Exercises Algebraic Geometry Sheet 8 - solutions

1. **Exercise:** Calculate the divisor of x/y on the Segre quadric $X = V(xy - zw) \subset \mathbb{P}^3$.

It is easy to see that $(x, xy - zw) = (x, zw) = (x, z) \cap (x, w)$ and similarly $(y, xy - zw) = (y, zw) = (y, z) \cap (y, w)$. If we denote by $X_1 = V(x, z) \subset X$, $X_2 = V(x, w) \subset X$ and by $Y_1 = V(y, z) \subset X$, $Y_2 = V(y, w) \subset X$, then the divisor of the rational function x/y is given as

$$\left(\frac{x}{y}\right) = X_1 + X_2 - Y_1 - Y_2 \in \operatorname{Div}(X)$$

2. **Exercise:** Determine the divisor of x_1/x_0-1 on the circle $X=V(x_1^2+x_2^2-x_0^2)\subset\mathbb{C}^3$.

The function x_1/x_0-1 , written as $\frac{x_1-x_0}{x_0}$ gives the divisor $2X_2-X_{12}-X_{21}$ where we write $X_2=V(x_2,x_1-x_0)\subset X$, $X_{12}=V(x_1+ix_0,x_2)\subset X$ and $X_{21}=V(x_1+ix_0,x_2)$. To see the multiplicities, we argue as above, e.g., we have that $x_0-x_1=x_2^2(x_0+x_1)^{-1}\in k[X]_{(x_1-x_0,x_2)}$ where x_2 is a generator of the maximal ideal of the local ring $k[X]_{(x_1-x_0,x_2)}$.

3. **Exercise:** Calculate the divisor of y on the cone $X = V(xy - z^2) \subset k^3$.

Let us first describe the set-theoretic vanishing locus of the function y on X: Obviously, we have $(xy-z^2,y)=(y,z^2)$. This means that the divisor of y is supported by the irreducible variety $Y=V(y,z)\subset X$. In order to determine the multiplicity of y, let us consider the local ring $\mathcal{O}_{X,Y}$, i.e., the localization of the coordinate ring $k[X]=k[x,y,z]/(xy-z^2)$ at the prime ideal $(y,z)\subset k[X]$. This localization has a maximal ideal generated by z, because in this localization, we have that $y=x^{-1}z^2\subset (z)$. The very same equation tells us that the multiplicity $\nu_Y(y)$ we are looking for is two: y is a z^2 times a unity (x-1). We conclude that

$$(y) = 2Y \in Div(X)$$

4. Exercise: Prove that for any smooth variety X, $Cl(X \times k) \cong Cl(X)$.

We define the map

$$\pi^* : \operatorname{Div}(X) \longrightarrow \operatorname{Div}(X \times k)$$

$$D = \sum_i a_i X_i \quad \longmapsto \quad \pi^* D = \sum_i a_i \pi^{-1}(X_i)$$

where $\pi: X \times k \to X$ denotes the projection. If D = (f/g) is the divisor of a rational function $f/g \in k(X)$, then π^*D is just the divisor of the same f/g, this time seen as an element in k(X)(t) (t being the coordinate on k in $X \times k$). Therefore, the map π^* sends divisors of rational functions on X to divisors of rational functions on $X \times k$ and thus descends to a map $\pi^*: Cl(X) \to Cl(X \times k)$.

Next we would like to show that π^* is both injective and surjective. In order to do that, we need to discuss the possible irreducible codimension one subvarieties of $X \times k$: Two types of such prime divisors C can occur: Either C is dominant over X, i.e., i.e., $\pi(C)$ is a dense subset of X, or the closure of $\pi(C)$ is a prime divisor of X. There cannot be any other type of prime divisors on $X \times k$, because if $\pi(C)$ would be of dimension strictly smaller then $\dim(X) - 1$, then one could find a chain $\pi(C) \subseteq \widetilde{C} \subseteq X$, and $\pi^{-1}(\widetilde{C})$ would lie between C and $X \times k$ so that C would not be a divisor on $X \times k$.

Let us show that π^* is injective: Suppose that $D \in \text{Div}(X)$ and that $\pi^*(D) = (f/g)$ for some $f, g \in k[X][t]$ with f, g relatively prime. Then f and g are necessarily elements in k[X], as otherwise $\pi^*(D)$ would have components which are dominant over X. These cannot be of the form $\pi^{-1}(C_i)$ for some prime divisor $C_i \in \text{Div}(X)$, so that (f/g) would not be of the form $\pi^*(D)$.

It follows from this discussion that any prime divisor \widetilde{C} on $X \times k$ which projects to (a dense subset of) a divisor C on X is of the form $\widetilde{C} = \pi^*(C)$, in particular, \widetilde{C} is in the image of π^* . In order to prove surjectivity of π^* , we need to show that any prime divisor C on $X \times k$ dominant over X is linearly equivalent to a divisor which projects to a divisor on X. Let $I \subset k[X][t]$ be the defining ideal of C. Consider the map $k[X][t] \to k(X)[t]$ and let $\widetilde{I} \subset k(X)[t]$ be the image of I. The ring k(X)[t] is a principal ideal domain (because k(X) is a field) so that $\widetilde{I} = (f)$ for some $f \in k(X)[t] \subset k(X)(t)$. This means that we can consider the divisor $(f) \in \text{Div}(X \times k)$ of f, and the fact that f is an element in k(X)[t] shows that this divisor contains C and perhaps some other divisor of type $\pi^{-1}(D)$ with $D \in \text{Div}(X)$, but no other divisor dominant over X. This shows that C is linearly equivalent to a divisor in the image of $\text{Div}(X) \to \text{Div}(X \times k)$, so that π^* on the class groups is surjective.

Remark: The statement just proved is valid in a more general context, namely, it is sufficient to suppose that X is regular in codimension one, that is, that the (closed) subset of points x such that X is singular at x is of codimension at least two in X.