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1 Introduction

This tutorial surveys the fast Fourier transform at nonequispaced nodes (NFFT), its gener-
alisations, its inversion, and the related C library NFFT 3.3. The goal of this manuscript
is twofold – to shed some light on the mathematical background, as well as to provide an
overview over the C library to allow the user to use it effectively. Following this, this docu-
ment splits into two parts:

In Sections 2, 3 and 3.6, we introduce the NFFT which, as a starting point, leads to several
concepts for further generalisation and inversion. We focus on a mathematical description
of the related algorithms. However, we complement the necessarily incomplete quick glance
at the ideas by references to related mathematical literature. In Section 2, we introduce
the problem of computing the discrete Fourier transform at nonequispaced nodes (NDFT),
along with the notation used and related works in the literature. The algorithms (NFFT)
are developed in pseudo code. Furthermore, we turn for recent generalisations, including
in particular NFFTs on the sphere and iterative schemes for inversion of the nonequispaced
FFTs, in Section 3 and 3.6, respectively.

Having laid the theoretical foundations, Section 4 provides an overview over the NFFT
3.3 C library and the general principles for using the available algorithms in your own code.
Rather than describing the library interface in every detail, we restrict to simple recipes in
order to familiarise with the very general concepts sufficient for most everyday tasks. For the
experienced user, we provide full interface documentation (see doc/html/index.html in the
package directory) which gives detailed information on more advanced options and parameter
settings for each routine. Figure 1.1 gives an overview over the directory structure of the
NFFT 3.3 package. Finally, Section 5 gives some simple examples for using the library and
some more advanced applications are given in Section 6 along with numerical results.
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doc (API docs)

include (C headers)

kernel

fpt (fast polynomial transform)

mri (transform in magnetic resonance imaging)

nfct (nonequispaced fast cosine transform)

nfft (nonequispaced fast Fourier transform)

nfsft (nonequispaced fast spherical Fourier transform)

nfst (nonequispaced fast sine transform)

nnfft (nonequispaced in space and frequency FFT)

nsfft (nonequispaced sparse fast Fourier transform)

solver (inverse transforms)

util (utility functions)

examples (for each in kernel)

applications

fastsum (summation schemes)

fastsumS2 (summation on the sphere)

mri (reconstruction in mri)

nfft flags (time and memory requirements)

polarFFT (fast polar Fourier transform)

radon (radon transform)

stability (stability inverse nfft)

Figure 1.1: Directory structure of the NFFT 3.3 package
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2 Notation, the NDFT, and the NFFT

This section summarises the mathematical theory and ideas behind the NFFT. Let the torus

Td :=

{
x = (xt)t=0,...,d−1 ∈ Rd : −1

2
≤ xt <

1

2
, t = 0, . . . , d− 1

}
of dimension d ∈ N be given. It will serve as domain from which the nonequispaced nodes x
are taken. Thus, the sampling set is given by X := {xj ∈ Td : j = 0, . . . ,M − 1}.

Possible frequencies k ∈ Zd are collected in the multi-index set

IN :=

{
k = (kt)t=0,...,d−1 ∈ Zd : −Nt

2
≤ kt <

Nt

2
, t = 0, . . . , d− 1

}
,

where N = (Nt)t=0,...,d−1 is the EVEN multibandlimit, i.e., Nt ∈ 2N. To keep notation sim-
ple, the multi-index k addresses elements of vectors and matrices as well, i.e., the plain index
k̃ :=

∑d−1
t=0 (kt + Nt

2 )
∏d−1
t′=t+1Nt′ is not used here. The inner product between the frequency

index k and the time/spatial node x is defined in the usual way by kx := k0x0 + k1x1 +
. . .+ kd−1xd−1. Furthermore, two vectors may be combined by the component-wise product

σ �N := (σ0N0, σ1N1, . . . , σd−1Nd−1, )
> with its inverse N−1 :=

(
1
N0
, 1
N1
, . . . , 1

Nd−1

)>
.

The space of all d-variate, one-periodic functions f : Td → C is restricted to the space of
d-variate trigonometric polynomials

TN := span
(

e−2πik· : k ∈ IN
)

with degree Nt (t = 0, . . . , d− 1) in the t-th dimension. The dimension dimTN of the space

of d-variate trigonometric polynomials TN is given by dimTN = |IN | =
d−1∏
t=0

Nt.

2.1 NDFT - nonequispaced discrete Fourier transform

The first problem to be addressed can be regarded as a matrix vector multiplication. For a
finite number of given Fourier coefficients f̂k ∈ C, k ∈ IN , we consider the evaluation of the
trigonometric polynomial

f (x) :=
∑
k∈IN

f̂ke−2πikx (2.1)

at given nonequispaced nodes xj ∈ Td. Thus, our concern is the evaluation of

fj = f (xj) :=
∑
k∈IN

f̂ke−2πikxj , (2.2)

j = 0, . . . ,M − 1. In matrix vector notation this reads

f = Af̂ (2.3)

where

f := (fj)j=0,...,M−1 , A :=
(

e−2πikxj
)
j=0,...,M−1; k∈IN

, f̂ :=
(
f̂k

)
k∈IN

.
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The straightforward algorithm for computing this matrix vector product, which is called
NDFT, takes O(M |IN |) arithmetical operations.

A closely related matrix vector product is the adjoint NDFT

ĥ = AHf , ĥk =

M−1∑
j=0

f̂je
2πikxj ,

where AH = A
>

denotes the conjugate transpose of the nonequispaced Fourier matrix A.

Equispaced nodes

For d ∈ N, Nt = N ∈ 2N, t = 0, . . . , d − 1 and M = Nd equispaced nodes xj = 1
N j, j ∈ IN

the computation of (2.3) is known as multivariate discrete Fourier transform (DFT). In this
special case, the input data f̂k are called discrete Fourier coefficients and the samples fj
can be computed by the well known fast Fourier transform (FFT) with only O(|IN | log |IN |)
arithmetic operations. Furthermore, one has the inversion formula

AAH = AHA = |IN |I,

which does NOT hold true for the nonequispaced case in general.

2.2 NFFT - nonequispaced fast Fourier transform

For the sake of simplicity, we explain the ideas behind the NFFT for the one-dimensional
case d = 1 and the algorithm NFFT. The generalisation of the FFT is an approximative
algorithm and has computational complexity O (N logN + log (1/ε)M), where ε denotes the
desired accuracy. The main idea is to use standard FFTs and a window function ϕ which is
well localised in the time/spatial domain R and in the frequency domain R. Several window
functions were proposed in [15, 7, 55, 25, 24].

The considered problem is the fast evaluation of

f (x) =
∑
k∈IN

f̂ke
−2πikx (2.4)

at arbitrary nodes xj ∈ T, j = 0, . . . ,M − 1.

The ansatz

One wants to approximate the trigonometric polynomial f in (2.4) by a linear combination
of shifted 1-periodic window functions ϕ̃ as

s1 (x) :=
∑
l∈In

gl ϕ̃

(
x− l

n

)
. (2.5)

With the help of an oversampling factor σ > 1, the FFT length is given by n := σN .
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The window function

Starting with a reasonable window function ϕ : R → R, one assumes that its 1-periodic
version ϕ̃, i.e.

ϕ̃ (x) :=
∑
r∈Z

ϕ (x+ r)

has an uniformly convergent Fourier series and is well localised in the time/spatial domain T
and in the frequency domain Z. The periodic window function ϕ̃ may be represented by its
Fourier series

ϕ̃ (x) =
∑
k∈Z

ck (ϕ̃) e−2πikx

with the Fourier coefficients

ck (ϕ̃) :=

∫
T

ϕ̃ (x) e2πikx dx =

∫
R

ϕ (x) e2πikx dx = ϕ̂ (k) , k ∈ Z.
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Figure 2.1: From left to right: Gaussian window function ϕ, its 1-periodic version ϕ̃, and
the integral Fourier-transform ϕ̂ (with pass, transition, and stop band) for N =
24, σ = 4

3 , n = 32.

The first approximation - cut-off in frequency domain

Switching from the definition (2.5) to the frequency domain, one obtains

s1 (x) =
∑
k∈In

ĝk ck (ϕ̃) e−2πikx +
∑

r∈Z\{0}

∑
k∈In

ĝk ck+nr (ϕ̃) e−2πi(k+nr)x

with the discrete Fourier coefficients

ĝk :=
∑
l∈In

gl e
2πi kl

n . (2.6)

Comparing (2.4) to (2.5) and assuming ck (ϕ̃) small for |k| ≥ n− N
2 suggests to set

ĝk :=

{
f̂k

ck(ϕ̃)
for k ∈ IN ,

0 for k ∈ In\IN .
(2.7)
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Then the values gl can be obtained from (2.6) by

gl =
1

n

∑
k∈IN

ĝk e−2πi
kl
n (l ∈ In),

a FFT of size n.
This approximation causes an aliasing error.

The second approximation - cut-off in time/spatial domain

If ϕ is well localised in time/space domain R it can be approximated by a function

ψ (x) = ϕ (x)χ[−m
n
,m
n
] (x)

with suppψ
[
−m
n ,

m
n

]
, m � n, m ∈ N. Again, one defines its one periodic version ψ̃ with

compact support in T as

ψ̃ (x) =
∑
r∈Z

ψ (x+ r) .

With the help of the index set

In,m (xj) := {l ∈ In : nxj −m ≤ l ≤ nxj +m}

an approximation to s1 is defined by

s (xj) :=
∑

l∈In,m(xj)

gl ψ̃

(
xj −

l

n

)
. (2.8)

Note, that for fixed xj ∈ T, the above sum contains at most (2m+ 1) nonzero summands.
This approximation causes a truncation error.

The case d > 1

Starting with the original problem of evaluating the multivariate trigonometric polynomial in
(2.1) one has to do a few generalisations. The window function is given by

ϕ (x) := ϕ0 (x0)ϕ1 (x1) . . . ϕd−1 (xd−1)

where ϕt is an univariate window function. Thus, a simple consequence is

ck (ϕ̃) = ck0 (ϕ̃0) ck1 (ϕ̃1) . . . ckd−1
(ϕ̃d−1) .

The ansatz is generalised to

s1 (x) :=
∑
l∈In

gl ϕ̃
(
x− n−1 � l

)
,

where the FFT size is given by n := σ�N and the oversampling factors by σ = (σ0, . . . , σd−1)
>.

Along the lines of (2.7) one defines

ĝk :=

{
f̂k

ck(ϕ̃)
for k ∈ IN ,

0 for k ∈ In\IN .
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The values gl can be obtained by a (multivariate) FFT of size n0 × n1 × . . .× nd−1 as

gl =
1

|In|
∑
k∈IN

ĝk e−2πik(n−1�l), l ∈ In.

Using the compactly supported function ψ (x) = ϕ (x)χ[−m
n
,m
n
]d (x), one obtains

s (xj) :=
∑

l∈In,m(xj)

gl ψ̃
(
xj − n−1 � l

)
,

where ψ̃ again denotes the one periodic version of ψ and the multi-index set is given by

In,m (xj) := {l ∈ In : n� xj −m1 ≤ l ≤ n� xj +m1} .

The algorithm

In summary, the following Algorithm 1 is obtained for the fast computation of (2.3) with
O (|In| log |In|+mM) arithmetic operations.

Input: d,M ∈ N, N ∈ 2Nd
Input: xj ∈ [−1

2 ,
1
2 ]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN ,

1: For k ∈ IN compute

ĝk :=
f̂k

|In| ck (ϕ̃)
.

2: For l ∈ In compute by d-variate FFT

gl :=
∑
k∈IN

ĝk e−2πik(n−1�l).

3: For j = 0, . . . ,M − 1 compute

fj :=
∑

l∈In,m(xj)

gl ψ̃
(
xj − n−1 � l

)
.

Output: approximate values fj , j = 0, . . . ,M − 1.
Complexity: O(|N | log |N |+M).

Algorithm 1: NFFT

Algorithm 1 reads in matrix vector notation as

Af̂ ≈ BFDf̂ ,

where B denotes the real M × |In| sparse matrix

B :=
(
ψ̃
(
xj − n−1 � l

))
j=0,...,M−1; l∈In

,
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where F is the Fourier matrix of size |In|×|In|, and where D is the real |In|×|IN | ’diagonal’
matrix

D :=
d−1⊗
t=0

(
Ot |diag (1/ ckt (ϕ̃t))kt∈INt

|Ot

)T
with zero matrices Ot of size Nt × nt−Nt

2 .

The corresponding computation of the adjoint matrix vector product reads as

AHĥ ≈D>FHB>f .

With the help of the transposed index set

I>n,m (l) := {j = 0, . . . ,M − 1 : l−m1 ≤ n� xj ≤ l+m1} ,

one obtains Algorithm 2 for the adjoint NFFT. Due to the characterisation of the nonzero

Input: d,M ∈ N, N ∈ 2Nd
Input: xj ∈ [−1

2 ,
1
2 ]d, j = 0, . . . ,M − 1, and fj ∈ C, j = 0, . . . ,M − 1,

1: For l ∈ In compute

gl :=
∑

j∈I>n,m(l)

fj ψ̃
(
xj − n−1 � l

)
.

2: For k ∈ IN compute by d-variate (backward) FFT

ĝk :=
∑
l∈In

gl e+2πik(n−1�l).

3: For k ∈ IN compute

ĥk :=
ĝk

|In| ck(ϕ̃)
.

Output: approximate values ĥk, k ∈ IN .
Complexity: O(|N | log |N |+M).

Algorithm 2: NFFTH

elements of the matrix B, i.e.,

M−1⋃
j=0

j × In,m (xj) =
⋃
l∈In

I>n,m (l)× l.

the multiplication with the sparse matrix B> is implemented in a ’transposed’ way in the
library, summation as outer loop and only using the multi-index sets In,m (xj).

2.3 Available window functions and evaluation techniques

Again, only the case d = 1 is presented. To keep the aliasing error and the truncation error
small, several functions ϕ with good localisation in time and frequency domain were proposed,
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e.g. the (dilated) Gaussian [15, 55, 14]

ϕ (x) = (πb)−1/2 e−
(nx)2

b

(
b :=

2σ

2σ − 1

m

π

)
, (2.9)

ϕ̂ (k) =
1

n
e−b(

πk
n )

2

,

(dilated) cardinal central B–splines [7, 55]

ϕ (x) = M2m (nx) , (2.10)

ϕ̂ (k) =
1

n
sinc2m (kπ/n) ,

where M2m denotes the centred cardinal B–Spline of order 2m,
(dilated) Sinc functions [45]

ϕ (x) =
N (2σ − 1)

2m
sinc2m

(
(πNx (2σ − 1))

2m

)
, (2.11)

ϕ̂ (k) = M2m

(
2mk

(2σ − 1)N

)
and (dilated) Kaiser–Bessel functions [30, 25]

ϕ (x) =
1

π



sinh
(
b
√
m2 − n2x2

)
√
m2 − n2x2

for |x| ≤ m
n

(
b := π

(
2− 1

σ

))
,

sin
(
b
√
n2x2 −m2

)
√
n2x2 −m2

otherwise,

(2.12)

ϕ̂ (k) =
1

n

 I0

(
m
√
b2 − (2πk/n)2

)
for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

where I0 denotes the modified zero–order Bessel function. For these functions ϕ it has been
proven that

|f (xj)− s (xj) | ≤ C (σ,m) ‖f̂‖1
where

C (σ,m) :=



4 e−mπ(1−1/(2σ−1)) for (2.9) ,

4
(

1
2σ−1

)2m
for (2.10) ,

1
m−1

(
2

σ2m +
(

σ
2σ−1

)2m)
for (2.11) ,

4π (
√
m+m) 4

√
1− 1

σ e−2πm
√

1−1/σ for (2.12) .

Thus, for fixed σ > 1, the approximation error introduced by the NFFT decays exponentially
with the number m of summands in (2.8). Using the tensor product approach the above
error estimates can be generalised for the multivariate setting [18]. On the other hand, the
complexity of the NFFT increases with m.

In the following, we suggest different methods for the compressed storage and application of
the matrix B which are all available within our NFFT library by choosing particular flags in a
simple way during the initialisation phase. These methods do not yield a different asymptotic
performance but rather yield a lower constant in the amount of computation.
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Fully precomputed window function

One possibility is to precompute all values ϕ(xj−n−1�l) for j = 0, . . . ,M−1 and l ∈ In,m(xj)
explicitly. Thus, one has to store the large amount of (2m+ 1)dM real numbers but uses no
extra floating point operations during the matrix vector multiplication beside the necessary
(2m+ 1)dM flops. Furthermore, we store for this method explicitly the row and column for
each nonzero entry of the matrix B. This method, included by the flag PRE FULL PSI, is the
fastest procedure but can only be used if enough main memory is available.

Tensor product based precomputation

Using the fact that the window functions are built as tensor products one can store ϕt((xj)t−
lt
nt

) for j = 0, . . . ,M − 1, t = 0, . . . , d − 1, and lt ∈ Int,m((xj)t) where (xj)t denotes the t-
th component of the j-th node. This method uses a medium amount of memory to store
d(2m + 1)M real numbers in total. However, one has to carry out for each node at most
2(2m+1)d extra multiplications to compute from the factors the multivariate window function
ϕ(xj − n−1 � l) for l ∈ In,m(xj). Note, that this technique is available for every window
function discussed here and can be used by means of the flag PRE PSI which is also the default
method within our software library.

Linear interpolation from a lookup table

For a large number of nodes M , the amount of memory can by further reduced by the use of
lookup table techniques. For a recent example within the framework of gridding see [6]. We
suggest to precompute from the even window function the equidistant samples ϕt(

rm
Knt

) for
t = 0, . . . , d − 1 and r = 0, . . . ,K, K ∈ N and then compute for the actual node xj during
the NFFT the values ϕt((xj)t − lt

nt
) for t = 0, . . . , d− 1 and lt ∈ Int,m((xj)t) by means of the

linear interpolation from its two neighbouring precomputed samples.
This method needs only a storage of dK real numbers in total where K depends solely

on the target accuracy but neither on the number of nodes M nor on the multidegree N .
Choosing K to be a multiple of m, we further reduce the computational costs during the
interpolation since the distance from (xj)t − lt

nt
to the two neighbouring interpolation nodes

and hence the interpolation weights remain the same for all lt ∈ Int,m((xj)t). This method
requires 2(2m+ 1)d extra multiplications per node and is used within the NFFT by the flag
PRE LIN PSI. Error estimates for this approximation are given in [36].

Fast Gaussian gridding

Two useful properties of the Gaussian window function (2.9) within the present framework
were recently reviewed in [29]. Beside its tensor product structure for d > 1, which also holds
for all other window functions, it is remarkable that the number of evaluations of the form
exp() can be greatly decreased. More precisely, for d = 1 and a fixed node xj the evaluations

of ϕ(xj − l′

n ), l′ ∈ In,m(xj), can be reduced by the splitting

√
πbϕ

(
xj −

l′

n

)
= e−

(nxj−l
′)2

b = e−
(nxj−u)

2

b

(
e−

2(nxj−u)
b

)l
e−

l2

b .

where u = min In,m(xj) and l = 0, . . . , 2m. Note, that the first factor and the exponential
within the brackets are constant for each fixed node xj . Once, we evaluate the second expo-
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nential, its l-th power can be computed consecutively by multiplications only. Furthermore,
the last exponential is independent of xj and these 2m + 1 values are computed only once
within the NFFT and their amount is negligible. Thus, it is sufficient to store or evaluate 2M
exponentials for d = 1. The case d > 1 uses 2dM storages or evaluations by using the general
tensor product structure. This method is employed by the flags FG PSI and PRE FG PSI for
the evaluation or storage of 2d exponentials per node, respectively.

No precomputation of the window function

The last considered method uses no precomputation at all, but rather evaluates the univariate
window function d(2m+ 1)M times. Thus, the computational time depends on how fast we
can evaluate the particular window function. However, no additional storage is necessary
which suits this approach whenever the problem size reaches the memory limits of the used
computer. This method carries out for each node at most 2(2m+ 1)d extra multiplications.

2.4 Further NFFT approaches

Several papers have described fast approximations for the NFFT. Common names for NFFT
are non-uniform fast Fourier transform [24], generalised fast Fourier transform [15], unequally-
spaced fast Fourier transform [7], fast approximate Fourier transforms for irregularly spaced
data [57], non-equispaced fast Fourier transform [26] or gridding [54, 30, 42].

In various papers, different window functions were considered, e.g. Gaussian pulse tapered
with a Hanning window in [14], Gaussian kernels combined with Sinc kernels in [42], and
special optimised windows in [30, 14].

A simple but nevertheless fast scheme for the computation of (2.3) in the univariate case
d = 1 is presented in [1]. This approach uses for each node xj ∈ [−1

2 ,
1
2) a m-th order Taylor

expansion of the trigonometric polynomial in (2.1) about the nearest neighbouring point on
the oversampled equispaced lattice {n−1k− 1

2}k=0,...,n−1 where again n = σN, σ � 1. Besides
its simple structure and only O(N logN + M) arithmetic operations, this algorithm utilises
m FFTs of size n compared to only one in the NFFT approach, uses a medium amount of
extra memory, and is not suited for highly accurate computations, see [36]. Furthermore, its
extension to higher dimensions has not been considered so far.

Another approach for the univariate case d = 1 is considered in [16] and based on a Lagrange
interpolation technique. After taking a N -point FFT of the vector f̂ in (2.3) one uses an
exact polynomial interpolation scheme to obtain the values of the trigonometric polynomial
f at the nonequispaced nodes xj . Here, the time consuming part is the exact polynomial
interpolation scheme which can however be realised fast in an approximate way by means
of the fast multipole method. This approach is appealing since it allows also for the inverse
transform. Nevertheless, numerical experiments in [16] showed that this approach is far more
time consuming than Algorithm 1 and the inversion can only be computed in a stable way
for almost equispaced nodes [16].

Furthermore, special approaches based on scaling vectors [40], based on minimising the
Frobenius norm of certain error matrices [41] or based on min-max interpolation [24] are
proposed. While these approaches gain some accuracy for the Gaussian or B-Spline windows,
no reasonable improvement is obtained for the Kaiser-Bessel window function.

For comparison of different approaches, we refer to [57, 41, 24, 36].
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3 Generalisations and inversion

We consider generalisations of the NFFT for

3.1 NNFFT - nonequispaced in time and frequency fast Fourier transform

Now we are interested in the computation of

fj =
N−1∑
k=0

f̂ke
−2πi(vk�N)xj

for j = 0, . . . ,M − 1, vk,xj ∈ Td, and f̂k ∈ C, where N ∈ Nd denotes the ”nonharmonic”
bandwidth. The corresponding fast algorithm is known as fast Fourier transform for noneq-
uispaced data in space and frequency domain (NNFFT) [15, 18, 52] or as type 3 nonuniform
FFT [38].

A straightforward evaluation of this sum with the standard NFFT is not possible, since the
samples in neither domain are equispaced. However, an so-called NNFFT was first suggested
in [15] and later studied in more depth in [18], which permits the fast calculation of the Fourier
transform of a vector of nonequispaced samples at a vector of nonequispaced positions. It
constitutes a combination of the standard NFFT and its adjoint see also [52].

3.2 NFCT/NFST - nonequispaced fast (co)sine transform

Let nonequispaced nodes xj ∈ [0, 12 ]d and frequencies k in the index sets

ICN :=
{
k = (kt)t=0,...,d−1 ∈ Zd : 0 ≤ kt < Nt, t = 0, . . . , d− 1

}
,

ISN :=
{
k = (kt)t=0,...,d−1 ∈ Zd : 1 ≤ kt < Nt, t = 0, . . . , d− 1

}
be given. For notational convenience let furthermore cos(k�x) := cos(k0x0)·. . .·cos(kd−1xd−1)
and sin(k � x) := sin(k0x0) · . . . · sin(kd−1xd−1).

The nonequispaced discrete cosine and sine transforms are given by

f (xj) =
∑
k∈ICN

f̂k cos(2π(k � xj)),

f (xj) =
∑
k∈ISN

f̂k sin(2π(k � xj)),

for j = 0, . . . ,M − 1 and real coefficients f̂k ∈ R, respectively.

The straight forward algorithm of this matrix vector product, which is called ndct and
ndst, takes O(M |ICN |) and O(M |ICN |) arithmetical operations. For these real transforms the
adjoint transforms coincide with the ordinary transposed matrix vector products. Our fast
approach is based on the NFFT and seems to be easier than the Chebyshev transform based
derivation in [44] and faster than the algorithms in [56] which still use FFTs. Instead of FFTs
we use fast algorithms for the discrete cosine transform (DCT–I) and for the discrete sine
transform (DST–I). For details we refer to [22].
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3.3 NSFFT - nonequispaced sparse fast Fourier transform

We consider the fast evaluation of trigonometric polynomials from so-called hyperbolic crosses.
In multivariate approximation one has to deal with the so called ‘curse of dimensionality’,
i.e., the number of degrees of freedom for representing an approximation of a function with a
prescribed accuracy depends exponentially on the dimensionality of the considered problem.
This obstacle can be circumvented to some extend by the interpolation on sparse grids and the
related approximation on hyperbolic cross points in the Fourier domain, see, e.g., [58, 53, 9].

Instead of approximating a Fourier series on the standard tensor product grid I(N,...,N)

with O(Nd) degrees of freedom, it can be approximated with only O(N logd−1N) degrees of
freedom from the hyperbolic cross

Hd
N :=

⋃
N∈Nd, |IN |=N

IN ,

where N = 2J+2, J ∈ N0 and we allow Nt = 1 in the t-th coordinate in the definition of IN .
The approximation error in a suitable norm (dominated mixed smoothness) can be shown to
deteriorate only by a factor of logd−1N , cf. [53].

Figure 3.1: Hyperbolic cross points for d = 2 and J = 0, . . . , 3.

The nonequispaced sparse discrete Fourier transform (NSDFT) is the evaluation of

f (xj) =
∑

k∈Hd
N

f̂ke−2πikxj

for given Fourier coefficients f̂k ∈ C and nodes xj ∈ Td. The number of used arithmetical
operations is O(MN logd−1N). This is reduced by our fast schemes to O(N log2N +M) for
d = 2 and O(N3/2 logN +M) for d = 3, see [20] for details.

3.4 FPT - fast polynomial transform

A discrete polynomial transform (DPT) is a generalisation of the DFT from the basis of
complex exponentials eikx to arbitrary systems of algebraic polynomials satisfying a three-term
recurrence relation. More precisely, let P0, P1, . . . : [−1, 1]→ R be a sequence of polynomials
that satisfies a three-term recurrence relation

Pk+1(x) = (αkx+ βk)Pk(x) + γkPk−1(x),
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with αk 6= 0, k ≥ 0, P0(x) := 1, and P−1(x) := 0. Clearly, every Pk is a polynomial of exact

degree k and typical examples are the classical orthogonal Jacobi polynomials P
(α,β)
k .

Now, let f : [−1, 1] → R be a polynomial of degree N ∈ N given by the finite linear
combination

f(x) =

N∑
k=0

akPk(x).

The discrete polynomial transform (DPT) and its fast version, the fast polynomial transform
(FPT), are the transformation of the coefficients ak into coefficients bk from the orthogonal ex-
pansion of f into the basis of Chebyshev polynomials of the first kind Tk(x) := cos(k arccosx),
i.e.,

f(x) =
N∑
k=0

bkTk(x).

A direct algorithm for computing this transformation needsO(N2) arithmetic operations. The
FPT algorithm implemented in the NFFT 3 library follows the approach in [51] and is based
on the idea of using the three-term-recurrence relation repeatedly. Together with a method for
fast polynomial multiplication in the Chebyshev basis and a cascade-like summation process,
this yields a method for computing the polynomial transform with O(N log2N) arithmetic
operations. For more detailed information, we refer the reader to [12, 13, 51, 44, 32] and the
references therein.

3.5 NFSFT - nonequispaced fast spherical Fourier transform

Fourier analysis on the sphere has, despite other fields, practical relevance in tomography,
geophysics, seismology, meteorology and crystallography. In analogy to the complex expo-
nentials eikx on the torus, the spherical harmonics form the orthogonal Fourier basis with
respect to the usual inner product on the sphere.

Spherical coordinates

Every point in R3 can be described in spherical coordinates by a vector (r, ϑ, ϕ)> with the
radius r ≥ 0 and two angles ϑ ∈ [0, π], ϕ ∈ [0, 2π). We denote by S2 the two-dimensional unit
sphere embedded into R3, i.e.

S2 :=
{
x ∈ R3 : ‖x‖2 = 1

}
and identify a point from S2 with the corresponding vector (ϑ, ϕ)>. The spherical coordinate
system is illustrated in Figure 3.2.

Legendre polynomials and associated Legendre functions

The Legendre polynomials Pk : [−1, 1] → R, k ≥ 0, as classical orthogonal polynomials are
given by their corresponding Rodrigues formula

Pk(x) :=
1

2kk!

dk

dxk
(
x2 − 1

)k
.
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Figure 3.2: The spherical coordinate system in R3: Every point ξ on a sphere with radius r
centred at the origin can be described by angles ϑ ∈ [0, π], ϕ ∈ [0, 2π) and the
radius r ∈ R+. For ϑ = 0 or ϑ = π the point ξ coincides with the North or the
South pole, respectively.

The associated Legendre functions Pnk : [−1, 1]→ R, k ≥ n ≥ 0 are defined by

Pnk (x) :=

(
(k − n)!

(k + n)!

)1/2 (
1− x2

)n/2 dn

dxn
Pk(x).

For n = 0, they coincide with the Legendre polynomials Pk = P 0
k . The associated Legendre

functions Pnk obey the three-term recurrence relation

Pnk+1(x) =
2k + 1

((k − n+ 1)(k + n+ 1))1/2
xPnk (x)− ((k − n)(k + n))1/2

((k − n+ 1)(k + n+ 1))1/2
Pnk−1(x)

for k ≥ n ≥ 0, Pnn−1(x) = 0, Pnn (x) =

√
(2n)!

2nn!

(
1− x2

)n/2
. For fixed n, the set {Pnk : k ≥ n}

forms a set of orthogonal functions, i.e.,

〈Pnk , Pnl 〉 =

∫ 1

−1
Pnk (x)Pnl (x)dx =

2

2k + 1
δk,l.

Again, we denote by P̄nk =
√

2k+1
2 Pnk the orthonormal associated Legendre functions. In the

following, we allow also for n < 0 and set Pnk := P−nk in this case.
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Spherical harmonics

The spherical harmonics Y n
k : S2 → C, k ≥ |n|, n ∈ Z, are given by

Y n
k (ϑ, ϕ) := Pnk (cosϑ) einϕ.

They form an orthogonal basis for the space of square integrable functions on the sphere, i.e.,

〈Y n
k , Y

m
l 〉 =

∫ 2π

0

∫ π

0
Y n
k (ϑ, ϕ)Y m

l (ϑ, ϕ) sinϑ dϑ dϕ =
4π

2k + 1
δk,lδn,m.

The orthonormal spherical harmonics are denoted by Ȳ n
k =

√
2k+1
4π Y n

k .

Hence, any square integrable function f : S2 → C has the expansion

f =
∞∑
k=0

k∑
n=−k

f̂(k, n)Ȳ n
k ,

with the spherical Fourier coefficients f̂(k, n) =
〈
f, Ȳ n

k

〉
. The function f is called bandlimited,

if f̂(k, n) = 0 for k > N and some N ∈ N. In analogy to the NFFT on the Torus T, we define
the sampling set

X :=
{

(ϑj , ϕj) ∈ S2 : j = 0, . . . ,M − 1
}

of nodes on the sphere S2 and the set of possible ”frequencies”

IN := {(k, n) : k = 0, 1, . . . , N ; n = −k, . . . , k} .

The nonequispaced discrete spherical Fourier transform (NDSFT) is defined as the evaluation
of the finite spherical Fourier sum

fj = f (ϑj , ϕj) =
∑

(k,n)∈IN

f̂nk Y
n
k (ϑj , ϕj) =

N∑
k=0

k∑
n=−k

f̂nk Y
n
k (ϑj , ϕj) (3.1)

for j = 0, . . . ,M − 1. In matrix vector notation, this reads f = Y f̂ with

f := (fj)
M−1
j=0 ∈ CM , fj := f (ϑj , ϕj) ,

Y := (Y n
k (ϑj , ϕj))j=0,...,M−1; (k,n)∈IN ∈ CM×(N+1)2 ,

f̂ :=
(
f̂nk

)
(k,n)∈IN

∈ C(N+1)2 .

The corresponding adjoint nonequispaced discrete fast spherical Fourier transform (adjoint
NDSFT) is defined as the evaluation of

ĥnk =

M−1∑
j=0

f (ϑj , ϕj)Y n
k (ϑj , ϕj)

for all (k, n) ∈ IN . Again, in matrix vector notation, this reads ĥ = Y H f .
The coefficients ĥnk are, in general, not identical to the Fourier coefficients f̂(k, n) of the

function f . However, provided that for the sampling set X a quadrature rule with weights
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Input: N ∈ N0, M ∈ N, spherical Fourier coefficients f̂ = (f̂nk )(k,n)∈IN ∈ C(N+1)2 ,

Input: a sampling set X = (ϑj , ϕj)
M−1
j=0 ∈ ([0, π]× [0, 2π))M .

for n = −N, . . . , N do
Compute the Chebyshev coefficients (bnk)Nk=0 of gn by a fast polynomial transform.

Compute the coefficients (cnk)Nk=−N from the coefficients (bnk)Mk=0.
end for
Compute the function values (f (ϑj , ϕj))

M−1
j=0 by evaluating the Fourier sum using a fast

two-dimensional NFFT.

Output: The function values f = (f (ϑj , ϕj))
M−1
j=0 ∈ CM .

Complexity: O
(
N2 log2N +M

)
.

Algorithm 3: Nonequispaced fast spherical Fourier transform (NFSFT)

Input: N ∈ N0, M ∈ N, a sampling set X = (ϑj , ϕj)
M−1
j=0 ∈ ([0, π]× [0, 2π))M ,

Input: values f̃ = (f̃j)
M−1
j=0 ∈ CM .

Compute the coefficients (c̃nk)Nk,n=−N from the values (fj)
N−1
j=0 .

for n = −N, . . . , N do

Compute the coefficients
(
b̃nk

)N
k=0

from the coefficients (c̃nk)Nk=−N .

Compute the coefficients (ãnk)Nk=|n| from the coefficients
(
b̃nk

)N
k=0

by a fast transposed

polynomial transform.
end for

Output: Coefficients h =
(
h̃nk

)
(k,n)∈IN

∈ C(N+1)2 .

Complexity: O
(
N2 log2N +M

)
.

Algorithm 4: Adjoint nonequispaced fast spherical Fourier transform (adjoint NFSFT)

wj , j = 0, . . . ,M − 1, and sufficient degree of exactness is available, one might recover the

Fourier coefficients f̂(k, n) by evaluating

f̂nk =

∫ 2π

0

∫ π

0
f(ϑ, ϕ)Y n

k (ϑ, ϕ) sinϑ dϑ dϕ =
M−1∑
j=0

wjf (ϑj , ϕj)Y n
k (ϑj , ϕj)

for all (k, n) ∈ IN .

Direct algorithms for computing the NDSFT and adjoint NDSFT transformations need
O(MN2) arithmetic operations. A combination of the fast polynomial transform and the
NFFT leads to approximate algorithms with O(N2 log2N+M) arithmetic operations. These
are denoted NFSFT and adjoint NFSFT, respectively. The NFSFT algorithm using the FPT
and the NFFT was introduced in [34] while the adjoint NFSFT variant was developed in [32].
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3.6 Solver - inverse transforms

In the following, we describe the inversion of the NFFT, i.e., the computation of Fourier
coefficients from given samples (xj , yj) ∈ Td×C, j = 0, . . . ,M−1. In matrix vector notation,
we aim to solve the linear system of equations

Af̂ ≈ y (3.2)

for the vector f̂ ∈ C|IN| . Note however that the nonequispaced Fourier matrix A can be
replaced by any other Fourier matrix from Section 3.

Typically, the number of samples M and the dimension of the space of the polynomials
|IN | do not coincide, i.e., the matrix A is rectangular. There are no simple inverses to

nonequispaced Fourier matrices in general and we search for some pseudoinverse solution f̂
†
,

see e.g. [8, p. 15]. However, we conclude from eigenvalue estimates in [19, 4, 35] that the
matrix A has full rank if

max
0≤t<d

Nt < cdδ
−1 , δ := 2 max

x∈Td
min

j=0,...,M−1
dist∞ (xj ,xl) ,

or

min
0≤t<d

Nt > Cdq
−1 , q := min

0≤j<l<M
dist∞ (xj ,xl) .

In what follows, we consider a weighted least squares solution for the over-determined case
and an optimal interpolation for the consistent underdetermined case. Both cases are solved
by means of iterative algorithms where Algorithm 1 and 2 are used for the matrix vector
multiplication with A and AH, respectively.

Least squares

For a comparative low polynomial degree |IN | < M the system (3.2) is over-determined, so
that in general the given data yj ∈ C, j = 0, . . . ,M − 1, will be only approximated up to the
residual r := f −Af̂ . One considers the weighted approximation problem

‖y −Af̂‖W =

M−1∑
j=0

wj |yj − f(xj)|2
1/2

f̂→ min,

which may incorporate weights wj > 0, W := diag(wj)j=0,...,M−1, to compensate for clusters
in the sampling set X . This least squares problem is equivalent to the weighted normal
equation of first kind

AHWAf̂ = AHWy. (3.3)

Applying the Landweber (also known as Richardson, ...), the steepest descent, or the con-
jugate gradient scheme to (3.3) yields the following Algorithms 5-7.

Interpolation

For a comparative high polynomial degree |IN | > M one expects to interpolate the given data
yj ∈ C, j = 0, . . . ,M − 1, exactly. The (consistent) linear system (3.2) is under-determined.
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Input: y ∈ CM , f̂0 ∈ C|IN |, α > 0

1: r0 = y −Af̂0

2: ẑ0 = AHWr0

3: for l = 0, . . . do
4: f̂ l+1 = f̂ l + αŴ ẑl

5: rl+1 = y −Af̂ l+1

6: ẑl+1 = AHWrl+1

7: end for

Output: f̂ l
Algorithm 5: Landweber

Input: y ∈ CM , f̂0 ∈ C|IN |

1: r0 = y −Af̂0

2: ẑ0 = AHWr0

3: for l = 0, . . . do
4: vl = AŴ ẑl

5: αl =
ẑH
l Ŵ ẑl

vH
l Wvl

6: f̂ l+1 = f̂ l + αlŴ ẑl

7: rl+1 = rl+1 − αlvl
8: ẑl+1 = AHWrl+1

9: end for

Output: f̂ l
Algorithm 6: Steepest descent

One considers the damped minimisation problem

‖f̂‖−1
Ŵ

=

∑
k∈IN

|f̂k|2
ŵk

1/2

f̂→ min subject to Af̂ = y,

which may incorporate ’damping factors’ ŵk > 0, Ŵ := diag(ŵk)k∈IN . A smooth solution

is favoured, i.e., a decay of the Fourier coefficients f̂k, k ∈ IN , for decaying damping factors
ŵk. This interpolation problem is equivalent to the damped normal equation of second kind

AŴAHf̃ = y, f̂ = ŴAHf̃ . (3.4)

Applying the conjugate gradient scheme to (3.4) yields the following Algorithm 8.
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Input: y ∈ CM , f̂0 ∈ C|IN |

1: r0 = y −Af̂0

2: ẑ0 = AHWr0

3: p̂0 = ẑ0

4: for l = 0, . . . do
5: vl = AŴ p̂l

6: αl =
ẑH
l Ŵ ẑl

vH
l Wvl

7: f̂ l+1 = f̂ l + αlŴ p̂l

8: rl+1 = rl − αlvl
9: ẑl+1 = AHWrl+1

10: βl =
ẑH
l+1Ŵ ẑl+1

ẑH
l Ŵ ẑl

11: p̂l+1 = βlp̂l + ẑl+1

12: end for

Output: f̂ l
Algorithm 7: Conjugate gradients for the normal equations, Residual minimisation (CGNR)

Input: y ∈ CM , f̂0 ∈ C|IN |

1: r0 = y −Af̂0

2: p̂0 = AHWr0

3: for l = 0, . . . do

4: αl =
rH
l Wrl

p̂H
l Ŵ p̂l

5: f̂ l+1 = f̂ l + αlŴ p̂l

6: rl+1 = rl − αlAŴ p̂l

7: βl =
rH
l+1Wrl+1

rH
l Wrl

8: p̂l+1 = βlp̂l +AHWrl+1

9: end for

Output: f̂ l
Algorithm 8: Conjugate gradients for the normal equations, Error minimisation (CGNE)
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4 Library

The library is completely written in C and uses the FFTW library [28] which has to be
installed on your system. The library has several options (determined at compile time) and
parameters (determined at run time).

4.1 Installation

Download from www.tu-chemnitz.de/∼potts/nfft the most recent version nfft3.x.x.tgz.
In the following, we assume that you use a bash compatible shell. Uncompress the archive.

• tar xfvz nfft3.x.x.tar.gz

Change to the newly created directory.

• cd nfft3.x.x

Optional: Set environment variables (see also below). Leave this step out, if you are unsure
what to do. Example:

• export CPPFLAGS="-I/path/to/include/files"

• export LDFLAGS="-L/path/to/libraries"

Run the configure script.

• ./configure

Compile the sources.

• make

This builds the NFFT 3 library and all examples and applications. You can run make install

to install the library on your system. If for example /usr is your default installation di-
rectory, make install will copy the NFFT 3 library to /usr/lib, the C header files to
/usr/include/nfft and the documentation together with all examples and applications to
/usr/share/nfft.

For more information on fine grained control over the installation directories, run the
configure script with the option --help, i.e. ./configure --help. For example, to see
what gets installed, run ./configure --prefix=some/path/to/a/temporary/directory in
the line of commands above. After make and make install, you will find all installed files in
the directory structure created under the temporary directory.

The following options can also be used in conjunction with the configure script: By de-
fault, NFFT 3 routines use the Kaiser-Bessel window function (see Appendix 2.2). You can
change the window function with the option --with-window=ARG, where ARG is replaced by
kaiserbessel (Kaiser-Bessel), gaussian (Gaussian), bspline (B-spline), sinc (sinc power)
or delta (Dirac delta) to yield the window function in parenthesis.

The NFFT transforms can be configured to measure elapsed time for each step of Algo-
rithm 1 and 2. This should help customise the library to one’s needs. You can enable this
behaviour with the options --enable-measure-time and/or --enable-measure-time-fftw.
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4.2 Procedure for computing an NFFT

One has to follow certain steps to write a simple program using the NFFT library. A complete
example is shown in Section 5.1. The first argument of each function is a pointer to a
application-owned variable of type nfft plan. The aim of this structure is to keep interfaces
small, it contains all parameters and data.

Initialisation

Initialisation of a plan is done by one of the nfft init-functions. The simplest version for the
univariate case d = 1 just specifies the number of Fourier coefficients N0 and the number of
nonequispaced nodes M . For an application-owned variable nfft plan my plan the function
call is

nfft init 1d(&my plan,N0,M);

The first argument should be uninitialised. Memory allocation is completely done by the init
routine.

Setting nodes

One has to define the nodes xj ∈ Td for the transformation in the member variable my plan.x.
The t-th coordinate of the j-th node xj is assigned by

my plan.x[d*j+t]= /* your choice in [-0.5,0.5] */;

Precompute ψ̃

The precomputation of the values ψ̃
(
xj − n−1 � l

)
, i.e. the entries of the matrix B, depends

on the choice for my plan.x. If one of the proposed precomputation strategies (PRE LIN PSI,
PRE FG PSI, PRE PSI, or PRE FULL PSI) is used, one has to call the appropriate precomputa-
tion routine AFTER setting the nodes. For simpler usage this has been summarised by

if(my plan.flags & PRE ONE PSI) nfft precompute one psi(&my plan);

Note furthermore, that

1. FG PSI and PRE FG PSI rely on the Gaussian window function,

2. PRE LIN PSI is actual node independent and in this case the precomputation can be
done before setting nodes,

3. PRE FULL PSI asks for quite a bit of memory.

Doing the transform

Algorithm 1 is implemented as

nfft trafo(&my plan);
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takes my plan.f hat as its input and overwrites my plan.f. One only needs one plan for
several transforms of the same kind, i.e. transforms with equal initialisation parameters. For
comparison, the direct calculation of (2.3) is done by ndft trafo. The adjoint transforms
are given by nfft adjoint and ndft adjoint, respectively.

All data with multi-indices is stored plain, in particular the Fourier coefficient f̂k is stored
in my plan.f hat[k] with k :=

∑d−1
t=0 (kt + Nt

2 )
∏d−1
t′=t+1Nt′ .

Finalisation

All memory allocated by the init routine is deallocated by

nfft finalize(&my plan);

Note, that almost all (de)allocation operations of the library are done by fftw malloc and
fftw free. Additional data, declared and allocated by the application, have to be deallocated
by the user’s program as well.

Data structure and functions

The library defines the structure nfft plan, the most important members are listed in Table
4.1. Moreover, the user functions for the NFFT are collected in Table 4.2. They all have
return type void and their first argument is of type nfft plan*.

Type Name Size Description

int d 1 Spatial dimension d

int* N d Multibandwidth N

int N total 1 Number of coefficients |IN |
int M total 1 Number of nodes M

double complex* f hat |IN | Fourier coefficients f̂ or

adjoint coefficients ĥ

double complex* f M Samples f

double* x dM Sampling set X

Table 4.1: Interesting members of nfft plan.

4.3 Generalisations and nomenclature

The generalisations to the nonequispaced FFT in time and frequency domain, the nonequi-
spaced fast (co)sine transform, and the nonequispaced sparse FFT are based on the same
procedure as the NFFT. In the following we give some more details for the nonequispaced
fast spherical Fourier transform.

NFSFT

Compared to the NFFT routines, the NFSFT module shares a similar basic procedure for
computing the transformations. It differs, however, slightly in data layout and function
interfaces.
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Name Additional arguments

ndft trafo

ndft adjoint

nfft trafo

nfft adjoint

nfft init 1d int N0, int M

nfft init 2d int N0, int N1, int M

nfft init 3d int N0, int N1, int N2, int M

nfft init int d, int* N, int M

nfft init guru int d, int* N, int M, int* n, int m,

unsigned nfft flags, unsigned fftw flags

nfft precompute one psi

nfft check

nfft finalize

Table 4.2: User functions of the NFFT.

The NFSFT routines depend on initially precomputed global data that limits the maximum
degree N that can be used for computing transformations. This precomputation has to be
performed only once at program runtime regardless of how many individual transform plans
are used throughout the rest. This is done by

nfsft_precompute(N,1000,0U,0U);

Here, N is the maximum degree that can be used in all subsequent transformations, 1000 is
the threshold for the FPTs used internally, and 0U and 0U are optional flags for the NFSFT
and FPT. If you are unsure which values to use, leave the threshold at 1000 and the flags at
0U.

Initialisation of a plan is done by calling one of the nfsft_init-functions. We need no
dimension parameter here, as in the NFFT case. The simplest version is a call to nfsft_init

specifying only the bandwidth N and the number of nonequispaced nodes M . For an
application-owned variable nfsft_plan my_plan the function call is

nfsft_init(&my_plan,N,M);

The first argument should be uninitialised. Memory allocation is completely done by the init
routine.

After initialising a plan, one defines the nodes (ϑj , ϕj) ∈ [0, 2π) × [0, π] in spherical coor-
dinates in the member variable my_plan.x. For consistency with the other modules and the
conventions used there, we use swapped and scaled spherical coordinates

ϕ̃ :=

{
ϕ
2π , if 0 ≤ ϕ < π,
ϕ
2π − 1, if π ≤ ϕ < 2π,

ϑ̃ :=
ϑ

2π

and identify a point from S2 with the vector (ϕ̃, ϑ̃) ∈ [−1
2 ,

1
2) × [0, 12 ]. The angles ϕ̃j and ϑ̃j

for the j-th node are assigned by
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my_plan.x[2*j] = /* your choice in [-0.5,0.5] */;

my_plan.x[2*j+1] = /* your choice in [0,0.5] */;

After setting the nodes, the same node-dependent (see the exception above) precomputation
as for the NFFT has to be performed. This is done by

nfsft_precompute_x(&my_plan);

which itself calls nfft_precompute_one_psi(&my_plan) as explained above. You might mod-
ify the precomputation strategy by passing the appropriate NFFT flags to one of the more ad-
vanced nfsft_init routines. Setting the spherical Fourier coefficients f̂nk in my_plan.f_hat

should be done using the helper macro NFSFT_INDEX. This reads

for (k = 0; k <= N; k++)

for (n = -k; n <= k; n++)

my_plan.f_hat[NFSFT_INDEX(k,n,&plan)] = /* your choice */;

For the NFSFT, spherical Fourier coefficients are stored in a fashion different from the NFFT.
You should always use the helper macro NFSFT_INDEX for setting the spherical Fourier coeffi-
cients. If, in place of a NFSFT transformation, you would like to perform an adjoint NFSFT
transformation, you set the values f (ϑj , ϕj) in my_plan.f as follows:

for (j = 0; j < M; j++)

my_plan.f[j] = /* your choice */;

The actual transforms are computed by calling either nfsft_trafo(&my_plan) for the
NFSFT (see Algorithm 3) or nfsft_adjoint(&my_plan) for the adjoint NFSFT (see Al-
gorithm 4). Remember, that you must make sure that my_plan.x and my_plan.f_hat or
my_plan.f have been initialised appropriately prior to calling the corresponding transfor-
mation routine. On execution, nfsft_trafo overwrites my_plan.f while nfsft_adjoint

overwrites my_plan.f_hat. One only needs one plan for several transforms of the same kind,
i.e. transforms with equal initialisation parameters. For comparison, the direct calculation of
(3.1) and (3.5) are done by ndsft_trafo and ndsft_adjoint, respectively.

All memory allocated by the init routine is deallocated by

nfsft_finalize(&my_plan);

while the memory allocated by nfsft_precompute gets freed by calling

nfsft_forget();

Additional data, declared and allocated by the application, has to be deallocated by the user’s
program as well.

The library defines the structure nfsft_plan, the most important members are listed in
Table 4.3. The structure contains, public read-only (r) and public read-write (w) members.
The user functions for the NFSFT are collected in Table 4.4.

Some more things should be kept in mind when using the NFSFT module:

• The bandwidth Nmax up to which global precomputation is performed when calling
nfsft_precompute is always chosen as the next power of two with respect to the spec-
ified maximum bandwidth N .
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Type Name Size Type Description

int N 1 r Bandwidth N
int N_total 1 r Set to 4|IN | = 4(N + 1)2,

quadruple of the number of Fourier coefficients
int M_total 1 r Total number of nodes M

double complex* f_hat 4|IN | w Fourier coefficients f̂ or

adjoint coefficients ĥ
double complex* f M w Samples f

double* x M w Sampling set X

Table 4.3: Interesting members of nfsft plan.

Name Additional arguments

nfsft_precompute int N, double threshold,

unsigned int nfsft_flags, unsigned int fpt_flags

nfsft_init int N, int M

nfsft_init_advanced int N, int M, unsigned int nfsft_flags

nfsft_init_guru int N, int M, unsigned int nfsft_flags,

int nfft_flags, int nfft_cutoff

nfsft_precompute_x

ndsft_trafo

ndst_adjoint

nfsft_trafo

nfsft_adjoint

nfsft_finalize

nfsft_forget

Table 4.4: User functions of the NFSFT.

• By default, the NDSFT and NFSFT transformations, ndsft_trafo and nfsft_trafo,
are allowed to destroy the input f_hat while the input x is preserved. On the contrary,
the adjoint NDSFT and NFSFT transformations, ndsft_adjoint and nfsft_adjoint,
do not destroy the input f and x by default. The desired behaviour can be as-
sured by using the NFSFT_PRESERVE_F_HAT, NFSFT_PRESERVE_X, NFSFT_PRESERVE_F

and NFSFT_DESTROY_F_HAT, NFSFT_DESTROY_X, NFSFT_DESTROY_F flags.

4.4 Inversion and solver module

The flow chart in Figure 4.1 shows how to use the inverse transforms as implemented in the
solver module of the library. There is no general stopping rule implemented, since this task
is highly dependent on the particular application.

Each inverse transform basically wraps an already initialised Fourier transform. The user
specifies one of the Algorithms 5-8 by setting one of the flags (LANDWEBER, STEEPEST DESCENT,
CGNR, CGNE). Weights and/or damping factors are used if the flags PRECOMPUTE WEIGHT,
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Initialise the Fourier transform.

Initialise the corresponding inverse.

Compute residuals.

Compute one iteration.

Stop?

Finalise the inverse transform.

Finalise the Fourier transform.

yes

no

Figure 4.1: Flow chart of the inverse transforms.

PRECOMPUTE DAMP are set and one has to initialise the members my iplan.w, my iplan.w hat

in these cases. Default flags are CGNR.
In case of the NFFT, the library defines the structure infft plan. The members of this

plan are given by Table 4.5. The user functions for the inverse NFFT are collected in Table 4.6.
They all have return type void and their first argument is of type infft plan*. Replacing
nfft by any other Fourier transform gives the appropriate inverse to this transform.
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Type Name Size Description

double* w M total weights w

double* w hat N total damping factors ŵ

(FLT TYPE)* y M total right hand side y

(FLT TYPE)* f hat iter N total actual solution

(FLT TYPE)* r iter M total residual vector rl+1

double dot r iter 1 ‖rl+1‖2W

Table 4.5: More important members of each inverse plan, where (FLT TYPE) is double for the
NFCT and NFST and double complex in all other cases.

Name Additional arguments

infft init nfft plan *mv

infft init advanced nfft plan *mv, unsigned infft flags

infft before loop

infft loop one step

infft finalize

Table 4.6: User functions of the inverse NFFT.
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5 Examples

The library was tested on a AMD Athlon(tm) XP 2700+, 1GB memory, SuSe-Linux, kernel
2.4.20-4GB-athlon, gcc version 3.3. In all tests with random input the nodes xj and the

Fourier coefficients f̂k are chosen pseudo randomly with xj ∈ [−0.5, 0.5]d and f̂k ∈ [0, 1] ×
[0, 1]i.

5.1 Computing your first transform

The following code summarises the steps of Section 4.2 and computes a univariate NFFT
from 14 Fourier coefficients and 19 nodes. Note that this routine is part of simple test.c in
examples/nfft/.

void simple_test_nfft_1d()

{

nfft_plan p;

int N=14;

int M=19;

nfft_init_1d(&p,N,M);

nfft_vrand_shifted_unit_double(p.x,p.M_total);

if(p.nfft_flags & PRE_ONE_PSI)

nfft_precompute_one_psi(&p);

nfft_vrand_unit_complex(p.f_hat,p.N_total);

nfft_vpr_complex(p.f_hat,p.N_total,"given Fourier coefficients, f_hat");

nfft_trafo_direct(&p);

nfft_vpr_complex(p.f,p.M_total,"ndft, f");

nfft_trafo(&p);

nfft_vpr_complex(p.f,p.M_total,"nfft, f");

nfft_finalize(&p);

}

5.2 Computation time vs. problem size

The program nfft times in the same directory compares the computation time of the FFT
([28], FFTW MEASURE), the straightforward evaluation of (2.2), denoted by NDFT, and the
NFFT for increasing total problem sizes |IN | and space dimensions d = 1, 2, 3, where N =
(N, . . . , N)>, N ∈ N. While the nodes for the FFT are restricted to the lattice N−1 � IN ,
we choose M = Nd random nodes for the NDFT and the NFFT. Within the latter, we use
the oversampling factor σ = 2, the cut-off m = 4, and the Kaiser-Bessel window function
(PRE PSI, PRE PHI HUT). This results in a fixed accuracy of E∞ := ‖f − s‖∞/‖f̂‖1 ≈ 10−8

for d = 1, 2, 3.
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lN FFT NDFT NFFT lN FFT NDFT NFFT

d = 1 d = 2

3 1.3e− 07 8.7e− 06 4.6e− 06 6 9.9e− 07 5.7e− 04 3.2e− 04
4 2.0e− 07 3.5e− 05 8.7e− 06 8 4.4e− 06 9.2e− 03 1.3e− 03
5 4.0e− 07 1.4e− 04 1.7e− 05 10 2.1e− 05 1.5e− 01 5.2e− 03
6 8.9e− 07 5.6e− 04 3.6e− 05 12 1.2e− 04 2.4e+ 00 2.3e− 02
7 2.2e− 06 2.2e− 03 7.2e− 05 14 1.7e− 03 3.8e+ 01 1.5e− 01
8 4.8e− 06 9.0e− 03 1.4e− 04 16 2.1e− 02 * 6.8e− 01
9 1.1e− 05 3.6e− 02 2.9e− 04 18 8.4e− 02 * 2.8e+ 00

10 2.4e− 05 1.4e− 01 6.0e− 04 20 3.2e− 01 * 1.2e+ 01
11 5.7e− 05 5.8e− 01 1.4e− 03 22 1.4e+ 00 * 5.3e+ 01
12 1.5e− 04 2.3e+ 00 3.2e− 03 d = 3
13 5.5e− 04 9.4e+ 00 8.2e− 03 9 1.0e− 05 3.7e− 02 2.5e− 02
14 1.7e− 03 3.8e+ 01 2.0e− 02 12 1.1e− 04 2.4e+ 00 2.5e− 01
15 3.8e− 03 1.5e+ 02 4.9e− 02 15 3.4e− 03 1.5e+ 02 2.4e+ 00
16 8.2e− 03 * 1.2e− 01 18 5.2e− 02 * 2.1e+ 01
17 1.9e− 02 * 2.4e− 01 21 9.0e− 01 * 1.8e+ 02
18 4.5e− 02 * 3.6e− 01
19 9.2e− 02 * 9.8e− 01
20 1.9e− 01 * 2.1e+ 00
21 4.2e− 01 * 4.2e+ 00
22 1.0e− 00 * 9.5e+ 00

Table 5.1: Computation time in seconds with respect to lN = log2 |IN |. Note that we used ac-
cumulated measurements in case of small times and the times (*) are not displayed
due to the large response time in comparison to the FFT time.

We conclude the following: The FFT and the NFFT show the expected O(|IN | log |IN |)
time complexity, i.e., doubling the total size |IN | results in only slightly more than twice
the computation time, whereas the NDFT behaves as O(|IN |2). Note furthermore, that the
constant in the O-notation is independent of the space dimension d for the FFT and the
NDFT, whereas the computation time of the NFFT increases considerably for larger d.

5.3 Accuracy vs. window function and cut-off parameter m

The accuracy of the Algorithm 1, measured by

E2 =
‖f − s‖2
‖f‖2

=

M−1∑
j=0

|fj − s (xj) |2/
M−1∑
j=0

|fj |2
 1

2

and

E∞ =
‖f − s‖∞
‖f̂‖1

= max
0≤j<M

|fj − s (xj) |/
∑
k∈IN

|f̂k|

is shown in Figure 5.1.
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Figure 5.1: The error E2 (top) and E∞ (bottom) with respect to m, from left to right d =
1, 2, 3 (N = 212, 26, 24, σ = 2, M = 10000), for Kaiser Bessel- (circle), Sinc- (x),
B-Spline- (+), and Gaussian window (triangle).

5.4 Computing an inverse transform

The usage of the inverse NFFT is demonstrated by simple test in examples/solver. Exe-
cuting the MatLab script glacier.m in the same directory produces the following two plots.
Note that the corresponding C-file glacier.c is called from the MatLab script.

Figure 5.2: Reconstruction of the glacier from samples at M = 8345 nodes (vol87.dat from
[27]) with N0 = N1 = 256 and 40 iterations.
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6 Applications

In this section we describe important applications which are based on the NFFT kernel. One
can find these programs in the directory applications.

6.1 Summation of smooth and singular kernels

We are interested in the fast evaluation of linear combinations of radial functions, i.e. the
computation of

g
(
yj
)

:=

N∑
k=1

αkK
(∥∥yj − xk∥∥2)

for j = 1, . . . ,M and nodes xk,yj ∈ Rd. For smooth kernels K with an additional parameter

c > 0, e.g. the Gaussian K(x) = e−x
2/c2 , the multiquadric K(x) =

√
x2 + c2 or the inverse

multiquadric K(x) = 1/
√
x2 + c2 our algorithm requires O(N + M) arithmetic operations.

In the case of singular kernels K, e.g.,

1

x2
,

1

|x| , log |x|, x2 log |x|, 1

x
,

sin(cx)

x
,

cos(cx)

x
, cot(cx)

an additional regularisation procedure must be incorporated and the algorithm has the arith-
metic complexity O(N logN + M) or O(M logM + N) if either the target nodes yj or the
source nodes xk are “reasonably uniformly distributed”.

Note that the proposed fast algorithm [49, 50, 23] generalises the diagonalisation of convo-
lution matrices by Fourier matrices to the setting of arbitrary nodes. In particular, this yields
nearly the same arithmetic complexity as the FMM [5] while allowing for an easy change of
various kernels. A recent application in particle simulation is given in [43]. The directory
applications/fastsum contains C and MatLab programs that show how to use the fast
summation method.

6.2 Fast Gauss transform

This is a special case of the fast summation method, we compute approximations of the
following sums. Given complex coefficients αk ∈ C and source nodes xk ∈ [−1

4 ,
1
4 ], our goal

consists in the fast evaluation of the sum

g (y) =
N∑
k=1

αke
−σ|y−xk|2

at the target nodes yj ∈ [−1
4 ,

1
4 ], j = 1, . . . ,M , where σ = a + ib, a > 0, b ∈ R, denotes

a complex parameter. For details see [37] and the related paper [2] for applications. All
numerical examples of [37] are produced by the programs in applications/fastgauss.

6.3 Summation of zonal functions on the sphere

Given M,N ∈ N, arbitrary source nodes ηk ∈ S2 and real coefficients αk ∈ R, evaluate the
sum

g (ξ) :=

N∑
k=1

αkK (ηk · ξ)
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at the target nodes ξj ∈ S2, j = 1, . . . ,M . The naive approach for evaluating this sum takes
O(MN) floating point operations if we assume that the zonal function K can be evaluated
in constant time or that all values K(ηk · ξj) can be stored in advance.

In contrast, our scheme is based on the nonequispaced fast spherical Fourier transform, has
arithmetic complexity O(M +N), and can be easily adapted to such different kernels K as

1. the Poisson kernel Qh : [−1, 1]→ R with h ∈ (0, 1) given by

Qh(x) :=
1

4π

1− h2

(1− 2hx+ h2)3/2
,

2. the singularity kernel Sh : [−1, 1]→ R with h ∈ (0, 1) given by

Sh(x) :=
1

2π

1

(1− 2hx+ h2)1/2
,

3. the locally supported kernel Lh,λ : [−1, 1]→ R with h ∈ (−1, 1) and λ ∈ N0 given by

Lh,λ(x) :=

{
0 if −1 ≤ x ≤ h,

λ+1
2π(1−h)λ+1 (x− h)λ if h < x ≤ 1,

or

4. the spherical Gaussian kernel Gσ : [−1, 1]→ R with σ > 0

Gσ(x) := e2σx−2σ .

For details see [31], all corresponding numerical examples can be found in applications

/fastsumS2.

6.4 Iterative reconstruction in magnetic resonance imaging

In magnetic resonance imaging (MRI) the raw data is measured in k-space, the domain of
spatial frequencies. Methods that use a non-Cartesian sampling grid in k-space, e.g. a spiral,
are becoming increasingly important. Reconstruction is usually performed by resampling the
data onto a Cartesian grid and the usage of the standard FFT - often denoted by gridding.
Another approach, the inverse model, is based on an implicit discretisation. Both discreti-
sations are solved efficiently by means of the NFFT and the inverse NFFT, respectively.
Furthermore, a unified approach to field inhomogeneity correction has been included, see
[33, 17] for details.

6.5 Computation of the polar FFT

The polar FFT is a special case of the NFFT, where one computes the Fourier transform
on particular grids. Of course, the polar as well as a so-called pseudo-polar FFT can be
computed very accurately and efficiently by the NFFT. Furthermore, the reconstruction of a
2d signal from its Fourier transform samples on a (pseudo-)polar grid by means of the inverse
nonequispaced FFT is possible under certain density assumptions. For details see [21] and
for further applications [3].
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Furthermore we are able to give a unified approach to the field inhomogeneity correction. For
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9.5 Computation of the polar FFT

The polar FFT is a special case of the NFFT, where we compute the Fourier transform on
special grids. We show that the polar as well as the pseudo-polar FFT can be computed very
accurately and efficiently by the NFFT. Furthermore, we discuss the reconstruction of a 2d
signal from its Fourier transform samples on a (pseudo-)polar grid by means of the inverse
nonequispaced FFT. For details see [18] and for further applications [2].
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Figure 9.1: Left to right: polar, modified polar, and linogram grid of size R = 16, T = 32.

9.6 Radon transform and computer tomography

We are interested in efficient and high quality reconstructions of digital N×N medical images
from their Radon transform. The standard reconstruction algorithm, the filtered backprojec-
tion, ensures a good quality of the images at the expense of O(N3) arithmetic operations.
Fourier reconstruction methods reduce the number of arithmetic operations to O(N2 logN).
Unfortunately, the straightforward Fourier reconstruction algorithm suffers from unacceptable
artifacts so that it is useless in practice. A better quality of the reconstructed images can be
achieved by our algorithm based on NFFTs. For details see [45, 44, 46].

9.7 Ridgelet transform

Ridgelets have been designed by Cand‘es et. all. (see e.g. [10]) to deal with line singularities
effectively by mapping them into point singularities using the Radon transform.

The discrete ridgelet transform is designed by first using a discrete Radon transform based
on NFFT and then applying a dual-tree complex wavelet transform.
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6.6 Radon transform, computer tomography, and ridgelet transform

We are interested in efficient and high quality reconstructions of digital N×N medical images
from their Radon transform. The standard reconstruction algorithm, the filtered backprojec-
tion, ensures a good quality of the images at the expense of O(N3) arithmetic operations.
Fourier reconstruction methods reduce the number of arithmetic operations to O(N2 logN).
Unfortunately, the straightforward Fourier reconstruction algorithm suffers from unacceptable
artifacts so that it is useless in practice. A better quality of the reconstructed images can
be achieved by our algorithm based on NFFTs. For details see [47, 46, 48] and the directory
applications/radon.

Another application of the discrete Radon transform is the discrete Ridgelet transform, see
e.g. [10]. A simple test program for denoising an image by hard thresholding the ridgelet
coefficients can be found in applications/radon. It uses the NFFT-based discrete Radon
transform and the translation-invariant discrete Wavelet transform based on MatLab toolbox
WaveLab850 [11]. See [39] for details.
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