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To the memory of Erhard Schmidt, one of the founders of functional analysis

This paper is concerned with emptyness of the essential spectrum, or equivalently compactness of the semi-
group, for perturbations of self-adjoint operators that are bounded below (on an L2-space).

For perturbations by a (nonnegative) potential we obtain a simple criterion for compactness of the semigroup
in terms of relative compactness of the operators of multiplication with characteristic functions of sublevel
sets. In the context of Dirichlet forms, we can even characterize compactness of the semigroup for measure
perturbations. Here, certain ‘averages’ of the measure outside of compact sets play a role.

As an application we obtain compactness of semigroups for Schrödinger operators with potentials whose
sublevel sets are thin at infinity.
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Introduction

It is a classical fact, going back at least to Friedrichs [4] that a Schrödinger operator −Δ + V with a potential V
that goes to ∞ at ∞ has only discrete spectrum so that σess(−Δ+V ) = ∅. This fact has attracted some renewed
interest in recent years [11, 23, 17] where the issue is first to come up with simple proofs and second to explore
more general situations. In this paper we add to this discussion with two main goals: first a rather easy method
of proof and second a treatment of measure perturbations in the general Dirichlet form context.

To underline the simplicity, we start with a discussion of equivalent reformulations of the condition
σess(H0 + V ) = ∅ in terms of compactness of semigroups or, equivalently, resolvents. Our main results are
Theorems 2.1 and 3.1 below. In the first one, we present a useful notion of what it means that V → ∞ at ∞ in
operator theoretic terms (in the quantum setting if you wish): If we were to talk about a measurable function on
a locally compact space, V → ∞ at ∞ would mean that the sublevel sets {V ≤ n} := {x ∈ X | V (x) ≤ n}
are relatively compact for all n ∈ N. The corresponding quantum condition is just that 1{V ≤n} is relatively
compact with respect to H0 for all n ∈ N. This simple observation allows a particularly easy proof and gives
a result that contains the above mentioned [17, 23]. While in the latter works the authors concentrated on the
associated semigroups, we will see below that spectral projections or the inclusion map of the form domain come
in handy. E.g., it is almost evident that additional negative perturbations can be allowed as long as they are form
small. Still, mapping properties of the semigroup or the resolvent can be used to verify the assumption of relative
compactness of the sublevel sets of the potential.

To give a satisfactory meaning to “μ → ∞ at ∞” is much harder for the case of a measure μ. This situation
is studied in some detail in Section 3 with Theorem 3.1 as the main result. An elegant criterion for the 1-d
Laplacian, due to Molchanov, [12], says that −Δ + μ is compact if and only if μ(U + x) → ∞ as x→ ±∞ for
some nonempty open interval (equivalently all nonempty open) U ⊂ R. It is quite easy to see that an analogous
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statement is wrong in dimensions d ≥ 2. In the recent paper [11], Maz’ya and Shubin proved a compactness
criterion in arbitrary dimension. Our result here goes back to the second named author’s Habilitationsschrift
[21] that gives a criterion for regular Dirichlet forms with ultracontractive semigroups, a setup that is much more
general than the Laplacian in euclidean space.

Finally, we record the consequences of our main theorem for usual Schrödinger operators on Euclidean space
in Section 4. Here the specific geometry gives a particularly nice sufficient condition for Schrödinger semigroups
to be compact.

Compactness is one of the great concepts of analysis and it is a most comforting fact to learn that some
operator is compact. But that is quite often hard to establish. In our investigation below we take advantage of
a smaller class of operators that is easier to deal with, the Hilbert-Schmidt operators, one of the great gifts of
Erhard Schmidt, [16], to mankind.

1 Relative spectral compactness and all that

In this section, H is a Hilbert space andH some self-adjoint operator on H. The following notion is very useful in
perturbation theory, see [14, 24, 25]; we need a rather easy special case, where the “perturbation”B is bounded.
We write L = L(H) for the bounded operators and K = K(H) for the ideal of compact operators, which is, of
course a norm-closed subspace of L.

Definition 1.1 An operatorB ∈ L(H) is called H-relatively compact if B1I(H) ∈ K(H) for every compact
segment (bounded Borel set) I ⊂ R.

Here, we use 1M to denote the indicator function of a set M and, of course, the spectral theorem. As we will
see below, instead of these indicator functions (or spectral projections) we could have used a variety of bounded
functions of the operator.

Proposition 1.2 Let H be self-adjoint and B ∈ L.

(1) The following assertions are equivalent:

(i) B is H-relatively compact.

(ii) There is some ϕ ∈ C(σ(H)) with |ϕ| > 0 s.t. Bϕ(H) ∈ K.

(iii) For all ϕ ∈ C0(σ(H)) : Bϕ(H) ∈ K.

(2) Let g ∈ C(σ(H),R) with g(t) → ∞ as |t| → ∞. Then B is g(H)-relatively compact whenever B is
H-relatively compact.

P r o o f. (1): The implication (iii) ⇒ (ii) is clear, as there obviously exist ϕ ∈ C0(σ(H)) with ϕ > 0.

(ii) ⇒ (i): Just note that 1
ϕ ∈ C(σ(H)) by assumption on ϕ and, therefore,

(
1I

1
ϕ

)
(H) is bounded. This

gives

B1I(H) = Bϕ(H)
(
1I

1
ϕ

)
(H) ∈ K.

(i) ⇒ (iii): Note that by the functional calculus and since ϕ ∈ C0,

ϕ(H) = ‖ · ‖ − lim
n→∞ϕ(H)1[−n,n](H)

⇒ Bϕ(H) = ‖ · ‖ − lim
n→∞B1[−n,n](H)ϕ(H) ∈ K.

(2) For I ⊂ R it is clear that 1I(g(H)) = 1g−1(I)(H) and by the assumption on g, the set g−1(I) is
bounded.

This gives easily the following result, where, of course,D(H) denotes the domain ofH and is a Hilbert space
endowed with the graph norm ‖u‖2

H = ‖u‖2 + ‖Hu‖2. We also write Q(H) for the form domain of H in case
H ≥ γ, i.e. H is semibounded below. Recall that in this case, h[u, v] = (Hu|v) is a closed form, when we take

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



96 Lenz, Stollmann, and Wingert: Compactness of Schrödinger semigroups

as a domain D(h) = Q(H) = D
(
(H + s)1/2

)
where s > −γ can be chosen arbitrarily. In analogy with the

usual Sobolev spaces on Rd and H = −Δ, it is suggestive to write

Hp(H) = D
(
(H + s)p/2

)
,

so that H2(H) = D(H) and H1(H) = Q(H). Of course, these spaces are endowed with the respective graph
norms and continuously embedded in H.

Theorem 1.3 The following are equivalent:

(i) B is H-relatively compact,

(ii) B(H − λ)−k ∈ K for some (all) λ ∈ ρ(H), k ∈ N,

(iii) B : D(H) → H is compact.

If H ≥ γ these conditions are in turn equivalent to each of the following:

(iv) Be−tH is compact for some (all) t > 0,

(v) B : Q(H) → H is compact,

(vi) B : Hp(H) → H is compact for some (all) p > 0,

(vii) for any C > 0 and (ψn) ⊂ Q(H) with h[ψn] ≤ C and ψn → 0 weakly, it follows that Bψn → 0 in
norm.

Remark 1.4 The equivalence (i) ⇔ (ii) is essentially contained in [25] Theorem 9.17.

P r o o f. The proof is an easy consequence of Proposition 1.2. Here are the details.
The equivalence between (i) and (ii) is immediate from part (1) of the proposition. Moreover, clearly, B :

D(H) → H can be written as B(H − λ)−1(H − λ) for some λ ∈ ρ(H), where the first factor is bounded from
(D(H), ‖ · ‖H) to H. This gives (ii) =⇒ (iii). Conversely, (H + λ)−1 is a bounded operator from H to D(H)
and (iii) =⇒ (ii) follows.

Note that ϕ(x) = e−tx belongs to C0(σ(H)) and the equivalence of (iv) to, say, (i) follows from (1) of
the previous proposition. The statements in (v) and (vi) are just statement (iii) with H replaced by g(H) for
g(t) = (t+ s)p/2. As g has an inverse function (which again tends to ∞ for t → ∞), the equivalence of (v) and
(vi) to (i) follows from part (2) of the previous proposition.

Finally, (vii) is a simple reformulation of (v).

Corollary 1.5 For H self-adjoint, the following are equivalent:

(i) Id is H-relatively compact,

(ii) σess(H) = ∅,

(iii) (H − λ)−1 ∈ K for some (all) λ ∈ ρ(H).

If H ≥ γ then these conditions are in turn equivalent to each of the following:

(iv) e−tH ∈ K for some (all) t > 0,

(v) Id : Q(H) → H is compact,

(vi) Id : Hp(H) → H is compact for some (all) p > 0,

(vii) for any C > 0 and (ψn) ⊂ Q(H) with h[ψn] ≤ C and ψn → 0 weakly, it follows that ψn → 0 in
norm.

Of course this latter is basically well-known, see, e.g., [14], Theorem XIII.64, p. 245. The equivalence of (i)
and (vii) in the above corollary immediately gives:
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Example 1.6 ([7, Theorem 1.1 part two]) Let H0 ≥ 0 be a translation invariant, self-adjoint operator on Rd,
Q(H0) ∩ L2(Br(0)) 
= ∅ for some r > 0 and 0 ≤ V + ≤ M < ∞ on a sequence of disjoint balls with radius r.
Then σess(H0 + V +) 
= ∅.

We close this section with noting two simple stability results for emptyness of the essential spectrum.

Corollary 1.7 Let H be self-adjoint and nonnegative, h the associated form and μ be a sesquilinear form.

(a) If μ is form small with respect to h i.e. form bounded with bound less than one, then

σess(H) = ∅ ⇔ σess(H + μ) = ∅.

(b) If μ is nonnegative and h+ μ is closed, then σess(H + μ) = ∅ if σess(H) = ∅.

P r o o f. This follows easily by comparing unit balls in Q(H) and Q(H +μ) and considering condition (v) in
the previous corollary.

2 Schrödinger semigroups

We will now assume H = L2(X), where (X,B,m) is some measure space, and H0 ≥ γ.
We will study perturbationsH = H0 + V where V is a function on X which is at the same time regarded as

the operator of multiplication with this function. H is defined via its quadratic form in the usual way: Assume
that V = V+ − V− where V+ : X → [0,∞] is measurable and V− : X → [0,∞) is measurable. We first define
the closed form of H0 + V+ as the form sum with form domain Q(H0 + V+) = D

(
H

1/2
0

) ∩D(
V

1/2
+

)
, which

might not be dense but that does not pose a problem. The associated self-adjoint operator is simply defined on
the possibly smaller Hilbert space Q(H0 + V+), the closure taken in H. For V− we require that it is form small
w.r.t. H0 + V+, i.e., there are some q < 1 and Cq ∈ R such that

(V−u | u) ≤ q ((H0 + V+)u | u) + Cq‖u‖2

for all u. Then H0 + V+ − V− can be defined by the KLMN theorem ([13], Theorem X.17) and we have
Q(H0 + V+ − V−) = Q(H0 + V+).

The reader might have noticed that we didn’t require V+, V− to be the actual positive and negative parts of V
(thanks to Vitali Liskevich for pointing this out). Moreover, our assumption is obviously weaker than the usual
assumption that V− is form small w.r.t. H0. Here is our general theorem.

Theorem 2.1 Let H0, V andH be as above. Assume that 1{V+<s} is (H0 +V+)-relatively-compact for some
s ∈ R. Then σess(H) ⊂ [(1 − q)(γ + s) − Cq,∞).

In particular, if 1{V+≤n} is (H0 + V+)-relatively compact for all n ∈ N, then σess(H) = ∅, or, equivalently,
e−tH ∈ K for all t > 0.

Theorem 2.1 part 1 can be seen as a consequence of a well-known stability result about the essential spectrum
under relatively compact perturbations, see [25, Theorem 9.16].

P r o o f. For λ ∈ σess(H) choose a Weyl sequence fn → 0 weakly, ‖fn‖ = 1 and ‖Hfn − λfn‖ ≤ 1
n . Set

E := {V+ < s}. Since (fn)n∈N is bounded with respect to the form norm, 1Efn converges to zero by Theorem
1.3. We then have

λ = lim
n→∞ ((H0 + V+ − V−)fn | fn)

= lim
n→∞ [((H0 + V+)fn | fn) − (V−fn | fn)]

and can therefore estimate

λ ≥ lim sup
[
((H0 + V+)fn | fn) − (

q ((H0 + V+)fn | fn) + Cq‖fn‖2
)]

≥ lim sup
[
(1 − q)γ + (1 − q)

(
V+(1E + 1X\E)fn | fn

) − Cq

]
≥ lim sup

[
(1 − q)γ + (1 − q)

(
V+1X\Efn | fn

) − Cq

] ≥
www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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≥ lim sup
[
(1 − q)γ + (1 − q)s

(
1X\Efn | fn

) − Cq

]
≥ (1 − q)γ + (1 − q)s− Cq.

Here, we used convergence of 1Efn to zero in the last step. The “in particular” assertion is now clear.

Remark 2.2 The reasoning given in the proof is quite flexible. It can easily be adopted to show e.g. the
following statement: Let H0 be as above, μ+ be a Hermitian, positive semidefinite, bilinear form such that
h0 + μ+ is closed, μ− form small w.r.t. h0 + μ+ and H defined via the form sum. If for all n ∈ N there exists
an Mn ∈ B with 1Mn being (H0 + μ+)-relatively compact and n‖1Mc

n
u‖2 ≤ μ+(u, u) for all u ∈ Q(H). Then

σess(H) = ∅.

The important feature in the following corollary is that the assumption concerning relative compactness is
phrased in terms of the operator H0 and can so be checked easily in applications.

Corollary 2.3 Let H0 ≥ 0, V+ ≥ 0 be as above, V− form small w.r.t. g(H0) + V+, where g : [0,∞) →
[0,∞) satisfies g(x) → ∞ as x → ∞. Assume that 1{V+≤n} is H0-relatively compact for all n ∈ N. Then
σess(g(H0) + V ) = ∅.

P r o o f. Use Proposition 1.2 (2) to see that 1{V ≤n} is g(H0)-relatively compact under the assumptions of the
corollary. Then, the preceding theorem applies.

Remark 2.4 This gives a substantial generalization of Corollary 1.4 from [23], where g was supposed to be a
Bernstein function.

Definition 2.5 We say that H0 is spatially locally compact if 1E1I(H0) ∈ K(L2(X,B,m)) for every com-
pact I ⊂ R and every E ∈ B with m(E) <∞.

Of course H0 is spatially locally compact iff 1E is H0-relatively compact for every E ∈ B with m(E) < ∞.
At the same time, there are many instances, where spatial local compactness is well established. Our main
theorem gives the following immediate consequence.

Corollary 2.6 Assume that H0 is spatially locally compact, V,H as above. Assume that m({V+ ≤ n}) <∞
for all n ∈ N. Then σess(H) = ∅, or, equivalently, e−tH ∈ K for all t > 0.

Remark 2.7 (1) If e−tH0 : L2 → L∞ for some t > 0, then H0 is spatially locally compact: In fact
1Ee

−tH0 factors through L∞ and the little Grothendieck theorem gives that it is a Hilbert-Schmidt op-
erator, in particular compact. See the discussion in [20], or [3] for the case of positivity preserving
semigroups.

Therefore, our Corollary 2.6 contains Theorem 2 from [17] and Corolarry 1.2. from [23] as special cases.
It seems that our proof is shorter and easier than Simon’s, [17], which is in turn much more elementary
than the proof of Wang and Wu [23]. In [17], Theorem 2.2 there is some additional information on
semigroups: For positive self-adjoint operatorsA and B:

e−Ae−B ∈ K =⇒ e−(A+B) ∈ K.

But this can also be deduced along the lines above: By Theorem 1.3 the assumption implies that e−A is
B-relatively compact. Therefore, 1I(A) is B-relatively compact for any bounded I ⊂ R and this gives
the desired compactness.

(2) Note that the semigroups involved need not be positivity preserving, so H0 may well come from some
elliptic partial differential operator of higher order. Note also that e−t(H0+V ) is not required to map L2

on L∞. (Thanks again to Vitali Liskevich.)

(3) For X being Euclidean space or a manifold, the required spatial local compactness of H0 is sometimes
easily checked in terms of compactness of Sobolev embeddings, i.e. in variants of Rellich’s theorem [6],
Theorem V.4.4, see also the discussion in Section 4 below.

(4) The Laplacian on quantum or metric graphs is spatially locally compact under quite general assumptions,
since D(H0) is continuously embedded in L∞, see [8].
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(5) For combinatorial graphs, the condition of spatial local compactness is trivially satisfied, as 1E has finite
rank in this case. Therefore we get a rather easy and not very subtle criterion in that case.

We now turn to providing an alternative short proof of a main result (Theorem 1.1) of [23] within our approach,
showing that our result is more general than the latter. The result requires the existence of a kernel as well as the
validity of the inequality

‖f‖2 ≤ r · h[f ] + β(r)‖f‖2
1 (	)

with some function β defined on [0,∞), called the super Poincaré inequality.

Theorem 2.8 Let H0 ≥ 0 be self-adjoint with an associated form h that satisfies (	). Let V+ be as above and
assume that e−t(H0+V+) is a substochastic operator with a kernel for some t > 0. Then H is spatially locally
compact. In particular, if m({V+ ≤ n}) < ∞ for all n ∈ N then σess(H) = ∅, or, equivalently, e−tH ∈ K for
all t > 0.

P r o o f. Let E ⊂ X be a subset of finite measure, T = e−t(H0+V+).
(1) By our assumption T is substochastic and hence continuous from L∞ to L∞. Thus, its kernel belongs to

L1 pointwise almost everywhere.
(2) T (A) is compact inL1 for everyL∞-bounded subsetA ⊂ L1(E): Let fn ∈ A be a sequence. Without loss

of generality, fn is weak-* convergent in L∞ (choose a proper subsequence). But then with (1) Tfn converges
pointwise a.e. By substochasticity of T we have furthermore |Tfn| ≤ a · T1E ∈ L1 for some a ∈ R. Therefore
Tfn converges and TA is compact.

(3) Let B be the unit ball in L2. Then T1EB is compact in L1. This follows directly with (2) and the fact that
1EB is uniformly integrable in L1.

(4) Assume T1EB not to be compact in L2. Then there exists a sequence fn ∈ T1EB with

‖fn − fm‖2 ≥ ε

for some ε > 0. Moreover, spectral calculus shows that there exists an C ≥ 0 such that

h[f − g] ≤ C

for all f, g ∈ TB. Now choose r := ε
2c . Then ε

2β(r) ≤ ‖fn − fm‖2
1 by (	). This contradicts (3).

We finish this section by showing that validity of (	) is a direct consequence of ultracontractivity.

Proposition 2.9 Let H ≥ 0 be self-adjoint, h the associated form and assume that the associated semigroup
is ultracontractive. Then (	) is valid.

P r o o f. Spectral calculus and simple estimates show ‖e−tHf − f‖2 ≤ 2th[f, f ]. This yields

‖f‖2
2 ≤ 2th[f, f ] + ‖e−tHf‖2.

As the semigroup is ultracontractive, it maps L1 continuously into L2 and the statement follows.

3 Compactness of measure perturbations

In this section we consider regular Dirichlet forms: so X is assumed to be a locally compact, σ-compact metric
space, B the Borel-σ-field and m a regular Borel measure with suppm = X . We assume that H0 ≥ 0 is
associated with a regular Dirichlet form E with domain D = D(E) = D

(
H

1/2
0

)
. By

Cap(U) := inf
{E [ϕ,ϕ] + ‖ϕ‖2 | ϕ ≥ 1U , ϕ ∈ D}

we define the capacity of U , for U open; one can then extend Cap(·) in the usual way to an outer regular
setfunction by letting

Cap(E) := inf{Cap(U) | U ⊃ E,U open };
www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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see [5] for details. From [5], we also infer that every u ∈ D admits a quasi-continuous version ũ, the latter being
unique up to sets of capacity zero. This allows us to consider measure potentials in the following way: see [9],
[10] for the special case of the Laplacian and locally finite measures, [19] and the references in there.

Let M0 = {μ : B → [0,∞] | μ a measure μ� Cap}, where � denotes absolute continuity, i.e. the property
that μ(B) = 0 whenever B ∈ B and Cap(B) = 0. For measures in M0 we explicitly allow that the measure
takes the value ∞. A particular example is ∞B , defined by

∞B(E) = ∞ · Cap(B ∩ E),

with the convention ∞ · 0 = 0. Note that for μ ∈ M0 we have that μ[u, v] :=
∫

X
ũṽ dμ is well defined for

u, v ∈ D(μ), where D(μ) = {u ∈ D | ũ ∈ L2(X,B, μ)}. It is easy to see that

D(E + μ) := D ∩ D(μ), (E + μ)[u, v] := E [u, v] + μ[u, v]

gives a closed form (not necessarily densely defined). One can check that, e.g., E + ∞B = E|D0(Bc), where
D0(U) = {u ∈ D | ũ|Uc = 0 q.e.}.

For the Laplacian in Rd, B closed (so U is open) we get that D(E + ∞B) = W 1,2
0 (U) so that the form sum

is H0 + ∞B = −Δ|U with Dirichlet boundary condition.
If μ− ∈ M0 is form small w.r.t. E + μ+, we can furthermore define E + μ = E + μ+ − μ− by the KLMN-

theorem, already referred to above. Note that for μ+ = 0 this form boundedness implies that μ− is a Radon
measure, i.e., finite on all compact sets.

It is now an interesting question to determine what the property V → ∞ at ∞ means for measures. For the
classical Dirichlet form on R1 this was answered by Molchanov [12] who proved that σess(−Δ + μ) = ∅ ⇔
μ(U + x) → ∞ for every open interval U and x→ ∞.

The direct analog is not appropriate in higher dimensions but a recent characterization can be found in [11].
Here, we state and prove a characterization (originally from [21]) in the much more general setting of Dirichlet
forms with ultracontractive semigroups. To this end, we introduce

Avλ
G(μ) := inf{μ[u, u] | ‖u‖2 = 1, E [u] ≤ λ, ũ = 0 q.e. on Gc}

for G ⊂ X , λ ∈ R.

Theorem 3.1 Let (Kn)n∈N be a sequence of compact sets with
⋃
K◦

n = X , Gn := Kc
n. Assume that H0 has

ultracontractive semigroup, μ+ ∈ M0 and μ− ∈ M0 is form small with respect to E + μ+. Then the following
are equivalent:

(i) σess(H0 + μ) = ∅.

(ii) For any C ≥ 0 and (fn) ⊂ D with (E + μ+ 1)[fn] ≤ C and f̃n = 0 on Kn, it follows that ‖fn‖2 → 0
as n→ ∞.

(iii) Avλ
Gn

(μ) → ∞ as n→ ∞ for each λ > 0.

P r o o f. (i) ⇒ (ii) By (v) of Corollary 1.5 the sequence (fn) is relatively compact. Since fn = 0 a.e. on Kn

the sequence furthermore satisfies fn → 0 weakly. Consequently, fn → 0 in norm as well.
(ii) ⇒ (iii) Assume that Avλ

Gn
(μ) � ∞; then we can obviously find a sequence that contradicts (ii).

(iii) ⇒ (i) Assume σess(H0 + μ) 
= ∅. Then there must be a singular sequence (gn) ⊂ D(H0 + μ) with
‖gn‖ = 1 and ‖(H0 + μ)gn − λgn‖ ≤ 1

n for all n ∈ N. In particular

(E + μ)[gn, gn] → λ.

SinceKl is compact we can infer from [20], Corollary to Theorem 1, that σess(H0+μ+∞Kl
) = σess(H0+μ) �

λ; so that there is a sequence
(
g
(l)
n

)
n∈N

⊂ D(E + μ + ∞Kl
) with the same properties. We choose fn = g

(n)
n

and see that Avη
Gn

(μ) � ∞, for appropriate η. In fact

(E + μ+ + 1)[fn] ≤ c(E + μ+ 1)[fn] + d ‖fn‖2,
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since μ− is form small w.r.t. E + μ+. This implies

E [fn] ≤ η for η = c(λ+ 1) + d+ 1

and n large enough.

4 Back to Euclidean space

Let us now consider the case of ordinary Schrödinger operators in L2(Rd). In this setting H0 = −Δ is spatially
locally compact since the semigroup is ultracontractive, see Remark 2.7 above. Therefore, we know thatH0 +V+

has empty essential spectrum, whenever the nonnegative, measurable function V+ : Rd → [0,∞] satisfies the
condition that all sublevel sets {V+ ≤ n} have finite measure, for n ∈ N. However, this latter condition is too
strong, as was observed already by Rellich, [15], a fact we learned from [17]. In this latter paper, a sufficient
condition can be found that covers Rellich’s example. The following condition is obviously weaker:

Definition 4.1 Denote by C(k) the unit cube in Rd centered at k ∈ Rd. We call a measurable set E ⊂ Rd

thin at infinity if

lim
|k|→∞

|E ∩ C(k)| = 0.

Using the Birman-Solomyak space

�∞
(
L2

)
=

{
f ∈ L2

loc | ‖f‖2;∞ := sup
k∈Zd

‖1C(k)f‖2 <∞
}

and its closed subspace

c0
(
L2

)
=

{
f ∈ L2

loc | lim
k→∞

‖1C(k)f‖2 = 0
}
,

we see that E ⊂ Rd is thin at infinity iff 1E ∈ c0
(
L2

)
.

Theorem 4.2 Let V+, V− ≥ 0 be measurable and assume that V− is form small with respect to −Δ. If
{V+ ≤ n} is thin at infinity for every n ∈ N, then σess(−Δ + V+ − V−) = ∅.

P r o o f. For fixed n ∈ N and E = {V+ ≤ n} we show that

1E(−Δ + 1)−p ∈ K

for some p ∈ N.
(
Then, 1E(−Δ + V+ + 1)−1 ∈ K as well and the statement follows from Theorem 2.1.

)
An inequality of Strichartz, [22] and [18], Lemma 4.10, gives that, for any h ∈ �∞(L2) and p > d

4 :

‖h(−Δ + 1)−p‖ ≤ c · ‖h‖2;∞.

Therefore, for E as above, we get

1E(−Δ + 1)−p = ‖ · ‖ − lim
R→∞

1E1BR(0)(−Δ + 1)−p ∈ K,

since −Δ is spatially locally compact.

Playing with the equivalences from Theorem 1.3 we get the following nice Corollary. It shows that −Δ could
be replaced by quite a variety of operators: roots of the Laplacian, or relativistic Laplacians, subelliptic operators,
as well as elliptic partial differential operators:

Corollary 4.3 Let H0 ≥ γ be self-adjoint with Q(H0) continuously embedded in W s,2(Rd) for some s > 0
Let V+, V− ≥ 0 be measurable and assume that V− is form small with respect to H0. If {V+ ≤ n} is thin at
infinity for every n ∈ N, then σess(H0 + V+ − V−) = ∅.
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P r o o f. From Theorems 4.2 and 1.3 we deduce that 1E : W s,2(Rd) → L2 is compact, since W s,2(Rd) =
H s

2 (−Δ) in the notation introduced in Section 1.

The referee kindly pointed references [1, 2] that contain criteria for emptyness of the essential spectrum of
Schrödinger operators. The condition in these papers is V = V1 + V2,

∫
B(x,1)

(V1 + C)−1(y)dy → 0 for |y| → ∞, (		)

where C is a suitable lower bound for V1 and B(x, 1) denotes the unit ball shifted to x. It is easy to see that (		)
implies that {V1 ≤ n} is thin at infinity for every n ∈ N. In the first paper, V2 = 0 and C = 0 is assumed and
in the second paper, negative perturbations V2 in L

d
2 are allowed for d ≥ 2. Clearly, our Theorem 4.2 is more

general.

Acknowledgements P. S. thanks Barry Simon for a fruitful correspondence on the subject matter as well as Vitali Liskevich
for some useful hints. Thanks go to a referee for several helpful remarks.
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