, if H is replaced by a perturbed operator H+ V for suitable
potentials. Such perturbations have been treated in [1, 6, 7] (in a different
setting with different methods). Using the results from [17] we can even
allow perturbations by measures H+u where the negative part of
the measure satisfies a Kato condition. We do not go into more details
concerning such results here and instead refer the reader to [16].
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