Projektiver Raum

Wir wollen mit dem projektiven Raum eine Erweiterung der bekannten ebenen Geometrie derart konstruieren, dass sich lineare Unterräume ausreichend großer Dimension (z.B. zwei Geraden in der Ebene) *immer* schneiden, d.h., so dass es keine Fallunterscheidungen der Art: zwei Geraden sind parallel / nicht parallel mehr gibt.

1. Sei V ein endlich-dimensionaler Vektorraum über dem Körper k. Dann führen wir auf der Menge $V\setminus\{0\}$ die folgende Relation ein: Zwei $v,w\in V$ heißen äquivalent, geschrieben $v\sim w$, falls es ein Element $\lambda\in k\setminus\{0\}$ gibt, so dass $\lambda v=w$ ist. Zeige, dass \sim eine Äquivalenzrelation ist. Bezeichne mit $\widehat{\mathbb{P}}(V)$ die Menge der Äquivalenzklassen von V bezüglich \sim . Dann existiert die kanonische Restklassenprojektion

$$\pi: V \setminus \{0\} \longrightarrow \widehat{\mathbb{P}}(V)$$

welche einem Vektor $v \in V \setminus \{0\}$ seien Äquivalenzklasse zuordnet.

2. Sei V genauso wie in a). Dann sei

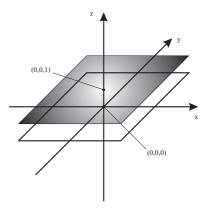
$$\widetilde{\mathbb{P}}(V) := \{ U \subset V \mid \dim(U) = 1 \}$$

die Menge aller eindimensionalen Untervektorräume von V. Zeige dass es eine Bijektion zwischen den Mengen $\widehat{\mathbb{P}}(V)$ und $\widehat{\mathbb{P}}(V)$ gibt, die wir deshalb einheitlich mit $\mathbb{P}(V)$ bezeichnen können. $\mathbb{P}(V)$ heißt der projektive Raum von V.

- 3. Wähle nun speziell $V=k^n$ als Vektorraum über k. Wir bezeichnen mit \mathbb{P}^n_k den projektiven Raum $\mathbb{P}(k^{n+1})$. Man nennt \mathbb{P}^n_k den n-dimensionalen projektiven Raum über k. Wir führen auf \mathbb{P}^n_k die folgenden Koordinaten ein: Ein Element $p \in \mathbb{P}^n_k$ ist nach a) eine Äquivalenzklasse von Punkten aus $k^{n+1} \setminus \{0\}$, sei $x = (x_0, \dots, x_n)$ ein Vertreter (d.h. ein Element) dieser Klasse. Dann schreibt man den Punkt p als $p = (x_0 : \dots : x_n)$, dies sind die homogenen Koordinaten von p. Diese sind also nur bis auf Multiplikation mit einem von Null verschiedenen Skalar definiert. Entscheide bei den folgenden Gleichheiten (welche in \mathbb{P}^n_k gelten sollen), ob sie richtig oder falsch sind (mit Begründung).
 - (a) $(1:2:3) = (3:6:9) \in \mathbb{P}^2_{\mathbb{R}}$
 - (b) $(1:0) = (0:1) \in \mathbb{P}^1_{\mathbb{R}}$
 - (c) $(1:2:3) = (2:3:4) \in \mathbb{P}^2_{\mathbb{R}}$
 - (d) $(2:10:4) = (0:0:0) \in \mathbb{P}^2_{\mathbb{R}}$
- 4. Betrachte die injektive lineare Abbildung

$$\begin{array}{ccc} j: \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (x,y) & \longmapsto & (x,y,1) \end{array}$$

Stellt man sich \mathbb{R}^2 als Ebene und \mathbb{R}^3 als uns umgebenden Raum vor, so ist das Bild dieser Abbildung die rechts grau dargestellte Ebene. Sei jetzt $i: \mathbb{R}^2 \to \mathbb{P}^2_{\mathbb{R}}$ die Komposition von j mit der kanonischen Abbildung π , also $i=\pi \circ j$. Zeige, dass i injektiv, aber nicht surjektiv ist.



5. Die folgenden Mengen U und V sind Teilmengen von \mathbb{R}^3 . Beschreibe (möglichst geometrisch) die Mengen $\pi^{-1}(\pi(U))$ und $\pi^{-1}(\pi(V))$, wobei π die kanonische Abbildung $\pi: \mathbb{R}^3 \setminus \{0\} \to \mathbb{P}^2_{\mathbb{R}}$ ist.

(a)
$$U := \{(a, b, c) \in \mathbb{R}^3 \mid 2a + 3b = 5; c = 1\}$$

(b)
$$V := \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 = 9; c = 1\}$$

- 6. Sei L eine projektive Gerade in $\mathbb{P}^2_{\mathbb{R}}$. Zeige, dass das Urbild $i^{-1}(L)$ entweder leer oder eine Gerade in \mathbb{R}^2 ist.
- 7. Zeige, dass es für jede Gerade $l \subset \mathbb{R}^2$ genau eine projektive Gerade $l^{\mathbb{P}} \subset \mathbb{P}^2_{\mathbb{R}}$ gibt, so dass $i^{-1}(l^{\mathbb{P}}) = l$ ist. Finde einen Punkt (dieser heißt unendlich ferner Punkt) $p \in \mathbb{P}^2_{\mathbb{R}}$, so dass $p \in l^{\mathbb{P}} \setminus i(l)$ gilt.
- 8. Sei $V \subset k^n$ ein zweidimensionaler affiner Unterraum von k^n (d.h., $V = W + w \subset k^n$ wobei W ein Untervektorraum der Dimension zwei und $w \in k^n$ beliebig ist). Dann nennen wir das Bild $\pi(V)$ unter der kanonischen Projektion π eine projektive Gerade in \mathbb{P}^n . Zeige, dass zwei projektive Geraden in \mathbb{P}^2 immer einen Schnittpunkt besitzen.
- 9. Betrachte die beiden Paare von Geraden g_1, g_2 und h_1, h_2 aus \mathbb{R}^2 , gegeben durch

$$\begin{array}{rcl} g_1 & = & \{(a,b) \, | \, 2a+3b=5\} \\ g_2 & = & \{(a,b) \, | \, 4a+5b=10\} \\ h_1 & = & \{(a,b) \, | \, 3a+5b=2\} \\ h_2 & = & \{(a,b) \, | \, 9a+15b=4\} \end{array}$$

Bestimme (auch geometrisch) $g_1^\mathbb{P}\cap g_2^\mathbb{P}$ und $h_1^\mathbb{P}\cap h_2^\mathbb{P}$.