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1. The tensor product and Hom: We discuss here the relationship of the tensor product with the Hom-functor.
We start with a property of the Hom-groups which is in some sense dual to the one for the tensor product we are
interested in.

Lemma 1. Let A be a ring and
0— M2 M 25 M0

be a short exact sequence of A-modules (remember: this means (3 is injective, vy is surjective and ker(y) = im(f)).
Then for any A-module Q (in particular, for A itself) there is an exact sequence

0 — Homa(M,Q) > Homa(M',Q) %> Homa(M",Q)
(note that the 5* is not surjective in general). Conversely, a sequence
0—M" %M 2 M0

(this means that v o 8 = 0 so im(B) C ker(y) but not im(B) = ker(y) in general) is exact if for all A-modules Q,
we have that

0 — Homa(M,Q) > Homa(M',Q) = Homa(M",Q) (1)
is exact. Note that it follows from v o 3 = 0 that * o v* = 0 (see the proof), so that it makes sense to call (1) a

sequence.

Proof. First the definition of the maps v* and §*: this is just the generalization of the dual map (hence the names):
given f € Homu (M, Q) (resp. g € Homu(M',Q)), we put v*(f) := f o~ (resp. 8*(g) := go 3). It is easy to show
that the maps defined in this way are homomorphisms of A-modules. Let us show that v* is injective: suppose that
v*(f)(a) = 0 for all @ € M’, then f is necessarily zero in Homa(M, @), otherwise, given any b € M with f(b) # 0,
we take a lift @ of b to M’, that is, any preimage under «, and then v*(f)(a) # 0. The next step is to show that
im(y*) = ker(B8*): First, the composition 8* o v* is obviously zero because 8* o v*(f) = foyo 8 = 0 as already
vyo B =0. Solet g € ker(8*) C Homa(M',Q) be given, this means that g o 3 is zero in Homa(M", Q). We will
construct f € Homa(M,Q) with v*(f) = ¢: given b € M, take any lift a as above (i.e. vy(a) = b) and define
f(b) := g(a). A priori, this may not be well-defined, it seems to depend on the choice of the lift a € v~1(b). But
in fact it does not, suppose @ to be another choice, then a — @ € ker(vy) = im(0) so that there is ¢ € M" with
B(c) = a —a. Therefore g(a —a) = (g o §)(c) = 0 by assumption. So we see that f is well-defined which shows that
g € im(f3).

For the other direction, note that given

ML 2

with v o0 8 = 0, if v is not surjective, then the canonical projection 7 : M — M /im(v) = coker(y) is an element
in Hom (M, coker(v)), different from zero, but the composition v*(w) = m oy is zero in Hom(M’, coker(7)).

So there is an A-module Q := coker(y) such that Homa(M,Q) - Homa(M’,Q) is no injective. Similarly, let
P M — M'/im(B) = coker(8) be the canonical projection, this is an element in ker(5*) C Homa(M',Q)
(because 8*(¢) = ¢ o 8 = 0) where Q := coker (). If im(8) C ker(v) then there cannot be any ¥ € Hom (M, Q)
with ¢ = Wo~: If there were such an U, take any non-zero element = € ker(v)\im(8), then ¢)(z) # 0, but v(x) =0
so that ¢ o y(x) = 0, a contradiction. This finishes the proof. O



The next step is a reinterpretation of the tensor product in terms of the Hom-groups.
Lemma 2. Let M, N,Q A-modules, then there are natural isomorphisms

Bilina(M x N,Q) 2 Homa(M ®4 N,Q) ; Bilina(M x N,Q) = Homa(M,Homa(N,Q))
where Bilina(M x N, Q) is A-module of bilinear maps from M x N to Q.

Proof. The first isomorphism is the universal property of the tensor product, namely it is given by sending a
bilinear map 1 to the map defined by m ® n +— ¥ (m,n). The second isomorphism is also obvious: given 1) €
Bilina(M x N,Q), we have that for any m € M, the map ¢,, : N — @ sending n € N to ¢, (n) := ¢(m,n) € Q
is A-linear, i.e., ¥, € Homa (N, Q), and that the map sending m — 1, is also A-linear. This means that ¢ gives
an element in Hom (M, Hom 4(N,@)) and one checks that both modules are isomorphic under this map (namely,
construct the obvious inverse). O

We can now use these two lemmas to prove the following result.

Corollary 1. Let the above exact sequence of A-modules be given, then for any A-module P, there is an exact

sequence
M oa P M 0, P Mo P —0 (2)

Note that this does not mean that B ® id is injective.

Proof. The second part of the first lemma shows that it is sufficient to show that

0 — Homa(M @4 P,N) "2 Homa(M' @4 P,N) "D Homa(M" @4 P,N)

is exact for any A-module N. By the second lemma, we know that this is equivalent to

0 — Homa(M, Homa(P,N)) "ZY" Homa(M', Homa(P,N)) “ZY" Homa(M", Hom 4(P,N))

but that this sequence is exact follows simply by applying the first part of the first lemma for Q := Hom (P, N). O
. Exterior product and the Grassmann varieties: We will use the exterior product to determine (in a special

case) the image of the Pliicker embedding. This will show that the Grassmannian is a projective variety. We start
with a definition

Definition 0.1. Let A be a ring (we will use here only the case where A is a field) and M an A-module. Then we
define

M=({M®s..4aM] /N
—_————

p times

:(>>ms

where N is the submodule generated by all elements of the form m1 ®...®my, such that there is i # j with m; = m;.
Denote by x1 A ... ANz, € NP M the class of 11 ® ... ® xy,. There is a homomorphism of A-modules

/\PM®A/\QM N /\erqM
(@I A AT QWA AYg) — TIA AT A AL A Y,

which satisfies x Ay = (—=1)Ply Az for all z € N"M and y € N"M (This can be expressed by saying that
A M :=®,50 \' M is a graded-commutative algebra, note that similarly &,>0®P M is a non-commutative algebra,).
In particular, x Ny = —y A x for any x,y € M, this can of course already be seen from the very definition of the
exterior product.

Lemma 3. (a) Let M be a finitely generated free A-module, i.e., there are elements my, ..., my such that

AP =2 gple;, — M

€, = my
is an isomorphism (here e; denots the ith standard basis vector of A¥). Then
P o~ k
/\M — A(P) = @1§i1<...ip§kA ey, N Nej,

We denote the vector e;; A...Ne;, € /\p M by ei,,...i,- In particular, /\k M is free of rank one (with generator
€12...n==e€N...Nep), i.e., isomorphic to A and \* M =0 for all p > k.



(b) For any f € Homa(M,N) and any p € I there is an induced homomorphism A’ f : N°M — AP N.
Let M = @F  Ae;, N = @l 14¢€; and (Fj;) € M(l x k, A) the matriz of f with respect to e and € (i.e.,

fle) = 22‘21 Fji€;). Then the matriz of N\ f with respect to (e;, j,) 18 given by

------

p
AN, )= D, (FEm) g,

1<1 <...<ip<l

.....

where F-jl1 """ ]p‘” is the determinant of the submatriz of (Fj;) consisting of the i1,...,ip-th column and the

Proof. The first part simply follows from the properties of the exterior product, i.e.,

(Z )\iei> (Z LLZQ) = Z (Nij — piXj)e; Nej = Z

i<j 1<j

Ai i

e; N\e;
Ajomg |

and similar for the higher exterior products. A similar calculation shows the second part (i.e., the last formula is

already the proof of (b) for the case p = 2, here (F};) would be the matrix (21 22 o 2”) O
1 2 oo fn

This lemma allows us to rewrite the Pliicker embedding as follows (in the sequel the ring A from above is the field
Pl: Gr(l,n) — P(A\k") =P

L= span<v1, . ,’Ul> = Span(g . A> — V1 A...ANvy = (Z?:l Ailei) VAN (Zzl:l Ailei)
= > Ay, iin N N e,
1<iy<...<iy<n

Note that in order to link the notation to that of the last lemma, we can write L := im(A), where A : k! — k"
is defined as A(e;) = >0, Ajie; for all i € {1,...,1}. Then the minor A;, ; is (in the notation from above)

The homogenous coordinates on IP(TlL)*l are written as (A1 A21..1 ¢ ... Aiy,...4 © -..) so that Pl can be

expressed by saying that A, ; = A;, ;. We see that any w € IP(/\l k™) is in the image of the Pliicker map iff
there are vectors vy, ...v, € k™ such that w =v; A ... A v,. Let us now specify to the case [ = 2.

Lemma 4. A vector w € /\2 k™ lies in the image of the Pliicker embedding if and only if w Aw =0 in /\4 k™.
Proof. We give an elementary proof: Let w = ZKKK" Aijeij, then
wAw= Z (Aij Akt — AikAji + Aajk) €ijki
1<i<j<k<I<n
which we write as
wA W = (A12A34 — A3 A24 + A1a)a3) €1234 + Z (ANij Akt — NikAji + Aajk) €ijki
1<i<j<k<l;l>4

We can suppose that at least one of the coefficients Ai2, A34, A13, Aoa, A14A23 iS non-zero, if not We have reduced the
length of the sum representing w by one and we continue inductively. So let A4 # 0. We set e = Age1 4+ Aoges +
A34€3, El) :=¢; for all i > 1, and we obtain new coefficients )\E-) defined by

Z}\(l) M Ae (1)

1<j
The choice of egl) implies that )\( ) = )\éi) 0 and )\(1? = 1. But the equation w A w = 0 also gives )\( )/\:(),11) —
)\(1? /\&) + )\&))\%) =0, so that )\%) = 0. This shows that we can write w as

w= egl) A ()\gl My )\ 1) + /\14 e ) + Z )\5]1-)61(-1) A eg-l)

1<j,j>4



Now put: 6(12) = 6(11), eg ) = /\(1) ) 4 /\(1) (1) + )\(1) (1) e§2) = egl) for all 4 > 2 and, as before, define the new
coefficients by
0= AP

i<j

Dpne® T A p e 3)

i<j;j>4

so that

We continue the expansion as

w=e? Ael? + AT el nel? +AG P nel + APl Ael? AR nel? + 3T AP el el
1<j;7>5

On the other hand, the equation w A w = 0 also gives
2) (2 2) (2 2) (2 2) (2 2) (2 2) (2
)‘52)>‘:(35) A(ld))‘( : + )‘§5))‘é3) =0 ; )‘(12)>‘§15) - )‘54))‘55) + )‘(15)/\§4) =0
but as )\(2) )\(2) )\(i) = )\;4) =0 and )\(2) =1, we obtain )\(5) = )\( ) =0 so that

w=e® A e £ ADe® pe® L ADEP Ao LY, ADe® o)

2 2 2 2 2 2 2
= (2 — o)A (€2 + o)+ T ADel A el

j 1
1<j;j>5
653) 6(23)
so that by putting eg ) = e ) for all i > 2, we obtain the same expression as equation (3), but with the index j > 5,
so that by induction, we can finish the proof. O

Using this lemma, we can write down equations for the image of PIl, namely, with w = Zl<i<j<n Aijeij € /\2 k™,
we have, as already used in the proof, that o
wAw= Z (Aij Akt — AikAji + Ai\jk) €kt
1<i<j<k<I<n
This shows that
Im(Pl) =V (>‘ij>\kl — )\ik/\jl —+ )\il)\jk)lgi<j<k<l§n

which is a closed subset of ]P(g)_l. In particular, for n = 4 we have a single equation Gr(2,4) = V(A12A34 — A13d04 +
A14A23, where (A2 @ X130 A1g : Aoz @ Aoy @ A34) are the homogenous coordinates of P°.

The following considerations show that the canonical affine cover of Im(P1: Gr(2,n) — IP(Z)_l) with respect to the
above coordinates can be simply described in terms of the matrices representing the point of Gr(2,n). Let

tr
o . ay B ¢ ¢ 7 B ¢ 7
L—span<(€) <b1 b b bn> > € Gr(2,n)
and suppose that a; # 0 and that b; — sz—’ # 0, then we may write
~ tr
_ a, ... 1 ... 0 ... ap
pesn{e- (5 g Y ) ) eeen
It is easy to see that the Pliicker coordinate x;; is equal to one, i.e, the subset
a 1 0 an\ "
_ (% - . cee Op
{rea@mipmyan(o-( ) 1T )

is precisely the affine chart Uy; := Gr(2,n) N {z;; # 0}. As Pl is an isomorphism, we see that P17 (U;;) = k2(»—1) =

{(ak, bl)k,l;ﬁiﬂ'}.



