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What is this course about?

spectral theory

Fredholm theory

stable approximation

of infinite matrices (aij), understood as bounded linear operators
on a sequence space E .

Simplest example: E = ℓ2(ℤ,ℂ)⎛⎜⎜⎝
. . .

... . .
.

⋅ ⋅ ⋅ aij ⋅ ⋅ ⋅

. .
. ...

. . .

⎞⎟⎟⎠ :

⎛⎜⎜⎝
...

xj
...

⎞⎟⎟⎠ 7→

⎛⎜⎜⎝
...

bi
...

⎞⎟⎟⎠
with indices i , j ∈ ℤ and entries aij , xj , bi ∈ ℂ
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ℓp sequence spaces

In what follows, we consider sequence spaces such as

E = ℓ2(ℤ,ℂ)

with

p ∈ [1,∞]

N ∈ ℕ
X ... complex Banach space

Clearly, the entries of a matrix (aij) acting on E also need to be
indexed by i , j ∈ ℤN , and the entries aij are themselves bounded
linear operators X → X .
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Vector-valued ℓp-spaces

x ∈ E = ℓp(ℤN ,X ) iff x = (xk)k∈ℤN with xk ∈ X for k ∈ ℤN and

∥x∥E := p

√∑
k∈ℤN

∥xk∥pX < ∞, p <∞,

∥x∥E := sup
k∈ℤN

∥xk∥X < ∞, p =∞.

Somewhat more complicated case

E = Lp(ℝN) ∼= ℓp(ℤN ,X ), X = Lp([0, 1]N)

via identification of f ∈ Lp(ℝN) with (f ∣�+[0,1]N )�∈ℤN
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Operators: Some first notations

Let E = ℓp(ℤN ,X ) be one of our sequence spaces.
Then we denote by

L(E ) ... space of all bounded linear operators E → E ,

K (E ) ... space of all compact operators E → E .

Important:

L(E ) is a Banach algebra and
K (E ) is a closed two-sided ideal in L(E ).
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Two basic types of operators

shift operators, Vk

V := V1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . 0
1 0

1 0
1 0

1 0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x-2
x-1
x0

x1

x2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
7→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x-3
x-2
x-1
x0

x1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
in general: (Vkx)i = xi−k with i , k ∈ ℤN

shift operators are isometric and invertible

multiplication operators, Mb
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Two basic types of operators

shift operators, Vk

multiplication operators, Mb⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

b-2

b-1

b0

b1

b2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x-2
x-1
x0

x1

x2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
7→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
b-2x-2
b-1x-1
b0x0

b1x1

b2x2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Mb is bounded if b = (bk) is so; ∥Mb∥ = ∥b∥∞
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Two basic types of operators

shift operators, Vk

multiplication operators, Mb

Now let them mingle: Take

scalar multiples

sums

products

or combinations of those.

=⇒ an operator algebra
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An algebra of shifts and multiplications

Typical elements of the algebra look like this:

A = V 2Mb + 3Mb + MaV−1

i.e.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 3b-2 a-2
. . . 0 3b-1 a-1

b-2 0 3b0 a0

b-1 0 3b1 a1

b0 0 3b2
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note: MaMb = Ma⋅b, VMb = MVbV
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Algebras of shifts and multiplications

It is easy to see that

A is a finite sum-product of shifts and multiplications
⇕

A acts as a band matrix

The set of these operators is denoted by BO(E ), where BO is
short for band operator.

Band operators

A ∈ BO(E ) : A =
w∑

k=−w
Mb(k)V k

The number w is called the band-width of A.
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Algebras of shifts and multiplications

Band operators

A ∈ BO(E ) : A =
w∑

k=−w
Mb(k)V k

The number w is called the band-width of A.

It is nice to have an algebra of operators (i.e. a set that is closed
under addition, multiplication and taking scalar multiples) but it is
even nicer to have a Banach algebra (also closed w.r.t. ∥ ⋅ ∥).

Band-dominated operators

BDO(E ) := closL(E)BO(E )

The matrices have a certain off-diagonal decay.
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Algebras of shifts and multiplications

The norm under which BDO(E ) is closed is the usual operator
norm

∥A∥ := sup
∥x∥=1

∥Ax∥.

Here is another norm: For

A =
w∑

k=−w
Mb(k)V k ∈ BO(E ),

we have

∥A∥ ≤
w∑

k=−w
∥Mb(k)∥ ∥V k∥ =

w∑
k=−w

∥b(k)∥∞ =: JAK
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Algebras of shifts and multiplications

Wiener norm

JAK :=
w∑

k=−w
∥b(k)∥∞

Now let W(E ) denote the completion of BO(E ) w.r.t. J ⋅ K.

This also gives a Banach algebra (w.r.t. J ⋅ K):

Wiener algebra

W(E ) =
{ +∞∑

k=−∞
Mb(k)V k

︸ ︷︷ ︸
A

:
+∞∑

k=−∞
∥b(k)∥∞︸ ︷︷ ︸
JAK

<∞
}

Clearly: BO(E ) ⊂ W(E ) ⊂ BDO(E ) ⊂ L(E )
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Example: Laurent operator

Let T be the unit circle in ℂ and fix a function a ∈ L∞(T).

Fourier series of a:
+∞∑

k=−∞
aktk , t ∈ T.

This function is closely related to the associated operator

L(a) :=
+∞∑

k=−∞
akV k ,

which is a so-called Laurent operator (constant matrix diagonals):

L(a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . . .
.

. . . a0 a−1 a−2

. . . a1 a0 a−1
. . .

a2 a1 a0
. . .

. .
. . . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Example: Laurent operator

The function a is called the symbol of the operator L(a).

L(a) = discrete convolution by (ak)k∈ℤ
Fourier∼= multiplication by a

For simplicity, suppose E = ℓ2. Then E
Fourier∼= L2(T).

Correspondence between L(a) and its symbol a on T:

Laurent operator L(a) symbol a

bounded operator bounded function
∥L(a)∥ = ∥a∥∞

invertible operator no zeros on T
L(a)−1 = L(a−1)
spec L(a) = a(T)

in BO(E ) trig. polynomial
in W(E ) Wiener function

in BDO(E ) continuous function
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Example: Laurent operator

Here we call a : T→ ℂ a Wiener function and write a ∈W (T) if
its Fourier coefficients are summable, i.e. (ak) ∈ ℓ1. Note that

∥a∥W :=
+∞∑

k=−∞
∣ak ∣ = JL(a)K.

Wiener’s theorem

If a ∈W (T) has no zeros then also a−1 ∈W (T).

Wiener’s theorem in Laurent operator language

If L(a) ∈ W(E ) is invertible then L(a)−1 = L(a−1) ∈ W(E ).
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Operator algebras: inverse closedness

This theorem

Wiener’s theorem in Laurent operator language

If L(a) ∈ W(E ) is invertible then L(a)−1 = L(a−1) ∈ W(E ).

has an amazing generalisation:

The Wiener algebra is inverse closed

If A ∈ W(E ) is an invertible operator then A−1 ∈ W(E ).

And now that we’re at it:

Also BDO(E ) is inverse closed

If A ∈ BDO(E ) is an invertible operator then A−1 ∈ BDO(E ).

The last two theorems hold in the general case E = ℓp(ℤN ,X ).
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The Finite Section Method, Part I

1 Classes of Infinite Matrices

2 The Finite Section Method, Part I

3 Limit Operators

4 The Spectrum: Formulas and Bounds

5 Spectral Bounds: An Example

6 The Finite Section Method, Part II
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Infinite systems

We look at linear equations Ax = b in infinitely many variables:⎛⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

⋅ ⋅ ⋅ a-1,-1 a-1,0 a-1,1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ a 0,-1 a 0, 0 a 0, 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ a 1,-1 a 1, 0 a 1, 1 ⋅ ⋅ ⋅

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎜⎜⎜⎜⎝

...
x-1
x 0

x 1
...

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

x

=

⎛⎜⎜⎜⎜⎜⎜⎝

...
b-1

b 0

b 1
...

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

b

Assumption: A ∈ BDO(E ) with E = ℓp, i.e. N = 1 and X = ℂ.

Task: Given such an A and a RHS b ∈ E , find x ∈ E .
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The Finite Section Method

Let A be invertible (bijective) as a map E → E , so that Ax = b is
uniquely solvable for every RHS b.

How do we compute this unique solution x of Ax = b, i.e.

+∞∑
j=−∞

aijxj = bi , i ∈ ℤ ? (1)

Replace the infinite system (1) by the sequence of finite systems

n∑
j=−n

aijxj = bi , i = −n, . . . , n

for n = 1, 2, ...
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The Finite Section Method

Let A be invertible (bijective) as a map E → E , so that Ax = b is
uniquely solvable for every RHS b.

How do we compute this unique solution x of Ax = b, i.e.

+∞∑
j=−∞

aijxj = bi , i ∈ ℤ ? (1)

Or, more flexible: Take two monotonous sequences of integers

−∞← ⋅ ⋅ ⋅ < l2 < l1 < r1 < r2 < ⋅ ⋅ ⋅ → +∞

and replace the infinite system (1) by the sequence of finite systems

rn∑
j=ln

aijxj = bi , i = ln, . . . , rn (2)

for n = 1, 2, ...
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The Finite Section Method

Graphically, (2) means

We say the finite section method is applicable to A if the
truncated equations (2) are uniquely solvable for all n > n0 and
their solutions converge componentwise to the unique solution x
of (1).

All of this should happen independently of the right-hand side b.
So applicability of the method only depends on A.
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The Finite Section Method

Precisely: The finite section method (FSM) is applicable to A
iff

A is invertible and its so-called finite sections

An := (aij)
rn

i ,j=ln
, n = 1, 2, ...

form a stable sequence.

Here we call a sequence (An) stable if there exists n0 such that

sup
n>n0

∥A−1
n ∥ <∞.
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When the Finite Section Method goes wrong

There are very simple examples where the FSM fails to apply.

Example 1: a block-flip

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

0 1
1 0

1
0 1
1 0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x−2

x−1

x0

x1

x2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
7→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x−1

x−2

x0

x2

x1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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When the Finite Section Method goes wrong

There are very simple examples where the FSM fails to apply.
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Only 50% of the finite systems are uniquely solvable.
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Only 50% of the finite systems are uniquely solvable.

Choosing good cut-off intervals [ln, rn] will solve the problem!

Marko Lindner Spectra and Finite Sections of Band Operators



When the Finite Section Method goes wrong

Example 2: the shift
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When the Finite Section Method goes wrong
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When the Finite Section Method goes wrong
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No one of the finite systems is uniquely solvable.
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When the Finite Section Method goes wrong

Example 2: the shift
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No one of the finite systems is uniquely solvable.

Adapting the cut-off points [ln, rn] will not help here!
Instead, place the corners of An along another diagonal!
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The Finite Section Method

Clearly, there is a lot of room in a bi-infinite matrix and therefore a
lot of freedom to place the finite sections.

The previous examples have shown that sometimes one needs to
make use of that freedom by

picking the appropriate “main” diagonal (which one is it?),

choosing good cut-off sequences (ln) and (rn)

We will learn how to do both of that.
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The Finite Section Method

We need theorems that tell us when the FSM works and when not.

One can show that applicability of the finite section method

is controlled by certain limits of the upper left and lower right
corners of the finite sections An as n→∞.
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The Finite Section Method

We need theorems that tell us when the FSM works and when not.

One can show that applicability of the finite section method

is controlled by certain limits of the upper left and lower right
corners of the finite sections An as n→∞.
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Following the corners as they move out to infinity

So we have to follow the two “corners” (semi-infinite matrices)(
aln,ln ⋅ ⋅ ⋅

...
. . .

)
and

(
. . .

...
⋅ ⋅ ⋅ arn,rn

)
of An as n→∞ and find (partial) limits of these matrix sequences:
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Limit Operators: Definition

This leads to the study of so-called limit operators.

Definition: Limit Operator

For a given sequence h1, h2, ... ∈ ℤ with ∣hn∣ → ∞ and a matrix
A = (aij)i ,j∈ℤ, we call B = (bij)i ,j∈ℤ a limit operator of A with
respect to that sequence h = (h1, h2, ...) if for all i , j ∈ ℤ,

ai+hn, j+hn → bij as n→∞.

We write Ah instead of B, where h = (h1, h2, ...).

For our FSM, we will use l = (l1, l2, ...) and r = (r1, r2, ...)
(or subsequences of those) in place of h = (h1, h2, ...).

Marko Lindner Spectra and Finite Sections of Band Operators



One more notation: A+ and A−

Think of a bi-infinite band matrix A as 2× 2 block matrix:

So A+ and A− are one-sided infinite submatrices of A.
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The Finite Section Method

Theorem ML, Roch 2010; Seidel, Silbermann 2011

The finite section method (2) is applicable to A iff the following
operators are invertible:

A, B−, C+

for all limit operators B of A w.r.t. a subsequence of r
and all limit operators C of A w.r.t. a subsequence of l .

Strategy:
Choose the sequences
r = (r1, r2, ⋅ ⋅ ⋅ ) and l = (l1, l2, ⋅ ⋅ ⋅ )
so that B− and C+ are invertible!
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The FSM for one-sided infinite matrices

For a banded and one-sided infinite matrix A = A+ = (aij)i ,j∈ℕ,
acting boundedly on ℓp(ℕ), the situation is similar:

Now ln ≡ 1 is fixed and r1 < r2 < ⋅ ⋅ ⋅ → +∞.

Theorem

The FSM (2) is applicable iff

A and B−

are invertible for all limops B
of A w.r.t. a subsequence of r .

Strategy: Again, make sure B− is/are invertible – by choosing the
sequence r = (r1, r2, ...).
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The FSM and Limit operators

Ok, limit operators seem to be useful.

Time to learn more about them!

(We come back to the FSM at some later point.)
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Limit Operators

1 Classes of Infinite Matrices

2 The Finite Section Method, Part I

3 Limit Operators

4 The Spectrum: Formulas and Bounds

5 Spectral Bounds: An Example

6 The Finite Section Method, Part II
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Limit Operators: Definition

Let A ∈ BDO(E ). Recall:

Definition: Limit Operator

For a given sequence h1, h2, ... ∈ ℤ with ∣hn∣ → ∞ and a matrix
A = (aij)i ,j∈ℤ, we call B = (bij)i ,j∈ℤ a limit operator of A with
respect to that sequence h = (h1, h2, ...) if for all i , j ∈ ℤ,

ai+hn, j+hn → bij as n→∞.

We write Ah instead of B, where h = (h1, h2, ...).

In short: Ah is the entrywise limit of V−hnAVhn as n→∞.

By �op(A) we denote the set of all limit operators of A.
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Example: Discrete Schrödinger operator

The Schrödinger operator −Δ + Mb with a bounded potential
b ∈ L∞(ℝ) is usually discretized as

A = V−1 + Mc + V1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . c−2 1
1 c−1 1

1 c0 1
1 c1 1

1 c2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where c = (..., c−1, c0, c1, ...) ∈ ℓ∞(ℤ).

Clearly,

Ah = (V−1)h + (Mc)h + (V1)h = V−1 + (Mc)h + V1,

so that everything depends on the limit operators of Mc only.
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Example: Discrete Schrödinger operator

Example 1: Periodic potential

If there is a P ∈ ℕ such that

ck+P = ck for every k ∈ ℤ,

then �op(Mc) =
{

MVkc : k ∈ {0, 1, ...,P − 1}
}

.
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Example: Discrete Schrödinger operator

Example 1: Periodic potential

If there is a P ∈ ℕ such that

ck+P = ck for every k ∈ ℤ,

then �op(Mc) =
{

MVkc : k ∈ {0, 1, ...,P − 1}
}

.

But then �op(A) =
{

V−kAVk : k ∈ {0, 1, ...,P − 1}
}

.
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Example: Discrete Schrödinger operator

Example 2: Almost-periodic potential

Note: c ∈ ℓ∞ is periodic iff the set {Vkc : k ∈ ℤ} of all its
translates is finite.

E.g. if c = (⋅ ⋅ ⋅ , c1, c2, c3, c1, c2, c3, ⋅ ⋅ ⋅ ) then

{Vkc : k ∈ ℤ} = { V0c = (⋅ ⋅ ⋅ , c1, c2, c3, c1, c2, c3, ⋅ ⋅ ⋅ ),
V1c = (⋅ ⋅ ⋅ , c3, c1, c2, c3, c1, c2, ⋅ ⋅ ⋅ ),
V2c = (⋅ ⋅ ⋅ , c2, c3, c1, c2, c3, c1, ⋅ ⋅ ⋅ ) }

Definition: c ∈ ℓ∞ is almost-periodic iff the set {Vkc : k ∈ ℤ} of
all its translates is relatively compact in ℓ∞.

The set h(c) := clos{Vkc : k ∈ ℤ} ⊂ ℓ∞ is called the hull of c .

In that case �op(Mc) = {Md : d ∈ h(c)} = clos{MVkc : k ∈ ℤ },
�op(A) = {V−1 + Md + V1 : d ∈ h(c)} = clos{V−kAVk : k ∈ ℤ}.
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Example 2: Almost-periodic potential
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Example: Discrete Schrödinger operator

Example 2: Almost-periodic potential (continued)
Fix � ∈ ℝ and look at c = (ck)k∈ℤ ∈ ℓ∞ with entries

ck := e i�k , k ∈ ℤ.

If �/� is rational then c is periodic;
otherwise it is almost-periodic and its hull is

h(c) =
{

d =
(

e i(�k+)
)
k∈ℤ

:  ∈ [0, 2�)
}
.

Slightly more advanced: If

ck := �e i�k + �e i�k , k ∈ ℤ

with �/�, �/� and �/� all irrational then the hull is

h(c) =
{

d =
(
�e i(�k+) + �e i(�k+�)

)
k∈ℤ

: , � ∈ [0, 2�)
}
.
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Example: Discrete Schrödinger operator

Example 2: Almost-periodic potential (continued)
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Example: Discrete Schrödinger operator

Example 2: Almost-periodic potential (continued 2)

For the so-called Almost-Mathieu operator, the potential c is the
real part of what we studied earlier:

Fix �, � ∈ ℝ and take c = (ck)k∈ℤ ∈ ℓ∞ with entries

ck := � cos(�k), k ∈ ℤ.

If �/� is irrational then c is almost-periodic (but non-periodic)
and its hull is

h(c) =
{

d =
(
� cos(�k + )

)
k∈ℤ :  ∈ [0, 2�)

}
.

Ten-Martini problem: Show that spec (V−1 + Mc + V1) is a
Cantor set. (Puig 2003, Avila&Jitomiskaya 2005)
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Discrete Schrödinger operators

Example 3: Slowly oscillating potential

If

ck+1 − ck → 0 as k → ±∞,

then �op(Mc) = {aI : a ∈ c(∞)}.

Now all limit operators Ah are Laurent operators (i.e., they have
constant diagonals).

For example, let c = (ck)k∈ℤ with

ck = sin
√
∣k ∣, k ∈ ℤ.

Then c is slowly oscillating and c(∞) = [−1, 1].
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Discrete Schrödinger operators

Example 4: Pseudo-ergodic potential

Let Σ be a compact subset of ℂ.

Definition Davies 2001

A sequence c = (ck)k∈ℤ over Σ is called pseudoergodic over Σ
if every finite vector f = (fi )i∈F with values fi ∈ Σ can be found,
up to arbitrary precision " > 0, somewhere inside the infinite
sequence c, i.e.

∀" > 0 ∃m ∈ ℤ : max
i∈F
∣ci+m − fi ∣ < ".

Idea: Model random behaviour by a purely deterministic concept.

Example: dec(�) = 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, . . . is pseudo-ergodic
over Σ = {0, 1, 2, . . . , 9} (conjecture)

Example: bin(1), bin(2), bin(3), . . . is pseudo-erg. over Σ = {0, 1}.
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Discrete Schrödinger operators

Example 4: Pseudo-ergodic potential (continued)

If c is pseudo-ergodic over Σ then every multiplication operator
Md with a sequence d = (..., d−1, d0, d1, ...) over Σ is a limit
operator of Mc :

�op(Mc) = {Md : d : ℤ→ Σ } (3)

The statement also holds the other way round!

So c is pseudo-ergodic iff (3) holds.
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Discrete Schrödinger operators

Example 5: A locally constant potential

c = (..., �, �, �, �︸ ︷︷ ︸
4

, �, �, �︸ ︷︷ ︸
3

, �, �︸︷︷︸
2

, �︸︷︷︸
1

, �, �︸︷︷︸
2

, �, �, �︸ ︷︷ ︸
3

, �, �, �, �︸ ︷︷ ︸
4

, ...).

Then all limit operators of A are of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . � 1

1 �
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . � 1

1 �
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . � 1

1 �
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . � 1

1 �
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
or they are translates of the latter two matrices.
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Discrete Schrödinger operators
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Discrete Schrödinger operators
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Discrete Schrödinger operators
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Limit Operators: Some rules

Let A,B ∈ BDO(E ) and h = (h1, h2, ⋅ ⋅ ⋅ ) be a sequence of
integers going to ±∞.

Recall: limit op Ah is the entrywise limit of V−hnAVhn as n→∞

Basic rules

If the right-hand side exists then also the left-hand side exists and
equality holds:

(A + B)h = Ah + Bh

(AB)h = Ah Bh

(�A)h = �Ah

(lim An)h = lim (An)h (w.r.t. op-∥ ⋅ ∥)

⇒ Compute limit operators of elements of an operator algebra in
terms of limit operators of generators of the algebra.

Moreover, ∥Ah∥ ≤ ∥A∥.
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The Spectrum: Formulas and Bounds

1 Classes of Infinite Matrices

2 The Finite Section Method, Part I

3 Limit Operators

4 The Spectrum: Formulas and Bounds

5 Spectral Bounds: An Example

6 The Finite Section Method, Part II
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Limit Operators and the Essential Spectrum

Besides studying the FSM, limit operators are also important for
determining the essential spectrum of A.

Here we define

Definition: Essential Spectrum

For a (not necessarily self-adjoint) operator A, we denote by

specessA := {� ∈ ℂ : A− �I is not Fredholm }

the essential spectrum of A.
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Fredholm operators
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Fredholm operators

Definition

A : E → E is a Fredholm operator
if � := dim(ker A) and � := codim(im A) are both finite.
The difference �− � is then called the index of A.
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Fredholm operators

Definition

A : E → E is a Fredholm operator
if � := dim(ker A) and � := codim(im A) are both finite.
The difference �− � is then called the index of A.

A ∈ L(E ) is Fredholm iff A + K (E ) is invertible in L(E )/K (E ).
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Limit Operators vs. Fredholmness

Take A ∈ W(E ).

Then it is not hard to see that

A Fredholm =⇒ all limit operators of A are invertible.

In fact, also the reverse implication holds:

Theorem Rabinovich, Roch, Silbermann 1998; ML 2003

The following are equivalent for all p ∈ [1,∞]:

A is Fredholm on ℓp,

all limit operators of A are invertible on ℓp,

all limit operators of A are injective on ℓ∞.

...moreover, the Fredholm index of A does not depend on p.

If we repeat the same argument with A− �I in place of A, we get:

Essential Spectrum Rabinovich, Roch, Silbermann 1998; ML 2003; Chandler-Wilde, ML 2007

specpess(A) =
∪
h

specp(Ah) =
∪
h

spec∞point(Ah), p ∈ [1,∞]
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Limit operators vs. Fredholm index

Think of a bi-infinite band matrix A as 2× 2 block matrix:

Then

A is Fredholm iff A+ and A− are Fredholm

specessA = specessA+ ∪ specessA−

ind A = ind A+ + ind A−
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Limit operators vs. Fredholm index

ind A = ind A+ + ind A−

Theorem Rabinovich, Roch, Roe 2004

ind A+ = ind B+ for all limops B of A at +∞
ind A− = ind C− for all limops C of A at −∞
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Example: Random Jacobi Operator

Let U, V and W be compact sets in ℂ and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . v−2 w−1

u−2 v−1 w0

u−1 v0 w1

u0 v1 w2

u1 v2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

with iid entries

ui ∈ U, vi ∈ V and wi ∈W . (5)
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Example: Random Jacobi Operator

Let U, V and W be compact sets in ℂ and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . v−2 w−1

u−2 v−1 w0

u−1 v0 w1

u0 v1 w2

u1 v2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

with iid entries

ui ∈ U, vi ∈ V and wi ∈W . (5)

Then, almost surely, A is pseudoergodic (i.e. it contains all finite
tridiagonal matrices with diagonals in U, V and W ).
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Example: Random Jacobi Operator

Let U, V and W be compact sets in ℂ and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . v−2 w−1

u−2 v−1 w0

u−1 v0 w1

u0 v1 w2

u1 v2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

with iid entries

ui ∈ U, vi ∈ V and wi ∈W . (5)

⇒ The set of all limops of A equals the set of all operators of the
form (4) with entries (5). That includes all Laurent operators.
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Example: Random Jacobi Operator

So, if the random (meaning pseudoergodic) operator A is Fredholm
then, for all choices u ∈ U, v ∈ V and w ∈W :

ind A− = ind

⎛⎜⎜⎝
. . .

. . .
. . .

. . . w
u v

⎞⎟⎟⎠

ind A+ = ind

⎛⎜⎜⎝
v w

u
. . .

. . .
. . .

. . .

⎞⎟⎟⎠
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Example: Random Jacobi Operator

So, if the random (meaning pseudoergodic) operator A is Fredholm
then, for all choices u ∈ U, v ∈ V and w ∈W :

ind A− = ind

⎛⎜⎜⎝
. . .

. . .
. . .

. . . w
u v

⎞⎟⎟⎠ = wind(Eu,w , v)

ind A+ = ind

⎛⎜⎜⎝
v w

u
. . .

. . .
. . .

. . .

⎞⎟⎟⎠ = −wind(Eu,w , v)
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Example: Random Jacobi Operator

So, if the random (meaning pseudoergodic) operator A is Fredholm
then, for all choices u ∈ U, v ∈ V and w ∈W :

ind A− = wind(Eu,w , v), ind A+ = −wind(Eu,w , v)
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Example: Random Jacobi Operator

The previous slide has shown how ‘hard’ it is for a pseudoergodic
Jacobi operator to be Fredholm. Let us underline this. Put

J(U,V ,W ) := { Jacobi ops (4) : ui ∈ U, vi ∈ V , wi ∈W },
ΨE (U,V ,W ) := { A ∈ J(U,V ,W ) : A pseudoergodic }.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . v−2 w−1

u−2 v−1 w0

u−1 v0 w1

u0 v1 w2

u1 v2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)
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Example: Random Jacobi Operator

The previous slide has shown how ‘hard’ it is for a pseudoergodic
Jacobi operator to be Fredholm. Let us underline this. Put

J(U,V ,W ) := { Jacobi ops (4) : ui ∈ U, vi ∈ V , wi ∈W },
ΨE (U,V ,W ) := { A ∈ J(U,V ,W ) : A pseudoergodic }.

For A ∈ ΨE (U,V ,W ), the set of limops is all of J(U,V ,W ).
Hence, the following are equivalent:

A is Fredholm,

A is invertible,

all B ∈ J(U,V ,W ) are Fredholm,

all B ∈ J(U,V ,W ) are invertible.
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Example: Random Jacobi Operator

J(U,V ,W ) := { Jacobi ops (4) : ui ∈ U, vi ∈ V , wi ∈W },
ΨE (U,V ,W ) := { A ∈ J(U,V ,W ) : A pseudoergodic }.

For A ∈ ΨE (U,V ,W ), the set of limops is all of J(U,V ,W ).
Hence, the following are equivalent:

A is Fredholm,

A is invertible,

all B ∈ J(U,V ,W ) are Fredholm,

all B ∈ J(U,V ,W ) are invertible.

In other words:

specessA = spec A =
∪

specessB =
∪

spec B,

with the unions taken over all B ∈ J(U,V ,W ).
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Example: Random Jacobi Operator

J(U,V ,W ) := { Jacobi ops (4) : ui ∈ U, vi ∈ V , wi ∈W },
ΨE (U,V ,W ) := { A ∈ J(U,V ,W ) : A pseudoergodic }.

In other words:

specessA = spec A =
∪

specessB =
∪

spec B,

with the unions taken over all B ∈ J(U,V ,W ).

In particular,

spec A ⊇
∪

Laurent

spec L =
∪

u,v ,w

(v + Eu,w ).
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Example: Discrete Schrödinger operator

We come back to discrete Schrödinger operators (i.e.
discretisations of −Δ + Mb):

A = V−1 + Mc + V1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . c−2 1
1 c−1 1

1 c0 1
1 c1 1

1 c2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where c = (..., c−1, c0, c1, ...) ∈ ℓ∞(ℤ). Clearly,

Ah = (V−1)h + (Mc)h + (V1)h = V−1 + (Mc)h + V1,

so that everything depends on the limit operators of Mc only.
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Example: Discrete Schrödinger operator

Example 1: Periodic potential

If
ck+P = ck for every k ∈ ℤ,

then �op(Mc) =
{

MVkc : k ∈ {0, 1, ...,P − 1}
}

.

But then �op(A) =
{

V−kAVk : k ∈ {0, 1, ...,P − 1}
}

.

Consequently, A is invertible iff any/all of its limit operators are
invertible. So in this case, A is Fredholm iff it is invertible, and

specessA = spec A = spec∞pointA
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Example: Discrete Schrödinger operator

Example 2: Almost-periodic potential

Let c be almost-periodic with hull h(c) = clos{Vkc : k ∈ ℤ}.

�op(Mc) = {Md : d ∈ h(c)} = clos{MVkc : k ∈ ℤ },
�op(A) = {V−1 + Md + V1 : d ∈ h(c)} = clos{V−kAVk : k ∈ ℤ}.

If any Ah = lim V−hnAVhn is invertible then V−hnAVhn is invertible
for large n, so that A itself is invertible!

Hence

A Fredholm ⇐⇒ A invertible ⇐⇒ any Ah invertible

specessA = spec A = spec Ah =
∪
h

spec∞pointAh
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Discrete Schrödinger operators

Example 3: Slowly oscillating potential

If
ci+1 − ci → 0 as i → ±∞,

then �op(Mc) = {�I : � ∈ c(∞)}.

But then all limit operators Ah are Laurent operators (i.e., they
have constant diagonals), for which invertibility & spectrum are
well-understood.

specessA =
∪

spec Ah = c(∞) + [−2, 2]
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Spectra: Upper bounds

Summary: Limit operators help us to determine the essential
spectrum. So they give us lower bounds on the spectrum.

It would be good to also have upper bounds!

Classical upper bounds

Gershgorin circles

numerical range

We will discuss another approach.
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Upper spectral bounds

We study bi-infinite matrices of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . �−2 −1

�−2 �−1 0

�−1 �0 1

�0 �1 2

�1 �2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where � = (�i ), � = (�i ) and  = (i ) are bounded sequences of
complex numbers (more general: operators on a Banach space).
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Upper spectral bounds

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . �−2 −1

�−2 �−1 0

�−1 �0 1

�0 �1 2

�1 �2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Task

Compute upper bounds on spectrum and pseudospectra of A,
understood as a bounded linear operator ℓ2 → ℓ2.
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One more notion: Pseudospectrum

For A ∈ L(E ) and " > 0, we put

spec A = {� ∈ ℂ : A− �I not invertible on E},

specessA = {� ∈ ℂ : A− �I not Fredholm on E},
spec"A = spec A ∪ {� ∈ ℂ : ∥(A− �I )−1∥ > 1/"}

=
∪
∥T∥<"

spec (A + T )

⊇ spec A + "D (“=” if A is normal).

The sets spec"A, " > 0, are the so-called "−pseudospectra of A.
It holds that

spec A =: spec0 A ⊂ spec"1
A ⊂ spec"2

A, 0 < "1 < "2.
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Reminder: Gershgorin’s circles

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the disk with

center at ak,k and radius ∣ak,k−1∣+ ∣ak,k+1∣

Now take the union over all k ∈ ℤ. ⇒ upper bound on spec A.
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:
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Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥
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Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

Claim: ∃k ∈ ℤ :

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥
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Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

Claim: ∃k ∈ ℤ :

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥∑

k

∥(An,k − �In) xn,k∥2

< ("+ "n)2
∑
k

∥xn,k∥2
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Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
1√
n

(∥�∥∞ + ∥∥∞)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
�

n
(∥�∥∞ + ∥∥∞)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
�

n
(∥�∥∞ + ∥∥∞)

⇒ � ∈ spec"+"n(An,k)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
�

n
(∥�∥∞ + ∥∥∞)

⇒ � ∈ spec"+"n(An,k)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
�

n
(∥�∥∞ + ∥∥∞)

⇒ � ∈ spec"+"n(An,k)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

Let � ∈ spec"(A) and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− �I ) x∥ < " ∥x∥

∥(An,k − �In) xn,k∥
< ("+ "n) ∥xn,k∥

"n <
�

n
(∥�∥∞ + ∥∥∞)

⇒ � ∈ spec"+"n(An,k)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 1: Finite principal submatrices

So one gets

Upper Bound

spec"(A) ⊂
∪
k∈ℤ

spec"+"n(An,k),

where
"n <

�

n
(∥�∥∞ + ∥∥∞).

In particular, "n → 0 as n→∞.
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Method 2: Periodised finite principal submatrices

If the finite submatrices An,k are “periodised”,

very similar computations show that, again,

spec"(A) ⊂
∪
k∈ℤ

spec"+"n(Aper
n,k)

with "n <
�

n
(∥�∥∞ + ∥∥∞)

but this upper bound on spec"(A) generally seems sharper than in

method 1.
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Method 1 vs. Method 2: An Example

Look at the shift operator

(Ax)(i) = x(i + 1), i.e. A =

( ⋅ ⋅
0 1

0 1
0 ⋅

⋅

)
.
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Method 1 vs. Method 2

Summary on Methods 1 & 2

Both methods give upper bounds on spec A and spec"A.

The bound from Method 2 always appears to be sharper.

Conjecture: Method 2 converges to spec"A as n→∞.

Method 1 also works for semi-infinite and finite matrices A!
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Method 1 vs. Method 2

Summary on Methods 1 & 2

Both methods give upper bounds on spec A and spec"A.

The bound from Method 2 always appears to be sharper.

Conjecture: Method 2 converges to spec"A as n→∞.

Method 1 also works for semi-infinite and finite matrices A!
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Here is another idea: Method 3

Instead of
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Here is another idea: Method 3

We do a “one-sided” truncation.
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Here is another idea: Method 3

We do a “one-sided” truncation.

In a sense, we work with rectangular finite submatrices.

This is motivated by work of Davies 1998 and Hansen 2008.
(Also see Heinemeyer/ML/Potthast [SIAM Num. Anal. 2007].)
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Method 3: Projection Operator

For n ∈ ℕ and k ∈ ℤ, let Pn,k : ℓ2 → ℓ2 denote the projection

(Pn,kx)(i) :=

{
x(i), i ∈ {k + 1, ..., k + n},

0 otherwise.

Further, we put Xn,k := im Pn,k and identify it with ℂn in the
obvious way.
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Method 3: Truncations

Method 1:

Pn,k(A− �I )Pn,k ∣Xn,k

Method 3:

(A− �I )Pn,k ∣Xn,k

Marko Lindner Spectra and Finite Sections of Band Operators



Method 3: Truncations

Method 1:

Pn,k(A− �I )Pn,k∣Xn,k

Method 3:

(A− �I )Pn,k∣Xn,k
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Method 3: Method 1 revisited

Method 1:

� ∈ spec"(A) =⇒ For some k ∈ ℤ :

� ∈ spec"+"n

(
Pn,kAPn,k ∣Xn,k

)

Marko Lindner Spectra and Finite Sections of Band Operators



Method 3: Method 1 revisited

Method 1:

� ∈ spec"(A) =⇒ For some k ∈ ℤ :

� ∈ spec"+"n

(
Pn,kAPn,k ∣Xn,k

)
i.e. smin

(
Pn,k(A− �I )Pn,k

)
< "+ "n
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Method 3: Method 1 revisited

Method 1:

� ∈ spec"(A) =⇒ For some k ∈ ℤ :

� ∈ spec"+"n

(
Pn,kAPn,k ∣Xn,k

)
i.e. smin

(
Pn,k(A− �I )Pn,k

)
< "+ "n

min spec
((

Pn,k(A− �I )Pn,k

)∗(
Pn,k(A− �I )Pn,k

))
<
(
"+ "n

)2
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Method 3: Method 1 revisited

Method 1:

� ∈ spec"(A) =⇒ For some k ∈ ℤ :

� ∈ spec"+"n

(
Pn,kAPn,k ∣Xn,k

)
i.e. smin

(
Pn,k(A− �I )Pn,k

)
< "+ "n

min spec
((

Pn,k(A− �I )∗Pn,k

)(
Pn,k(A− �I )Pn,k

))
<
(
"+ "n

)2
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Method 3: Method 1 revisited
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Method 3: Method 1 revisited

Method 1:

� ∈ spec"(A) =⇒ For some k ∈ ℤ :

� ∈ spec"+"n

(
Pn,kAPn,k ∣Xn,k

)
i.e. smin

(
Pn,k(A− �I )Pn,k

)
< "+ "n

Idea: min spec
(

Pn,k(A− �I )∗Pn,k(A− �I )Pn,k

)
<
(
"+ "n

)2
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Method 3: Method 1 revisited

Method 1:

Idea: min spec
(

Pn,k(A− �I )∗Pn,k(A− �I )Pn,k

)
<
(
"+ "n

)2
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Method 3: Method 1 revisited

Method 1:

Idea: min spec
(

Pn,k(A− �I )∗Pn,k(A− �I )Pn,k

)
<
(
"+ "n

)2

Method 3

Let n,k" (A) be the set of all � ∈ ℂ, for which

min spec
(

Pn,k(A− �I )∗(A− �I )Pn,k

)
<

(
"+ "n

)2
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Method 3: Method 1 revisited

Method 1:

Idea: min spec
(

Pn,k(A− �I )∗Pn,k(A− �I )Pn,k

)
<
(
"+ "n

)2

Method 3

Let n,k" (A) be the set of all � ∈ ℂ, for which

min spec
(

Pn,k(A− �I )∗(A− �I )Pn,k

)
<

(
"+ "n

)2

and min spec
(

Pn,k(A− �I )(A− �I )∗Pn,k

)
<

(
"+ "n

)2
.
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Method 3: Method 1 revisited

Method 1:

Idea: min spec
(

Pn,k(A− �I )∗Pn,k(A− �I )Pn,k

)
<
(
"+ "n

)2

Method 3

Let n,k" (A) be the set of all � ∈ ℂ, for which

min spec
(

Pn,k(A− �I )∗(A− �I )Pn,k

)
<

(
"+ "n

)2

and min spec
(

Pn,k(A− �I )(A− �I )∗Pn,k

)
<

(
"+ "n

)2
.

Then put

Γn
"(A) :=

∪
k∈ℤ

n,k" (A).
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Method 3: Spectral bounds

Again we get (as in Methods 1 & 2)

Upper Bound

spec"(A) ⊂
∪
k∈ℤ

n,k"+"n(A) = Γn
"+"n(A)

with "n <
�

n
(∥�∥∞ + ∥∥∞)

and this time the upper bound looks even sharper than before.

But now we also have

Lower Bound

Γn
"(A) ⊂ spec"(A).
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Method 3: Spectral bounds

Again we get (as in Methods 1 & 2)

Upper Bound

spec"(A) ⊂
∪
k∈ℤ

n,k"+"n(A) = Γn
"+"n(A)

with "n <
�

n
(∥�∥∞ + ∥∥∞)

and this time the upper bound looks even sharper than before.
But now we also have

Lower Bound

Γn
"(A) ⊂ spec"(A).
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Method 3: Spectral bounds

From the lower and upper bound

Γn
"(A) ⊂ spec"(A) and spec"(A) ⊂ Γn

"+"n(A)

we get

Sandwich 1

Γn
"(A) ⊂ spec"(A) ⊂ Γn

"+"n(A)

Sandwich 2

spec"(A) ⊂ Γn
"+"n(A) ⊂ spec"+"n(A).

In particular, it follows that

Γn
"+"n(A) → spec"(A), n→∞

in the Hausdorff metric.
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Method 3: Spectral bounds

From the lower and upper bound

Γn
"(A) ⊂ spec"(A) and spec"(A) ⊂ Γn

"+"n(A)

we get

Sandwich 1

Γn
"(A) ⊂ spec"(A) ⊂ Γn

"+"n(A)

Sandwich 2

spec"(A) ⊂ Γn
"+"n(A) ⊂ spec"+"n(A).

In particular, it follows that

Γn
"+"n(A) → spec"(A), n→∞

in the Hausdorff metric.
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Methods 1, 2 & 3: The Shift Operator
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Methods 2 & 3: The Shift Operator
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Method 3: The Shift Operator
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Methods 1, 2 & 3: Second Example

We now look at a matrix A with 3-periodic diagonals:

main diagonal: ⋅ ⋅ ⋅ , −3
2 , 1, 1, ⋅ ⋅ ⋅

super-diagonal: ⋅ ⋅ ⋅ , 1, 2, 1, ⋅ ⋅ ⋅
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Methods 1, 2 & 3: Second Example
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Methods 1, 2 & 3: Third Example

We now look at a matrix A with 3-periodic diagonals:

main diagonal: ⋅ ⋅ ⋅ , −1
2 , 1, 1, ⋅ ⋅ ⋅

super-diagonal: ⋅ ⋅ ⋅ , 1, 1, 1, ⋅ ⋅ ⋅
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Methods 1, 2 & 3: Third Example
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Method 3: Schrödinger operator with Cantor spectrum
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Spectral Bounds: An Example

1 Classes of Infinite Matrices

2 The Finite Section Method, Part I

3 Limit Operators

4 The Spectrum: Formulas and Bounds

5 Spectral Bounds: An Example

6 The Finite Section Method, Part II
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From a talk of Anthony Zee (MSRI Berkeley, 1999)
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Example [Feinberg/Zee 1999]

Look at the bi-infinite matrix

Ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 1
b−1 0 1

b0 0 1

b1 0
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where b = (⋅ ⋅ ⋅ , b−1, b0, b1, ⋅ ⋅ ⋅ ) ∈ {±1}ℤ is a pseudoergodic
sequence

; that means:

every finite pattern of ±1’s can be found
somewhere in the infinite sequence b.
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Example [Feinberg/Zee 1999]

Look at the bi-infinite matrix

Ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 1
b−1 0 1

b0 0 1

b1 0
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where b = (⋅ ⋅ ⋅ , b−1, b0, b1, ⋅ ⋅ ⋅ ) ∈ {±1}ℤ is a pseudoergodic
sequence; that means:

every finite pattern of ±1’s can be found
somewhere in the infinite sequence b.
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Example [Feinberg/Zee 1999]

Spectral Formula Chandler-Wilde, ML 2007

If b is pseudoergodic then

spec Ab = specessA
b =

∪
c∈{±1}ℤ

spec∞pointA
c .

Idea: Try to “exhaust” the RHS by running through all periodic
±1 sequences c .
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Example [Feinberg/Zee 1999]

Spectral Formula Chandler-Wilde, ML 2007

If b is pseudoergodic then

spec Ab = specessA
b =

∪
c∈{±1}ℤ

spec∞pointA
c .

Idea: Try to “exhaust” the RHS by running through all periodic
±1 sequences c .
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Example [Feinberg/Zee 1999]

Period 1
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Example [Feinberg/Zee 1999]

Period 2 Periods 1, 2
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Example [Feinberg/Zee 1999]

Period 3 Periods 1, ..., 3
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Example [Feinberg/Zee 1999]

Period 4 Periods 1, ..., 4
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Example [Feinberg/Zee 1999]

Period 5 Periods 1, ..., 5
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Example [Feinberg/Zee 1999]

Period 6 Periods 1, ..., 6
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Example [Feinberg/Zee 1999]

Period 7 Periods 1, ..., 7
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Example [Feinberg/Zee 1999]

Period 8 Periods 1, ..., 8
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Example [Feinberg/Zee 1999]

Period 9 Periods 1, ..., 9
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Example [Feinberg/Zee 1999]

Period 10 Periods 1, ..., 10
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Example [Feinberg/Zee 1999]

Period 11 Periods 1, ..., 11
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Example [Feinberg/Zee 1999]

Period 12 Periods 1, ..., 12
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Example [Feinberg/Zee 1999]

Period 13 Periods 1, ..., 13
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Example [Feinberg/Zee 1999]

Period 14 Periods 1, ..., 14
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Example [Feinberg/Zee 1999]

Period 15 Periods 1, ..., 15
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Example [Feinberg/Zee 1999]

Period 16 Periods 1, ..., 16
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Example [Feinberg/Zee 1999]

Period 17 Periods 1, ..., 17
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Example [Feinberg/Zee 1999]

Period 18 Periods 1, ..., 18
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Example [Feinberg/Zee 1999]

Period 19 Periods 1, ..., 19
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Example [Feinberg/Zee 1999]

Period 20 Periods 1, ..., 20
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Example [Feinberg/Zee 1999]

Period 21 Periods 1, ..., 21
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Example [Feinberg/Zee 1999]

Period 22 Periods 1, ..., 22
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Example [Feinberg/Zee 1999]

Period 23 Periods 1, ..., 23
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Example [Feinberg/Zee 1999]

Period 24 Periods 1, ..., 24
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Example [Feinberg/Zee 1999]

Period 25 Periods 1, ..., 25
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Example [Feinberg/Zee 1999]

Period 26 Periods 1, ..., 26
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Example [Feinberg/Zee 1999]

Period 27 Periods 1, ..., 27
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Example [Feinberg/Zee 1999]

Period 28 Periods 1, ..., 28
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Example [Feinberg/Zee 1999]

Period 29 Periods 1, ..., 29
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Example [Feinberg/Zee 1999]

Period 30 Periods 1, ..., 30
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Example [Feinberg/Zee 1999]

Recall our “Sandwich 1”: In this example, one has∪
k∈ℤ

spec"(Pn,kAbPn,k)︸ ︷︷ ︸
=: �"

n

⊂ spec"(Ab) ⊂
∪
k∈ℤ

spec"+"n(Pn,kAbPn,k)︸ ︷︷ ︸
Σ"

n := �"+"n
n

for all n ∈ ℕ, so let’s look at �"n for " = 0.

Here are the n × n matrix eigenvalues

�0
n =

∪
k∈ℤ

spec (Pn,kAbPn,k)

for n = 1, ..., 30:
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Example [Feinberg/Zee 1999]

Size 1
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Example [Feinberg/Zee 1999]

Size 2

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 3
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Example [Feinberg/Zee 1999]

Size 4
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Example [Feinberg/Zee 1999]

Size 5
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Example [Feinberg/Zee 1999]

Size 6
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Example [Feinberg/Zee 1999]

Size 7
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Example [Feinberg/Zee 1999]

Size 8
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Example [Feinberg/Zee 1999]

Size 9

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 10
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Example [Feinberg/Zee 1999]

Size 11
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Example [Feinberg/Zee 1999]

Size 12
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Example [Feinberg/Zee 1999]

Size 13
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Example [Feinberg/Zee 1999]

Size 14
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Example [Feinberg/Zee 1999]

Size 15

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 16
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Example [Feinberg/Zee 1999]

Size 17
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Example [Feinberg/Zee 1999]

Size 18
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Example [Feinberg/Zee 1999]

Size 19
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Example [Feinberg/Zee 1999]

Size 20
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Example [Feinberg/Zee 1999]

Size 21
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Example [Feinberg/Zee 1999]

Size 22

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 23
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Example [Feinberg/Zee 1999]

Size 24
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Example [Feinberg/Zee 1999]

Size 25
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Example [Feinberg/Zee 1999]

Size 26

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 27
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Example [Feinberg/Zee 1999]

Size 28
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Example [Feinberg/Zee 1999]

Size 29

Marko Lindner Spectra and Finite Sections of Band Operators



Example [Feinberg/Zee 1999]

Size 30
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Zoom into Region 1 + i of �0
25
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Example [Feinberg/Zee 1999]

The finite matrix spectra �0
n are even contained in the periodic

(infinite) matrix spectra shown before.

More precisely, the spectra of all n × n principal submatrices
are contained in the set of all (2n+2)-periodic matrices:

⊂

Size n = 5 Period 2n + 2 = 12

Here we demonstrate this inclusion for some values of n.
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 2
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 3
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 4
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 5
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 8
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 9
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Finite Matrix Spectra in Periodic Matrix Spectra: n = 10
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Conjecture: specAb if b is pseudoergodic
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Upper bound on specAb by the closed numerical range
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...in comparison with plots of Σ0
n = �0+"n

n

n = 2
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...in comparison with plots of Σ0
n = �0+"n

n

n = 3
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...in comparison with plots of Σ0
n = �0+"n

n

n = 4
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...in comparison with plots of Σ0
n = �0+"n

n

n = 5
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...in comparison with plots of Σ0
n = �0+"n

n

n = 6
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...in comparison with plots of Σ0
n = �0+"n

n

n = 7
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...in comparison with plots of Σ0
n = �0+"n

n

n = 8

Marko Lindner Spectra and Finite Sections of Band Operators



...in comparison with plots of Σ0
n = �0+"n

n

n = 9
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Where does Σ0
n go as n→∞?

Computational cost for these pics: n ⋅ 2n−1 × number of pixels.

So let us focus on just one point (pixel) �:

� = 1.5 + 0.5i ∕∈ Σ0
36 ⊃ spec Ab
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The Finite Section Method, Part II

1 Classes of Infinite Matrices

2 The Finite Section Method, Part I

3 Limit Operators

4 The Spectrum: Formulas and Bounds

5 Spectral Bounds: An Example

6 The Finite Section Method, Part II
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The FSM and the Fredholm index

Now we come back to the FSM

and bring in our knowledge

on Fredholm indices.
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The FSM and the Fredholm index

Recall the following two facts in the bi-infinite case:

So ind A+ = 0 = ind A− is necessary for applicability of the FSM!
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The FSM and the Fredholm index

Abbreviate ind A+ =: �+ and ind A− =: �−.

�+ = 0 = �− is necessary for applicability of the FSM!

Otherwise: Shift the system up or down accordingly, i.e. place the
corners of your finite sections An on another (the � th

− ) diagonal!

This means: Replace Ax = b by V�+Ax = V�+b.
Reason: The new system has plus-index zero:

ind (V�+A)+ = ind (V�+)+ + ind A+ = −�+ + �+ = 0

This process is called index cancellation.

⇒ We have found the (from the FSM perspective)
“proper” main diagonal of A!
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Example: FSM for slowly oscillating operators

Suppose A ∈ BDO(E ) has slowly oscillating diagonals.
We want to solve Ax = b by the FSM.

Assumption (minimal): A be invertible.

Step 1: Compute the plus-index �+ := ind A+.

Step 2: Perform index cancellation (i.e. shift down by �+ rows).

Step 3: Truncate.
Remarkable fact: We can truncate at arbitrary points ln and rn!
Reason: All limops B and C (w.r.t. subsequences of r and l , resp)
are Laurent operators. So all B− and all C+ are Toeplitz operators
that are Fredholm of index zero (after index cancellation).

Coburn’s lemma ⇒ all B− and all C+ are invertible, as well as A.

FSM theorem ⇒ The FSM applies.
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Finite Sections of Random Jacobi Operators

Final example: Back to our random Jacobi operator

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . v−2 w−1

u−2 v−1 w0

u−1 v0 w1

u0 v1 w2

u1 v2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with iid entries ui ∈ U, vi ∈ V and wi ∈W .

Assumption (minimal): A is invertible.

How do we truncate A to get an applicable FSM?
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Finite Sections of Random Jacobi Operators

Assumption (minimal): A ∈ ΨE (U,V ,W ) is invertible.
How do we truncate A to get an applicable FSM?

Step 1. Compute �+ := ind A+

We know that ind A+ = ind B+ for all limops B of A at +∞.
Let’s take a Laurent operator B. So pick arbitrary u ∈ U, v ∈ V
and w ∈W . Then �+ = ind A+ = ind B+ = −wind(Eu,w , v).

It’s very simple:

if v is outside Eu,w : �+ = 0

if v is inside Eu,w : �+ = ±1

if ∣u∣ > ∣w ∣: �+ = −1
if ∣u∣ < ∣w ∣: �+ = +1

Note: The result �+ is independent
of u ∈ U, v ∈ V , w ∈W !
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Finite Sections of Random Jacobi Operators

Step 1. Compute �+ := ind A+

Step 2. Perform index cancellation.

�+ = −1: shift up

�+ = 0: leave as it is

�+ = +1: shift down

In either case, the new system Ãx = b̃ has ind Ã+ = 0 = ind Ã−.
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Finite Sections of Random Jacobi Operators

Step 3. Do the truncations.

Choose the truncation points ⋅ ⋅ ⋅ < l2 < l1 < r1 < r2 < ⋅ ⋅ ⋅ so that⎛⎜⎜⎝
vln wln+1

uln
. . .

. . .
. . .

. . .

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
v w

u
. . .

. . .
. . .

. . .

⎞⎟⎟⎠ =: C+

and

⎛⎜⎜⎝
. . .

. . .
. . .

. . . wrn

urn−1 vrn

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
. . .

. . .
. . .

. . . w
u v

⎞⎟⎟⎠ =: B−

as n→∞, for some fixed u ∈ U, v ∈ V and w ∈W .

Both Toeplitz operators C+ and B− are Fredholm of index 0
(because ind A+ = 0 = ind A−) so they are invertible (Coburn).
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But how about the ‘full’ FSM?

The previous truncation pattern was specially adapted to the
operator A ∈ ΨE (U,V ,W ) at hand.

The full (or usual) FSM uses the cut-off sequences
l = (−1,−2, ...) and r = (1, 2, ...).

Theorem ML, Roch 2011

For A ∈ ΨE (U,V ,W ) we have the following results

1 The following are equivalent:

the full FSM is applicable to A,
the full FSM is applicable to all B ∈ J(U,V ,W ),
all operators B+ with B ∈ J(U,V ,W ) are invertible.

2 If 0 ∈ U,W and A is invertible then the full FSM is applicable.

3 If �+ := ind A+ = ±1 and A is invertible then, after index
cancellation, the full FSM is applicable.
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Thank you!
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