Orthogonal functions and matrix computations

Marc Van Barel

Dept. of Computer Science, K.U.Leuven, Belgium
Summer School on Applied Analysis 2011
Chemnitz, Germany, 26-20 September 2011

Example 1: three-term recurrence relation

Consider inner product on the real line

$$
\langle p, q\rangle=\int_{\mathbb{R}} p(x) q(x) d \mu(x) .
$$

Orthogonal polynomials p_{i} satisfy a three-term recurrence relation

$$
x p_{n}(x)=a_{n} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n-1} p_{n-1}(x)
$$

In matrix language

$$
x\left[p_{0}(x), p_{1}(x), p_{2}(x), \ldots\right]=\left[p_{0}(x), p_{1}(x), p_{2}(x), \ldots\right] J
$$

with J the Jacobi matrix

$$
J=\left[\begin{array}{llll}
b_{0} & a_{0} & & \\
a_{0} & b_{1} & a_{1} & \\
& a_{1} & b_{2} & \ddots \\
& & \ddots & \ddots
\end{array}\right]
$$

Many results involving orthogonal functions can be translated into matrix language and vice versa.

Two examples:

- recurrence relations
- spectral transformations

Orthogonal functio
and matrix and matrix
computations Marc Van Barel Introduction

Example 2: spectral transformation

Two related inner products $\langle\cdot\rangle_{\mu}$ and $\langle\cdot\rangle_{\nu}$

$$
\begin{aligned}
& \langle p, q\rangle_{\mu}=\int_{\mathbb{R}} p(x) q(x) d \mu(x) \\
& \langle p, q\rangle_{\nu}=\int_{\mathbb{R}} p(x) q(x) \mathbf{d} \nu(\mathbf{x})=\int_{\mathbb{R}} p(x) q(x)(\mathbf{x}-\boldsymbol{\beta}) \mathbf{d} \mu(\mathbf{x})
\end{aligned}
$$

Relation between Jacobi matrices J_{μ} and J_{ν} associated with μ and ν, respectively:

$$
\begin{aligned}
& J_{\mu}-\beta I=L L^{T} \\
& J_{\nu}-\beta I=L^{T} L
\end{aligned}
$$

- Agrees with one step of a semi-infinite Cholesky LR algorithm
- L is lower bidiagonal
[Bueno, Marcellán, Dopico]
[Galant], [Kautsky, Golub], [Watkins],

Discrete inner product

Given the basis functions $p_{1}(z), p_{2}(z), \ldots$,
n points $z_{i} \in \mathbb{C}$ and corresponding weights $w_{i}>0$,
define within the vector space $\mathcal{P}^{n}=\left\{\sum_{i=1}^{n} c_{i} p_{i}(z)\right\}$ the discrete inner product:

$$
\begin{equation*}
\langle p, q\rangle=\sum_{i=1}^{n} w_{i}^{2} \overline{p\left(z_{i}\right)} q\left(z_{i}\right) \tag{1}
\end{equation*}
$$

Let $\left\{a_{j}(z)\right\}$ be the orthonormal functions, i.e., $\left\langle a_{i}, a_{j}\right\rangle=\delta_{i j}$, such that $a_{j}(z) \in \mathcal{P}^{j} \backslash \mathcal{P}^{j-1}, j=1,2, \ldots, n$.
Discrete LS approximation with orthonormal functions
Given: a function $f(z)$
Find: the function $p(z)=\sum_{i=1}^{\alpha} c_{i} p_{i}(z)$ with $\alpha \leq n$ s.t.

$$
\sum_{i=1}^{n} w_{i}^{2}\left|f\left(z_{i}\right)-p\left(z_{i}\right)\right|^{2} \quad \text { is minimal. }
$$

Solution: The solution $p(z)$ can be represented as $p(z)=\sum_{j=1}^{\alpha} c_{j} a_{j}(z)$ with $c_{j}=\left\langle a_{j}, f\right\rangle$.
Thus LS problem is reduced to the problem of computing $a_{j}(z)$.

General Scheme

Given: the nodes z_{i} and the corresponding weights w_{i}, $i=1,2, \ldots, n$ of the discrete inner product.
Based on the nodes, one or more $n \times n$ diagonal matrices are derived: D_{1}, D_{2}
Definition (general IEP)
Given: D_{1}, D_{2}, \ldots - diagonal matrices, $\mathbf{w}=\left(w_{i}\right)$ - weights
Find: Unitary matrix Q and matrices H_{j} having a specific structure such that

$$
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1}, \quad Q^{H} D_{j} Q=H_{j} .
$$

Computing the recurrence parameters

For many important choices of the basis functions $p_{i}(z)$ of the vector space $\mathcal{P}^{n}=\left\{\sum_{i=1}^{n} c_{i} p_{i}(z)\right\}$, computing the recurrence parameters for the corresponding orthonormal functions $a_{i}(z)$

$$
\begin{aligned}
\left\langle a_{j}(z), a_{k}(z)\right\rangle & =\sum_{i=1}^{n} w_{i}^{2} \overline{a_{j}\left(z_{i}\right)} a_{k}\left(z_{i}\right) \\
& =Q_{j}^{H} Q_{k} \\
& =\delta_{j k}
\end{aligned}
$$

reduces to an inverse eigenvalue problem (IEP). Choices for the basis functions $p_{i}(z)$:

- $1, z, z^{2}, z^{3}, \ldots$ (orthogonal polynomials, OP)
- $1, z, z^{-1}, z^{2}, z^{-2}, z^{3}, z^{-3}, \ldots$ (orthogonal Laurent polynomials)
- any sequence such that z^{k} with $k>0$ comes after z^{k-1} and z^{-k} with $k>0$ comes after $z^{-(k-1)}$ (general orthogonal Laurent polynomials)
- $1, \frac{1}{z-y_{1}}, \frac{1}{z-y_{2}}, \ldots$ (orthogonal proper rational functions)
- ...

This can be extended to:

- multivariate orthogonal functions
- vector and matrix cases
- ...

Orthogonal functions
and matrix and matrix
computations Marc Van Barel

Comments

- The structure of the matrix(ces) H_{j} is determined by the recurrence relation for the orthonormal functions $a_{i}(z)$.
- The columns of the unitary matrix Q_{i} are connected to the orthonormal functions as follows:

$$
Q_{k}=\operatorname{diag}\left(w_{i}\right)\left[a_{k}\left(z_{i}\right)\right]_{i=1,2, \ldots, n}
$$

- The columns Q_{k} satisfy a corresponding recurrence relation.
- The orthonormality of the functions $a_{k}(z)$ is equivalent to Q being unitary:

Computing the recurrence parame recurrence paran by solving IEP

Illustrations

In this talk:

- orthonormal polynomials in one variable [Reichel, Ammar, Gragg][Elhay, Golub, Kautsky][Golub, Meurant]
- orthonormal polynomials in two variables [VB, Chesnokov]
- orthonormal polyanalytic polynomials
- orthonormal Laurent polynomials
- orthonormal rational functions [VB, Fasino, Gemignani, Mastronardi]

Algorithm for solving IEP - one-varaiable OP

\rightarrow sequence of unitary similarity transformations using
Givens rotations \rightarrow

Orthogonal functions
and matrix
and matrix
computations
Marc Van Barel
One-variable orthogonal polynomials
Orthogonal function and matrix
computations
Marc Van Barel

Basis functions: $p_{j}(z)=z^{j}, j=0,1, \ldots$
Recurrence relation: $z\left[a_{0}(z), a_{1}(z), \ldots\right]=\left[a_{0}(z), a_{1}(z), \ldots\right] H$ with H upper Hessenberg
Hence: Computing (the recurrence relation coefficients of) the OPs $a_{j}(z)$ can be done by solving the following IEP.
Definition (IEP - one-variable OP)
Given: $D_{z}=\operatorname{diag}\left(z_{i}\right)$ - points, $\mathbf{w}=\left(w_{i}\right)$ - weights
Find: Unitary Q and upper Hessenberg H such that

$$
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1}, \quad Q^{H} D_{z} Q=H
$$

[Boley, Golub]

2 points

3 points (1)

$\xrightarrow{G_{w}(1,3)}$

6 points (1)

$\xrightarrow{G_{w}(1,6)}$

Orthogonal functions
and matrix and matrix
computations
Marc Van Barel

$\xrightarrow{G(2,3)}$

. . skip some steps and jump to 6 points .

6 points (2)

$\xrightarrow{G(2,6)}$
3 points (2)

Orthogonal functions
and matrix and matrix
computations Marc Van Barel

One-variable orthogonal polynomials

6 points (3)

6 points (5)

$\xrightarrow{G(5,6)}$

Orthogonal functions
Orthogonal functio
and matrix
computations
Marc Van Barel

$\xrightarrow{G(4,6)}$

- in general: $\mathcal{O}\left(n^{3}\right)$ FLOPS
- w_{i} real, z_{i} real: $\mathcal{O}\left(n^{2}\right)$ FLOPS
- z_{i} on the complex unit circle: $\mathcal{O}\left(n^{2}\right)$ FLOPS using Schur parametrization, H is a unitary Hessenberg matrix
6 points (4)

Orthogonal functions and matrix
computations Marc Van Barel

```
                                    Marc Van Barel
```

One-variable

$$
\begin{aligned}
& \text { One-variable } \\
& \text { orthogonal polynomials }
\end{aligned}
$$

Two-variable orthogonal polynomials
Consider the monomials in two variables as basis functions $p_{k}(x, y)=x^{i} y^{j}$.
Choose an ordering of these basis functions such that:

- $x p_{k}(x, y)=p_{m}(x, y)$ with $m>k$
- $y p_{k}(x, y)=p_{m^{\prime}}(x, y)$ with $m^{\prime}>k$.

Two examples:

Define the inner product:

$$
\langle p, q\rangle=\sum_{i=1}^{n} w_{i}^{2} \overline{p\left(\xi_{i}, \eta_{i}\right)} q\left(\xi_{i}, \eta_{i}\right), \quad \xi_{i}, \eta_{i} \in \mathbb{R} \text { or } \mathbb{C}
$$

Example

We choose the following ordering:

leading to the following "recurrence relations" for the OP $a_{i}(z)$:

$$
\begin{aligned}
x\left[a_{1}(x, y), a_{2}(x, y), \ldots\right] & =\left[a_{1}(x, y), a_{2}(x, y), \ldots\right] H_{x} \\
y\left[a_{1}(x, y), a_{2}(x, y), \ldots\right] & =\left[a_{1}(x, y), a_{2}(x, y), \ldots\right] H_{y}
\end{aligned}
$$

with the following "pivot" structure for H_{x} and H_{y} :

$$
H_{x}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \times \cdots \\
\boxtimes \times \times \cdots \\
\boxtimes \times \cdots \\
\times \cdots \\
\boxtimes \cdots
\end{array}\right] \quad H_{y}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \times \cdots \\
\boxtimes \times \times \cdots \\
\boxtimes \times \cdots \\
\times \cdots \\
\boxtimes \cdots
\end{array}\right] .
$$

Goal: Construct such a basis, generalizing one-var. algorithm Idea: one-var. case: recurrence relation from multiplication by x :

$$
x\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right] H
$$

two-var. case: multiplications by x and y, separately:

$$
\begin{aligned}
x\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] & =\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] H_{x} \\
y\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] & =\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] H_{y}
\end{aligned}
$$

H_{x} and H_{y} - generalized Hessenberg.
Some choice is left: i.e. $x y^{2}=x \cdot y^{2}$ or $x y^{2}=y \cdot x y$.
Recurrence coefficients: can be taken from the H_{x} or the H_{y} matrix.

Orthogonal functions
and matrix
computations computations Marc Van Barel

Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OPs $a_{j}(x, y)$ can be done by solving the following IEP.
Definition (IEP - two-variable OP)
Given: $D_{x}=\operatorname{diag}\left(x_{i}\right), D_{y}=\operatorname{diag}\left(y_{i}\right)-$ points, $\mathbf{w}=\left(w_{i}\right)$ - weights Find: Unitary Q and "generalized" upper Hessenberg matrices H_{x} and H_{y} such that

$$
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1}, \quad Q^{H} D_{x} Q=H_{x}, \quad Q^{H} D_{y} Q=H_{y}
$$

where the pivot structure of H_{x} and H_{y} determines the degree structure of the sequence of orthonormal polynomials.

3 points (2)

4 points (1)
 $\xrightarrow{G_{w}(1,4)}$

Orthogonal functions
and matrix and matrix
computations Marc Van Barel

Two-variable

orthogoriable polynomials
Numerical examples
Orthogonal
polyanalytic

Orthogonal Lau
polynomials
Orthogonal rational
functions
Appendix

Orthogonal functions
and matrix
compret
Marc Van Barel
Order (4 points, 4 polynomials)

4 points (3)

5 points (1)

$$
\xrightarrow{\sigma_{w}(1,5)}
$$

Orthogonal functions
and matrix
computations
Marc Van Barel
Order (5 points, 5 polynomials)
Orthogonal functions and matrix
computations Marc Van Barel

5 points (2)

5 points (3)

Order (6 points, 6 polynomials)

Orthogonal functions
and matrix computations Marc Van Barel

5 points (4)
Orthogonal functions and matrix
computations Marc Van Barel

$\xrightarrow{G^{\mathrm{X}}(4,5)}$

$\xrightarrow{6^{x}(4,5)}$

6 points (2)

6 points (4)

Orthogonal functions and matrix
computations Marc Van Barel

6 points (3)
Orthogonal functions and matrix
computations Marc Van Barel

6 points (5)

Two-variable
orthogonal polynomials
Numerical example
$\xrightarrow{\sigma^{\curlyvee}(3,6)}$

We can now recover the polynomials:

$$
\begin{gathered}
b_{1}=\text { const } \\
x b_{1}=\left[b_{1}, b_{2}\right] \cdot H_{x}(1: 2,1) \\
y b_{1}=\left[b_{1}, b_{2}, b_{3}\right] \cdot H_{y}(1: 3,1) \\
x b_{2}=\left[b_{1}, b_{2}, b_{3}, b_{4}\right] \cdot H_{x}(1: 4,2) \\
y b_{2}=\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right] \cdot H_{y}(1: 5,2) \\
x b_{3}=\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right] \cdot H_{x}(1: 5,3) \\
y b_{3}=\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right] \cdot H_{y}(1: 6,3)
\end{gathered}
$$

The Padua points as the inner product points

The $n=(\delta+1)(\delta+2) / 2$ Padua points of degree δ are

$$
\operatorname{Pad}_{\delta}=\left\{\zeta=\left(\zeta_{1}, \zeta_{2}\right)\right\}=\left\{\gamma\left(\frac{k \pi}{\delta(\delta+1)}\right), \quad k=0, \ldots, \delta(\delta+1)\right\}
$$

where $\gamma(t)$ is their "generating curve"

$$
\gamma(t)=(-\cos ((\delta+1) t),-\cos (\delta t)) \quad t \in[0, \pi]
$$

More points, more polynomials...

and so on

Example 1: Orthogonality test

Recall the IEP: Find unitary Q (transformation matrix) and generalized upper Hessenberg H_{x} and H_{y} such that $Q^{H} D_{x} Q=H_{x}$ and $Q^{H} D_{y} Q=H_{y}$.
Let $A=\left[a_{1}\left(\zeta_{i}\right) a_{2}\left(\zeta_{i}\right) \ldots a_{n}\left(\zeta_{i}\right)\right]_{i=1}^{n}$ and $W=\operatorname{diag}\left(w_{i}\right)$. Then

$$
W A=Q
$$

Test whether WA is orthogonal

- Take $n=5151$ Padua points ζ_{i} of degree $\delta=100, W=I$.
- Compute H_{x}, H_{y}.
- Compute values of OP's at all ζ_{i} 's by recurrence relations stored in H_{x}, H_{y}. Multiply them with the corresponding weight w_{i} and store the results (columnwise) in $V=W A$. Let $R=\left|V^{H} V-I\right|$.
- For $k=10: 100: n$ compute $\max R(1: k, 1: k)$.

Example 1: Orthogonality test

Figure: Max orthogonality error for the first k OPs, $n=5151$ points

Example 2: Least squares test

Figure: Franke function

Example 2: Least squares test

Recall that the solution $p(z)$ to the discrete LS problem is

$$
p(z)=\sum_{j=1}^{\alpha} c_{j} a_{j}(z) .
$$

Then $\mathbf{c}=\left(c_{j}\right)$ is given by $\mathbf{c}=A^{H} W^{H} W \mathbf{f}=\left[\left\langle a_{i}, \mathbf{f}\right\rangle\right]$, so we perform the same row operations on $W \mathrm{f}$ as on w .
The LS solution

- Consider the Franke test function $F(\zeta)$ on $[0,1] \times[0,1]$ and transform the $n=5151$ Padua points to fit $[0,1]^{2}$.
- Compute $\mathbf{f}=F\left(\zeta_{i}\right)$
- Compute $A^{H} W^{H} W \mathbf{f}=\mathbf{c}$.
- Plot $\left|\mathbf{c}_{k}\right|$ for all k.

Example 2: Least squares test

Figure: LS solution coefficients for Franke function, $n=5151$ points
Orthogonal function and matrix
computations

Example 2: Least squares test, relative error

Figure: Relative error, appr poly of length $1000, n=5151$ points

Example 3: Polynomial that goes through the points

Choice of the points

- Consider the square $[0,1] \times[0,1]$.
- 20 equidistant points on the circle with center $(0.25 ; ~ 0.25)$ and radius 0.15 .
- The next 20 points similarly on a circle with center ($0.75 ; 0.75$).
- The last 4 points are the 4 corners of the square.

Find: the polynomial having "least degree" that has zero value in the given points.
Solution: look for the first zero pivot appearing in the recurrence relation.
This happens for the 28th orthogonal polynomial (of degree 6)

Example 2: Least squares test, relative error

Figure: Relative error, appr poly of length 3000, $n=5151$ points

Example 3: Polynomial that goes through the points

Figure: Surface plot of an interpolating polynomial

Orthogonal polyanalytic polynomials
Consider the monomials in the two variables z and \bar{z} as basis functions $p_{k}(z, \bar{z})=z^{i} \bar{z}^{j}$.
Choose an ordering of these basis functions such that:

- $z p_{k}(z, \bar{z})=p_{m}(z, \bar{z})$ with $m>k$
- $\bar{z} p_{k}(z, \bar{z})=p_{m^{\prime}}(z, \bar{z})$ with $m^{\prime}>k$.

Two examples:

Define the inner product:

$$
\langle p, q\rangle=\sum_{i=1}^{n} w_{i}^{2} \overline{p\left(z_{i}, \bar{z}_{i}\right)} q\left(z_{i}, \bar{z}_{i}\right), \quad z_{i} \in \mathbb{C}
$$

Example

We choose the following ordering:

leading to the following "recurrence relations" for the OP $a_{i}(z)$:

$$
\begin{aligned}
z\left[a_{1}(z, \bar{z}), a_{2}(z, \bar{z}), \ldots\right] & =\left[a_{1}(z, \bar{z}), a_{2}(z, \bar{z}), \ldots\right] H_{z} \\
\bar{z}\left[a_{1}(z, \bar{z}), a_{2}(z, \bar{z}), \ldots\right] & =\left[a_{1}(z, \bar{z}), a_{2}(z, \bar{z}), \ldots\right] H_{\bar{z}}
\end{aligned}
$$

with the following "pivot" structure for H_{z} and $H_{\bar{z}}$:

$$
H_{z}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \times \cdots \\
\boxtimes \times \times \cdots \\
\boxtimes \times \cdots \\
\times \cdots \\
\boxtimes \cdots
\end{array}\right] \quad H_{\bar{z}}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \times \cdots \\
\boxtimes \times \times \cdots \\
\boxtimes \times \cdots \\
\times \cdots \\
\boxtimes \cdots
\end{array}\right]
$$

Recurrence relation

Goal: Construct such a basis, generalizing one-var. algorithm Idea: one-var. case: recurrence relation from multiplication by z :

$$
z\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right] H
$$

two-var. case: multiplications by z and \bar{z}, separately:

$$
\begin{aligned}
& z\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right]=\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] H_{z} \\
& \bar{z}\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right]=\left[a_{1}, a_{2}, \ldots, a_{k}, \ldots\right] H_{\bar{z}}
\end{aligned}
$$

H_{z} and $H_{\bar{z}}$ - generalized Hessenberg.
Some choice is left: i.e. $z \bar{z}^{2}=z \cdot \bar{z}^{2}$ or $z \bar{z}^{2}=\bar{z} \cdot z \bar{z}$.
Recurrence coefficients: can be taken from the H_{z} or the $H_{\bar{z}}$ matrix.

Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OPs $a_{j}(z, \bar{z})$ can be done by solving the following IEP.
Definition (IEP - two-variable OP)
Given: $D_{z}=\operatorname{diag}\left(z_{i}\right)$ - points, $\mathbf{w}=\left(w_{i}\right)$ - weights
Find: Unitary Q and "generalized" upper Hessenberg matrices H_{z} and $H_{\bar{z}}$ such that

$$
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1}, \quad Q^{H} D_{z} Q=H_{z}, \quad Q^{H} D_{\bar{z}} Q=H_{\bar{z}}
$$

where the pivot structure of H_{z} and $H_{\bar{z}}$ determines the degree structure of the sequence of orthonormal polynomials.

Vector space of Laurent polynomials

Consider the vector space of Laurent polynomials $\mathcal{P}^{\alpha}=\left\{\sum_{i=1}^{\alpha} c_{i} p_{i}(z)\right\}$, with the sequence of basis functions $p_{i}(z)$:

$$
1, z, z^{-1}, z^{2}, z^{-2}, z^{3}, z^{-3}, \ldots
$$

The leading index of a nonzero Laurent polynomial $p(z)=\sum_{i=1}^{\alpha} c_{i} p_{i}(z)$ is defined as

$$
\text { I-index }(p)=\max \left\{i \mid c_{i} \neq 0\right\}
$$

Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OLPs $a_{j}(z)$ can be done by solving the following IEP.

Definition (IEP - orthogonal Laurent polynomials)
Given: $Z=\operatorname{diag}\left(z_{i}\right)$ - points, $\mathbf{w}=\left(w_{i}\right)$ - weights
Find: Unitary Q and "generalized" upper Hessenberg matrices H_{z} and $H_{z^{-1}}$ such that

$$
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1}, \quad Q^{H} Z Q=H_{z}, \quad Q^{H} Z^{-1} Q=H_{z^{-1}}
$$

where the pivot structure of H_{z} and $H_{z^{-1}}$ determines the degree structure of the sequence of orthonormal Laurent polynomials.

Orthogonal functions
and matrix computations

Recurrence relation

Let us consider the leading indices of $z a_{i}(z)$ and $z^{-1} a_{i}(z)$:

$$
\begin{aligned}
\text { l-index }\left(z\left[a_{1}(z), a_{2}(z), a_{3}(z), \ldots\right]\right) & =[2,4, \leq 4,6, \leq 6, \ldots] \\
\text { I-index }\left(z^{-1}\left[a_{1}(z), a_{2}(z), a_{3}(z), \ldots\right]\right) & =[3, \leq 3,5, \leq 5,7, \ldots]
\end{aligned}
$$

This leads to the following "recurrence relations" for the OLP $a_{i}(z)$:

$$
\begin{aligned}
z\left[a_{1}(z), a_{2}(z), \ldots\right] & =\left[a_{1}(z), a_{2}(z), \ldots\right] H_{z} \\
z^{-1}\left[a_{1}(z), a_{2}(z), \ldots\right] & =\left[a_{1}(z), a_{2}(z), \ldots\right] H_{z_{-1}}
\end{aligned}
$$

with the following "pivot" structure for H_{z} and $H_{z^{-1}}$:

$$
H_{z}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \times \cdots \\
\boxtimes \times \times \cdots \\
\times \cdots \\
\boxtimes \cdots \\
\vdots
\end{array}\right] \quad H_{z^{-1}}=\left[\begin{array}{r}
\times \times \times \times \cdots \\
\times \times \times \times \cdots \\
\boxtimes \times \times \times \cdots \\
\times \times \cdots \\
\boxtimes \times \cdots \\
\vdots \\
\end{array}\right]
$$

Orthogonal functions
and matrix
and matrix
computations
Marc Van Barel

Vector space

Given the complex numbers $y_{1}, y_{2}, \ldots, y_{n}$ all different from each other. Let us consider the vector space \mathcal{P}^{n} of all proper rational functions having possible poles in $y_{1}, y_{2}, \ldots, y_{n}$:

$$
\mathcal{P}^{n}=\operatorname{span}\left\{1, \frac{1}{z-y_{1}}, \frac{1}{z-y_{2}}, \ldots, \frac{1}{z-y_{n}}\right\}
$$

Bilinear form

Given the complex numbers $z_{0}, z_{1}, \ldots, z_{n}$ which together with the numbers y_{i} are all different from each other, and the "weights" $0 \leq w_{i}, i=0,1, \ldots, n$, we define the following bilinear form

$$
\langle p, q\rangle=\sum_{i=0}^{n} w_{i}^{2} \overline{p\left(z_{i}\right)} q\left(z_{i}\right) .
$$

This bilinear form defines an inner product in the space \mathcal{P}^{n}.

Recurrence relation

The recurrence relation for the orthonormal rational functions $a_{j}(z)$ for $j=0,1, \ldots, n$ can be written as:

$$
\mathbf{a}(z)\left(z l-D_{y}\right) H=\mathbf{a}(z)+c a_{n+1}(z) \mathbf{e}_{n}
$$

with $a_{n+1}(z)=\frac{\prod_{j=0}^{n}\left(z-z_{j}\right)}{\prod_{j=1}^{n}\left(z-y_{j}\right)}$ and
$D_{y}=\operatorname{diag}\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ with y_{0} chosen arbitrarily. Multiply to the right by the inverse of the upper Hessenberg matrix $H: S=H^{-1}$:

$$
z \mathbf{a}(z)=\mathbf{a}(z)\left(S+D_{y}\right)+c a_{n+1}(z) \mathbf{s}_{n}
$$

with s_{n} the last row of the matrix S.
Note that the matrix S is lower semiseparable, i.e., has rank 1 structure in the lower triangular part: tril $(S)=$ tril(rank 1 matrix).

Let us consider an orthonormal basis

$$
\mathbf{a}_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

for \mathcal{P}^{n} satisfying the following properties

$$
\begin{aligned}
a_{j} \in \mathcal{P}^{j} \backslash \mathcal{P}^{j-1} & \left(\mathcal{P}^{-1}=\emptyset\right) \\
\left\langle a_{i}, a_{j}\right\rangle=\delta_{i, j} & (\text { Kronecker delta })
\end{aligned}
$$

for $i, j=0,1,2, \ldots, n$.

Connecting the ORF $a_{j}(z)$ to the columns of Q

Orthogonal functio
and matrix computations Marc Van Barel

Orthogonal rational functions

Recurrence relation for $a_{j}(z)$:

$$
z \mathbf{a}(z)=\mathbf{a}(z)\left(S+D_{y}\right)+c a_{n+1}(z) \mathbf{s}_{n}
$$

with $a_{n+1}(z)=\frac{\prod_{j=0}^{n}\left(z-z_{j}\right)}{\prod_{j=1}^{n}\left(z-y_{j}\right)}$.
Because

$$
Q_{j}=\left[w_{i} a_{j}\left(z_{i}\right)\right]_{i=0,1, \ldots, n}
$$

we derive the following relation for the unitary matrix Q :

$$
D_{z} Q=Q\left(S+D_{y}\right), \quad \text { or } \quad Q^{H} D_{z} Q=S+D_{y}
$$

Later on we will design an algorithm to compute Q and S. Now we will look at a recurrence relation between the columns Q_{j} of Q. Then we will give the connection between the columns Q_{j} and the values of rational functions satisfying a similar recurrence relation. Finally, we will show that these rational functions form a basis we are looking for.
notation: $H=S^{-1}$ is upper Hessenberg with subdiagonal elements $b_{0}, b_{1}, \ldots, b_{n-1}$. The j th column H_{j} of H has the form

$$
H_{j}^{T}=:\left[\vec{h}_{j}^{T}, b_{j}, \overrightarrow{0}^{\top}\right]
$$

Recurrence relation for Q_{j}

Let $Q=:\left[Q_{0}, Q_{1}, \ldots, Q_{n}\right]$.
The columns Q_{j} satisfy the following recurrence relation

$$
\begin{aligned}
& \left(D_{z}-y_{j+1} I\right) b_{j} Q_{j+1}=Q_{j} \\
& \quad+\left(\left[Q_{0}, Q_{1}, \ldots, Q_{j}\right] D_{y, j}-D_{z}\left[Q_{0}, Q_{1}, \ldots, Q_{j}\right]\right) \vec{h}_{j} \\
& \quad j=0,1, \ldots, n-1
\end{aligned}
$$

with

$$
Q_{0}=\frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

Recurrence relation

Looking at the recurrence relation for Q_{j}

$$
\begin{aligned}
& \left(D_{z}-y_{j+1} I\right) b_{j} Q_{j+1}=Q_{j} \\
& +\left(\left[Q_{0}, Q_{1}, \ldots, Q_{j}\right] D_{y, j}-D_{z}\left[Q_{0}, Q_{1}, \ldots, Q_{j}\right]\right) \vec{h}_{j} \\
& \quad j=0,1, \ldots, n-1
\end{aligned}
$$

we can compute an orthonormal basis $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ for \mathcal{P}^{n} using a similar recurrence relation

$$
\begin{aligned}
& \quad a_{j+1}(z)= \\
& \frac{a_{j}(z)+\left(\left[a_{0}, a_{1}, \ldots, a_{j}\right] D_{y, j}-z\left[a_{0}, a_{1}, \ldots, a_{j}\right]\right) \vec{h}_{j}}{\left(z-y_{j+1}\right) b_{j}}
\end{aligned}
$$

for $j=0,1, \ldots, n-1$ and
with $a_{0}(x)=1 / \sqrt{\sum\left|w_{i}\right|^{2}}$.

Proof

Filling in z_{i} for z in the recurrence relation for $a_{j+1}(z)$, we get

$$
\begin{aligned}
& \left(D_{z}-y_{j+1} I\right) b_{j}\left[a_{j+1}\left(z_{i}\right)\right]=a_{j}\left(z_{i}\right) \\
& \quad+\left[a_{0}\left(z_{i}\right), a_{1}\left(z_{i}\right), \ldots, a_{j}\left(z_{i}\right)\right] D_{y, j} \vec{h}_{j} \\
& \quad-D_{z}\left[a_{0}\left(z_{i}\right), a_{1}\left(z_{i}\right), \ldots, a_{j}\left(z_{i}\right)\right] \vec{h}_{j}
\end{aligned}
$$

Because $Q_{0}=\operatorname{diag}(\mathbf{w})\left[a_{0}\left(z_{i}\right)\right]$ and because $\operatorname{diag}(\mathbf{w})$ is diagonal as well as all the other square matrices involved, first part of the theorem is proved.

For $j=0,1, \ldots, n$ we have that

$$
\begin{aligned}
& Q_{j}=\operatorname{diag}(\mathbf{w})\left[a_{j}\left(z_{i}\right)\right] \\
& a_{j} \in \mathcal{P}^{j} \backslash \mathcal{P}^{j-1}
\end{aligned}
$$

Proof (continued)

We have to prove that $a_{j} \in \mathcal{P}^{j} \backslash \mathcal{P}^{j-1}$.
This is clearly true for $j=0$.
Suppose it is true for $j=0,1,2, \ldots, k<n$.
From the recurrence relation, we derive that $a_{k+1}(z)$ has the form

$$
\begin{aligned}
& a_{k+1}(z)= \\
& \frac{\text { rat. function with possible poles in } y_{0}, y_{1}, \ldots, y_{k}}{\left(z-y_{j+1}\right)} .
\end{aligned}
$$

Also $\lim _{z \rightarrow \infty} a_{k+1}(z) \in \mathbb{C}$.
Hence, $a_{j} \in \mathcal{P}^{j} \backslash \mathcal{P}^{j-1}$.

Orthonormality of \vec{a}_{n}
Orthogonal functions
and matrix and matrix
computations

The functions $\vec{a}_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ form an orthonormal basis for P^{n} with respect to the inner product $\langle\cdot, \cdot\rangle$. Moreover, $z^{i} \in \mathcal{P}^{i} \backslash \mathcal{P}^{i-1}$.
Proof The only thing that remains to be proven is $\left\langle a_{i}, a_{j}\right\rangle=\delta_{i, j}$. This follows immediately from the fact that $Q=\operatorname{diag}(\mathbf{w})\left[a_{j}\left(z_{i}\right)\right]$ and Q is unitary.

Proof

The recurrence relation for the $a_{j}, j=0,1, \ldots, n$ can also be written as

$$
\mathbf{a}(z)\left(z l-D_{y}\right) H=\mathbf{a}(z)+c a_{n+1}(z) \mathbf{e}_{n} .
$$

Multiplying to the right by $S=\mathrm{H}^{-1}$, we derive the recurrence formula.
To determine a_{n+1} we look at the last column of the previous relation. It follows that a_{n+1} is a rational function having degree of numerator at most one more than the degree of the denominator and having possible poles in $y_{1}, y_{2}, \ldots, y_{n}$.

Recurrence relation

$$
z \mathbf{a}(z)=\mathbf{a}(z)\left(S+D_{y}\right)+c a_{n+1}(z) \mathbf{s}_{n}
$$

with s_{n} the last row of the semiseparable matrix S and $a_{n+1}(z)=\frac{\prod_{j=0}^{n}\left(z-z_{j}\right)}{\prod_{j=1}^{n}\left(z-y_{j}\right)}$.

Proof (continued)

Let us evaluate the previous equation in the points z_{i}

$$
D_{z}\left[a_{j}\left(z_{i}\right)\right] H-\left[a_{j}\left(z_{i}\right)\right] D_{y} H=\left[a_{j}\left(z_{i}\right)\right]+c\left[a_{n+1}\left(z_{i}\right)\right] \mathbf{e}_{n}
$$

Multiplying to the left by $\operatorname{diag}(\mathbf{w})=D_{w}$ and because $D_{w} D_{z}=D_{z} D_{w}$, we obtain

$$
D_{z} Q H-Q D_{y} H=Q+c D_{w}\left[a_{n+1}\left(z_{i}\right)\right] \mathbf{e}_{n}
$$

From

$$
D_{z} Q H=Q\left(I+D_{y} H\right)
$$

it follows that a_{n+1} has zeros in $z_{i}, i=0,1, \ldots, n$ and this proves the theorem.

- if all z_{i} and y_{i} are real: $Q^{\top} D_{z} Q=S+D_{y}$ Hence, S is symmetric.
- if all z_{i} are real but y_{i} can be complex then the strictly upper triangular part R is also of rank 1 .
- if z_{i} are all on the unit circle, then the strictly upper triangular part R is also of rank 1 .
In all these cases the computational complexity reduces to $\mathcal{O}\left(n^{2}\right)$.

Connection between Q, H and the OPs

Consider the following recurrence relation for b_{i} :

$$
\begin{equation*}
b_{0}=\frac{1}{\|\mathbf{w}\|}, \quad z\left[b_{0}, b_{1}, \ldots, b_{n-1}\right]=\left[b_{0}, b_{1}, \ldots, b_{n-1}\right] H \tag{2}
\end{equation*}
$$

H Hessenberg \Rightarrow derive b_{1} from 1st col, b_{2} from 2 nd, \ldots

$$
\begin{gathered}
Q^{H} \mathbf{w}=\|\mathbf{w}\| \mathbf{e}_{1} \quad \Rightarrow \quad Q \mathbf{e}_{1}=\frac{\mathbf{w}}{\|\mathbf{w}\|}=\operatorname{diag}(\mathbf{w})\left[b_{0}\left(z_{i}\right)\right] \\
D_{z} Q=Q H \Rightarrow Q \mathbf{e}_{k}=\operatorname{diag}(\mathbf{w})\left[b_{k-1}\left(z_{i}\right)\right], k=1,2, \ldots, n .
\end{gathered}
$$

```
Orthogonal function
    and matrix
    computations
    Marc Van Barel
```


Vector case of discrete LS approximation

Discrete vector LS approximation
Given: L functions $f_{j}(z), z \in \mathcal{D} \subset \mathbb{C}, N$ points $z_{i} \in \mathcal{D} \subset \mathbb{C}$ and corresponding weights w_{i}
Find: L polynomials $p_{j}(z): \operatorname{deg} p_{j} \leqslant \alpha_{j}$ and a normalization s.t.

$$
\left.\sum_{i=1}^{N} w_{i}^{2}\left|\left[f_{1} f_{2} \cdots f_{L}\right]\left[\begin{array}{c}
p_{1} \\
\vdots \\
p_{L}
\end{array}\right]\right|_{z=z_{i}}\right|^{2} \quad \text { is minimal. }
$$

Special case: discrete LS approximation
Find: the polynomial $p(z)$ of degree $\leqslant \alpha$ s.t.
$\sum_{i=1}^{N} w_{i}^{2}\left|f\left(x_{i}\right)-p\left(z_{i}\right)\right|^{2}=\sum_{i=1}^{N} w_{i}^{2}\left|\left[\begin{array}{ll}f\left(z_{i}\right) & -1\end{array}\right]\left[\begin{array}{c}1 \\ p\left(z_{i}\right)\end{array}\right]\right|^{2} \quad$ is min.
[VB, Bultheel]

