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1. Exercise: Calculate the divisor of x/y on the Segre quadric X = V (xy − zw) ⊂ P3.

It is easy to see that (x, xy−zw) = (x, zw) = (x, z)∩(x, w) and similarly (y, xy−zw) = (y, zw) =
(y, z)∩ (y, w). If we denote by X1 = V (x, z) ⊂ X, X2 = V (x,w) ⊂ X and by Y1 = V (y, z) ⊂ X,
Y2 = V (y, w) ⊂ X, then the divisor of the rational function x/y is given as(

x

y

)
= X1 + X2 − Y1 − Y2 ∈ Div(X)

2. Exercise: Determine the divisor of x1/x0 − 1 on the circle X = V (x2
1 + x2

2 − x2
0) ⊂ C3.

The function x1/x0 − 1, written as x1−x0
x0

gives the divisor 2X2 − X12 − X21 where we write
X2 = V (x2, x1 − x0) ⊂ X, X12 = V (x1 + ix0, x2) ⊂ X and X21 = V (x1 + ix0, x2). To see the
multiplicities, we argue as above, e.g., we have that x0 − x1 = x2

2(x0 + x1)−1 ∈ k[X](x1−x0,x2)

where x2 is a generator of the maximal ideal of the local ring k[X](x1−x0,x2).

3. Exercise: Calculate the divisor of y on the cone X = V (xy − z2) ⊂ k3.

Let us first describe the set-theoretic vanishing locus of the function y on X: Obviously, we have
(xy − z2, y) = (y, z2). This means that the divisor of y is supported by the irreducible variety
Y = V (y, z) ⊂ X. In order to determine the multiplicity of y, let us consider the local ring
OX,Y , i.e., the localization of the coordinate ring k[X] = k[x, y, z]/(xy − z2) at the prime ideal
(y, z) ⊂ k[X]. This localization has a maximal ideal generated by z, because in this localization,
we have that y = x−1z2 ⊂ (z). The very same equation tells us that the multiplicity νY (y) we
are looking for is two: y is a z2 times a unity (x−1). We conclude that

(y) = 2Y ∈ Div(X)

4. Exercise: Prove that for any smooth variety X, Cl(X × k) ∼= Cl(X).

We define the map
π∗ : Div(X) −→ Div(X × k)

D =
∑

i aiXi 7−→ π∗D =
∑

i aiπ
−1(Xi)

where π : X × k → X denotes the projection. If D = (f/g) is the divisor of a rational
function f/g ∈ k(X), then π∗D is just the divisor of the same f/g, this time seen as an element
in k(X)(t) (t being the coordinate on k in X × k). Therefore, the map π∗ sends divisors of
rational functions on X to divisors of rational functions on X × k and thus descends to a map
π∗ : Cl(X)→ Cl(X × k).

Next we would like to show that π∗ is both injective and surjective. In order to do that, we
need to discuss the possible irreducible codimension one subvarieties of X × k: Two types of
such prime divisors C can occur: Either C is dominant over X, i.e., i.e., π(C) is a dense subset
of X, or the closure of π(C) is a prime divisor of X. There cannot be any other type of prime
divisors on X×k, because if π(C) would be of dimension strictly smaller then dim(X)−1, then
one could find a chain π(C) ( C̃ ( X, and π−1(C̃) would lie between C and X × k so that C
would not be a divisor on X × k.
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Let us show that π∗ is injective: Suppose that D ∈ Div(X) and that π∗(D) = (f/g) for some
f, g ∈ k[X][t] with f, g relatively prime. Then f and g are necessarily elements in k[X], as
otherwise π∗(D) would have components which are dominant over X. These cannot be of the
form π−1(Ci) for some prime divisor Ci ∈ Div(X), so that (f/g) would not be of the form
π∗(D).

It follows from this discussion that any prime divisor C̃ on X × k which projects to (a dense
subset of) a divisor C on X is of the form C̃ = π∗(C), in particular, C̃ is in the image of π∗. In
order to prove surjectivity of π∗, we need to show that any prime divisor C on X × k dominant
over X is linearly equivalent to a divisor which projects to a divisor on X. Let I ⊂ k[X][t] be
the defining ideal of C. Consider the map k[X][t] → k(X)[t] and let Ĩ ⊂ k(X)[t] be the image
of I. The ring k(X)[t] is a principal ideal domain (because k(X) is a field) so that Ĩ = (f) for
some f ∈ k(X)[t] ⊂ k(X)(t). This means that we can consider the divisor (f) ∈ Div(X × k) of
f , and the fact that f is an element in k(X)[t] shows that this divisor contains C and perhaps
some other divisor of type π−1(D) with D ∈ Div(X), but no other divisor dominant over X.
This shows that C is linearly equivalent to a divisor in the image of Div(X) → Div(X × k), so
that π∗ on the class groups is surjective.

Remark: The statement just proved is valid in a more general context, namely, it is sufficient
to suppose that X is regular in codimension one, that is, that the (closed) subset of points x
such that X is singular at x is of codimension at least two in X.
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