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Introduction

Many results involving orthogonal functions can be translated into
matrix language and vice versa.

Two examples:

I recurrence relations

I spectral transformations
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Example 1: three-term recurrence relation
Consider inner product on the real line

〈p, q〉 =

∫

R
p(x)q(x)dµ(x).

Orthogonal polynomials pi satisfy a three-term recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x).

In matrix language

x [p0(x), p1(x), p2(x), . . .] = [p0(x), p1(x), p2(x), . . .] J

with J the Jacobi matrix

J =




b0 a0

a0 b1 a1

a1 b2
. . .

. . .
. . .



.
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Example 2: spectral transformation

Two related inner products 〈·〉µ and 〈·〉ν

〈p, q〉µ =

∫

R
p(x)q(x)dµ(x)

〈p, q〉ν =

∫

R
p(x)q(x)dν(x) =

∫

R
p(x)q(x)(x − β)dµ(x)

Relation between Jacobi matrices Jµ and Jν associated with µ
and ν, respectively:

Jµ − βI = L LT

Jν − βI = LTL

I Agrees with one step of a semi-infinite Cholesky LR algorithm

I L is lower bidiagonal

[Bueno, Marcellán, Dopico]
[Galant], [Kautsky, Golub], [Watkins], ...
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Discrete inner product
Given the basis functions p1(z), p2(z), . . .,
n points zi ∈ C and corresponding weights wi > 0,
define within the vector space Pn =

{∑n
i=1 cipi (z)

}
the discrete

inner product:

〈p, q〉 =
n∑

i=1

w2
i p(zi )q(zi ). (1)

Let {aj(z)} be the orthonormal functions, i.e., 〈ai , aj〉 = δij , such
that aj(z) ∈ P j \ P j−1, j = 1, 2, . . . , n.

Discrete LS approximation with orthonormal functions
Given: a function f (z)
Find: the function p(z) =

∑α
i=1 cipi (z) with α ≤ n s.t.

n∑

i=1

w2
i |f (zi )− p(zi )|2 is minimal.

Solution: The solution p(z) can be represented as
p(z) =

∑α
j=1 cjaj(z) with cj = 〈aj , f 〉.

Thus LS problem is reduced to the problem of computing aj(z).
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Computing the recurrence parameters

For many important choices of the basis functions pi (z) of the
vector space Pn =

{∑n
i=1 cipi (z)

}
, computing the recurrence

parameters for the corresponding orthonormal functions ai (z)
reduces to an inverse eigenvalue problem (IEP). Choices for the
basis functions pi (z):

I 1, z , z2, z3, . . . (orthogonal polynomials, OP)

I 1, z , z−1, z2, z−2, z3, z−3, . . . (orthogonal Laurent
polynomials)

I any sequence such that zk with k > 0 comes after zk−1 and
z−k with k > 0 comes after z−(k−1) (general orthogonal
Laurent polynomials)

I 1, 1
z−y1

, 1
z−y2

, . . . (orthogonal proper rational functions)

I . . .

This can be extended to:

I multivariate orthogonal functions

I vector and matrix cases

I . . .
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General Scheme

Given: the nodes zi and the corresponding weights wi ,
i = 1, 2, . . . , n of the discrete inner product.
Based on the nodes, one or more n × n diagonal matrices are
derived: D1,D2, . . ..

Definition (general IEP)
Given: D1,D2, . . . – diagonal matrices, w = (wi ) – weights
Find: Unitary matrix Q and matrices Hj having a specific
structure such that

QHw = ‖w‖e1, QHDjQ = Hj .
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Comments

I The structure of the matrix(ces) Hj is determined by the
recurrence relation for the orthonormal functions ai (z).

I The columns of the unitary matrix Qi are connected to the
orthonormal functions as follows:

Qk = diag(wi )[ak(zi )]i=1,2,...,n.

I The columns Qk satisfy a corresponding recurrence relation.

I The orthonormality of the functions ak(z) is equivalent to Q
being unitary:

〈aj(z), ak(z)〉=
n∑

i=1

w2
i aj(zi )ak(zi )

= QH
j Qk

= δjk
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Illustrations

In this talk:

I orthonormal polynomials in one variable
[Reichel, Ammar, Gragg][Elhay, Golub, Kautsky][Golub,
Meurant]

I orthonormal polynomials in two variables
[VB, Chesnokov]

I orthonormal polyanalytic polynomials

I orthonormal Laurent polynomials

I orthonormal rational functions
[VB, Fasino, Gemignani, Mastronardi]
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One-variable orthogonal polynomials

Basis functions: pj(z) = z j , j = 0, 1, . . ..
Recurrence relation: z [a0(z), a1(z), . . .] = [a0(z), a1(z), . . .]H with
H upper Hessenberg
Hence: Computing (the recurrence relation coefficients of) the
OPs aj(z) can be done by solving the following IEP.

Definition (IEP – one-variable OP)
Given: Dz = diag(zi ) – points, w = (wi ) – weights
Find: Unitary Q and upper Hessenberg H such that

QHw = ‖w‖e1, QHDzQ = H.

[Boley, Golub]

Orthogonal functions
and matrix

computations

Marc Van Barel

Introduction

Discrete inner product

Computing the
recurrence parameters
by solving IEP

One-variable
orthogonal polynomials

Two-variable
orthogonal polynomials

Numerical examples

Orthogonal
polyanalytic
polynomials

Orthogonal Laurent
polynomials

Orthogonal rational
functions

Appendix

Algorithm for solving IEP – one-varaiable OP

w1 z1

w2 z2

...
. . .

wn zn

→ sequence of
unitary similarity

transformations using
Givens rotations →

‖w‖ h11 . . . . . . h1,n

h21

h32

. . .
...

hn,n−1 hn,n
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. . . skip some steps and jump to 6 points . . .
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Computational complexity to solve the IEP

I in general: O(n3) FLOPS

I wi real, zi real: O(n2) FLOPS

I zi on the complex unit circle: O(n2) FLOPS using Schur
parametrization, H is a unitary Hessenberg matrix
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Two-variable orthogonal polynomials
Consider the monomials in two variables as basis functions
pk(x , y) = x iy j .
Choose an ordering of these basis functions such that:

I xpk(x , y) = pm(x , y) with m > k

I ypk(x , y) = pm′(x , y) with m′ > k .

Two examples:

y

y4 xy4 x2y4 x3y4 x4y4

y3 xy3 x2y3 x3y3 x4y3

y2 xy2 x2y2 x3y2 x4y2

y xy x2y x3y x4y
1 x x2 x3 x4

x

y

y4 xy4 x2y4 x3y4 x4y4

y3 xy3 x2y3 x3y3 x4y3

y2 xy2 x2y2 x3y2 x4y2

y xy x2y x3y x4y
1 x x2 x3 x4

x

Define the inner product:

〈p, q〉 =
n∑

i=1

w2
i p(ξi , ηi )q(ξi , ηi ), ξi , ηi ∈ R or C.
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Recurrence relation

Goal: Construct such a basis, generalizing one-var. algorithm
Idea: one-var. case: recurrence relation from multiplication by x :

x [a0, a1, . . . , an−1] = [a0, a1, . . . , an−1]H.

two-var. case: multiplications by x and y , separately:

x [a1, a2, . . . , ak , . . .] = [a1, a2, . . . , ak , . . .]Hx ,

y [a1, a2, . . . , ak , . . .] = [a1, a2, . . . , ak , . . .]Hy .

Hx and Hy – generalized Hessenberg.

Some choice is left: i.e. xy2 = x · y2 or xy2 = y · xy .
Recurrence coefficients: can be taken from the Hx or the Hy

matrix.
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Example
We choose the following ordering:

y

y4 xy4 x2y4 x3y4 x4y4

y3 xy3 x2y3 x3y3 x4y3

y2 xy2 x2y2 x3y2 x4y2

y xy x2y x3y x4y

1 x x2 x3 x4

x

y

10
↑
6 → 9
↑ ↑
3 → 5 → 8
↑ ↑ ↑
1 → 2 → 4 → 7

x

leading to the following “recurrence relations” for the OP ai (z):

x [a1(x , y), a2(x , y), . . .] = [a1(x , y), a2(x , y), . . .]Hx

y [a1(x , y), a2(x , y), . . .] = [a1(x , y), a2(x , y), . . .]Hy

with the following “pivot” structure for Hx and Hy :

Hx =




×××× · · ·
�××× · · ·
××× · · ·
�×× · · ·
�× · · ·
× · · ·
� · · ·




Hy =




×××× · · ·
×××× · · ·
�××× · · ·
××× · · ·
�×× · · ·
�× · · ·
× · · ·
� · · ·




.
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Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OPs
aj(x , y) can be done by solving the following IEP.

Definition (IEP – two-variable OP)
Given: Dx = diag(xi ), Dy = diag(yi ) – points, w = (wi ) – weights
Find: Unitary Q and “generalized” upper Hessenberg matrices Hx

and Hy such that

QHw = ‖w‖e1, QHDxQ = Hx , QHDyQ = Hy

where the pivot structure of Hx and Hy determines the degree
structure of the sequence of orthonormal polynomials.
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Order (2 points, 2 polynomials)

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2→ 4→ 7

x
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Order (3 points, 3 polynomials)

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2→ 4→ 7

x
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Order (4 points, 4 polynomials)

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2→ 4→ 7

x
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Order (5 points, 5 polynomials)

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2→ 4→ 7
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Order (6 points, 6 polynomials)

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2→ 4→ 7
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Recurrence relation

We can now recover the polynomials:

b1 = const

xb1 = [b1, b2] · Hx(1 : 2, 1)

yb1 = [b1, b2, b3] · Hy (1 : 3, 1)

xb2 = [b1, b2, b3, b4] · Hx(1 : 4, 2)

yb2 = [b1, b2, b3, b4, b5] · Hy (1 : 5, 2)

xb3 = [b1, b2, b3, b4, b5] · Hx(1 : 5, 3)

yb3 = [b1, b2, b3, b4, b5, b6] · Hy (1 : 6, 3)
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More points, more polynomials...
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and so on
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The Padua points as the inner product points

The n = (δ + 1)(δ + 2)/2 Padua points of degree δ are

Padδ = {ζζζ = (ζ1, ζ2)} =

{
γ

(
kπ

δ(δ + 1)

)
, k = 0, . . . , δ(δ + 1)

}

where γ(t) is their “generating curve”

γ(t) = (− cos((δ + 1)t),− cos(δt)) t ∈ [0, π].
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Example 1: Orthogonality test

Recall the IEP: Find unitary Q (transformation matrix) and
generalized upper Hessenberg Hx and Hy such that QHDxQ = Hx

and QHDyQ = Hy .
Let A = [a1(ζζζ i ) a2(ζζζ i ) . . . an(ζζζ i )]ni=1 and W = diag(wi ). Then

WA = Q.

Test whether WA is orthogonal

I Take n = 5151 Padua points ζζζ i of degree δ = 100, W = I .

I Compute Hx , Hy .

I Compute values of OP’s at all ζζζ i ’s by recurrence relations
stored in Hx , Hy . Multiply them with the corresponding
weight wi and store the results (columnwise) in V = WA. Let
R = |V HV − I |.

I For k = 10 : 100 : n compute maxR(1 : k, 1 : k).
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Example 1: Orthogonality test
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Figure: Max orthogonality error for the first k OPs, n = 5151 points
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Example 2: Least squares test

Recall that the solution p(z) to the discrete LS problem is

p(z) =
∑α

j=1 cjaj(z).

Then c = (cj) is given by c = AHW HW f = [〈ai , f〉], so we
perform the same row operations on W f as on w.

The LS solution

I Consider the Franke test function F (ζ) on [0, 1]× [0, 1] and
transform the n = 5151 Padua points to fit [0, 1]2.

I Compute f = F (ζi ).

I Compute AHW HW f = c.

I Plot |ck | for all k.
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Example 2: Least squares test
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Example 2: Least squares test
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Figure: LS solution coefficients for Franke function, n = 5151 points
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Example 2: Least squares test, relative error
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Figure: Relative error, appr poly of length 1000, n = 5151 points
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Example 2: Least squares test, relative error
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Figure: Relative error, appr poly of length 3000, n = 5151 points
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Example 3: Polynomial that goes through the
points

Choice of the points

I Consider the square [0, 1]× [0, 1].

I 20 equidistant points on the circle with center (0.25 ; 0.25)
and radius 0.15.

I The next 20 points similarly on a circle with center
(0.75 ; 0.75).

I The last 4 points are the 4 corners of the square.

Find: the polynomial having “least degree” that has zero value in
the given points.
Solution: look for the first zero pivot appearing in the recurrence
relation.
This happens for the 28th orthogonal polynomial (of degree 6)
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Example 3: Polynomial that goes through the
points
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Figure: Surface plot of an interpolating polynomial
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Orthogonal polyanalytic polynomials
Consider the monomials in the two variables z and z̄ as basis
functions pk(z , z̄) = z i z̄ j .
Choose an ordering of these basis functions such that:

I zpk(z , z̄) = pm(z , z̄) with m > k

I z̄pk(z , z̄) = pm′(z , z̄) with m′ > k .

Two examples:

z̄

z̄4 zz̄4 z2z̄4 z3z̄4 z4z̄4

z̄3 zz̄3 z2z̄3 z3z̄3 z4z̄3

z̄2 zz̄2 z2z̄2 z3z̄2 z4z̄2

z̄ z z̄ z2z̄ z3z̄ z4z̄
1 z z2 z3 z4

z

z̄

z̄4 zz̄4 z2z̄4 z3z̄4 z4z̄4

z̄3 zz̄3 z2z̄3 z3z̄3 z4z̄3

z̄2 zz̄2 z2z̄2 z3z̄2 z4z̄2

z̄ z z̄ z2z̄ z3z̄ z4z̄
1 z z2 z3 z4

z

Define the inner product:

〈p, q〉 =
n∑

i=1

w2
i p(zi , z̄i )q(zi , z̄i ), zi ∈ C.
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Recurrence relation

Goal: Construct such a basis, generalizing one-var. algorithm
Idea: one-var. case: recurrence relation from multiplication by z :

z [a0, a1, . . . , an−1] = [a0, a1, . . . , an−1]H.

two-var. case: multiplications by z and z̄ , separately:

z [a1, a2, . . . , ak , . . .] = [a1, a2, . . . , ak , . . .]Hz ,

z̄ [a1, a2, . . . , ak , . . .] = [a1, a2, . . . , ak , . . .]Hz̄ .

Hz and Hz̄ – generalized Hessenberg.

Some choice is left: i.e. zz̄2 = z · z̄2 or zz̄2 = z̄ · zz̄ .
Recurrence coefficients: can be taken from the Hz or the Hz̄

matrix.
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Example
We choose the following ordering:

z̄

z̄4 zz̄4 z2 z̄4 z3 z̄4 z4 z̄4

z̄3 zz̄3 z2 z̄3 z3 z̄3 z4 z̄3

z̄2 zz̄2 z2 z̄2 z3 z̄2 z4 z̄2

z̄ z z̄ z2 z̄ z3 z̄ z4 z̄

1 z z2 z3 z4

z

z̄

10
↑
6 → 9
↑ ↑
3 → 5 → 8
↑ ↑ ↑
1 → 2 → 4 → 7

z

leading to the following “recurrence relations” for the OP ai (z):

z [a1(z , z̄), a2(z , z̄), . . .] = [a1(z , z̄), a2(z , z̄), . . .]Hz

z̄ [a1(z , z̄), a2(z , z̄), . . .] = [a1(z , z̄), a2(z , z̄), . . .]Hz̄

with the following “pivot” structure for Hz and Hz̄ :

Hz =




×××× · · ·
�××× · · ·
××× · · ·
�×× · · ·
�× · · ·
× · · ·
� · · ·




Hz̄ =




×××× · · ·
×××× · · ·
�××× · · ·
××× · · ·
�×× · · ·
�× · · ·
× · · ·
� · · ·




.
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Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OPs
aj(z , z̄) can be done by solving the following IEP.

Definition (IEP – two-variable OP)
Given: Dz = diag(zi ) – points, w = (wi ) – weights
Find: Unitary Q and “generalized” upper Hessenberg matrices Hz

and Hz̄ such that

QHw = ‖w‖e1, QHDzQ = Hz , QHDz̄Q = Hz̄

where the pivot structure of Hz and Hz̄ determines the degree
structure of the sequence of orthonormal polynomials.
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Vector space of Laurent polynomials

Consider the vector space of Laurent polynomials
Pα = {∑α

i=1 cipi (z)}, with the sequence of basis functions pi (z):

1, z , z−1, z2, z−2, z3, z−3, . . . .

The leading index of a nonzero Laurent polynomial
p(z) =

∑α
i=1 cipi (z) is defined as

l-index(p) = max{i |ci 6= 0}.
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Recurrence relation
Let us consider the leading indices of zai (z) and z−1ai (z):

l-index(z [a1(z), a2(z), a3(z), . . .]) = [2, 4,≤ 4, 6,≤ 6, . . .]

l-index(z−1[a1(z), a2(z), a3(z), . . .]) = [3,≤ 3, 5,≤ 5, 7, . . .].

This leads to the following “recurrence relations” for the OLP
ai (z):

z [a1(z), a2(z), . . .] = [a1(z), a2(z), . . .]Hz

z−1[a1(z), a2(z), . . .] = [a1(z), a2(z), . . .]Hz−1

with the following “pivot” structure for Hz and Hz−1 :

Hz =




×××× · · ·
�××× · · ·
××× · · ·
�×× · · ·
× · · ·
� · · ·

...




Hz−1 =




×××× · · ·
×××× · · ·
�××× · · ·
×× · · ·
�× · · ·

...




.
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Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OLPs aj(z)
can be done by solving the following IEP.

Definition (IEP – orthogonal Laurent polynomials)
Given: Z = diag(zi ) – points, w = (wi ) – weights
Find: Unitary Q and “generalized” upper Hessenberg matrices Hz

and Hz−1 such that

QHw = ‖w‖e1, QHZQ = Hz , QHZ−1Q = Hz−1

where the pivot structure of Hz and Hz−1 determines the degree
structure of the sequence of orthonormal Laurent polynomials.
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Vector space

Given the complex numbers y1, y2, . . . , yn all different from each
other. Let us consider the vector space Pn of all proper rational
functions having possible poles in y1, y2, . . . , yn:

Pn = span{1, 1

z − y1
,

1

z − y2
, . . . ,

1

z − yn
}.
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Bilinear form

Given the complex numbers z0, z1, . . . , zn which together with the
numbers yi are all different from each other, and the “weights”
0 ≤ wi , i = 0, 1, . . . , n, we define the following bilinear form

〈p, q〉 =
n∑

i=0

w2
i p(zi )q(zi ).

This bilinear form defines an inner product in the space Pn.
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Orthonormal basis

Let us consider an orthonormal basis

an = [a0, a1, . . . , an]

for Pn satisfying the following properties

aj ∈ P j \ P j−1 (P−1 = ∅)
〈ai , aj〉 = δi,j (Kronecker delta)

for i , j = 0, 1, 2, . . . , n.
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Recurrence relation

The recurrence relation for the orthonormal rational functions
aj(z) for j = 0, 1, . . . , n can be written as:

a(z)(zI − Dy )H = a(z) + can+1(z)en

with an+1(z) =
∏n

j=0(z−zj )∏n
j=1(z−yj ) and

Dy = diag(y0, y1, . . . , yn) with y0 chosen arbitrarily.
Multiply to the right by the inverse of the upper Hessenberg
matrix H: S = H−1 :

za(z) = a(z)(S + Dy ) + can+1(z)sn

with sn the last row of the matrix S .
Note that the matrix S is lower semiseparable, i.e., has rank 1
structure in the lower triangular part: tril(S) = tril(rank 1 matrix).
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Connecting the ORF aj(z) to the columns of Q

Recurrence relation for aj(z):

za(z) = a(z)(S + Dy ) + can+1(z)sn

with an+1(z) =
∏n

j=0(z−zj )∏n
j=1(z−yj ) .

Because
Qj = [wiaj(zi )]i=0,1,...,n

we derive the following relation for the unitary matrix Q:

DzQ = Q(S + Dy ), or QHDzQ = S + Dy .
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Construction of the basis

Solve the following inverse eigenvalue problem:

Definition (IEP – orthogonal rational functions )
Given: Dz = diag(zi ), Dy = diag(yi ) – points, poles, w = (wi ) –
weights
Find: Unitary Q and lower-semiseparable matrix S such that

I QHDzQ = S + Dy with Q unitary

I the first component of the normalised eigenvector
corresponding to zi equals wi/‖w‖, i.e., QHw = e1‖w‖

I tril(S) = tril(rank 1 matrix)
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Recurrence relation

Later on we will design an algorithm to compute Q and S . Now
we will look at a recurrence relation between the columns Qj of Q.
Then we will give the connection between the columns Qj and the
values of rational functions satisfying a similar recurrence relation.
Finally, we will show that these rational functions form a basis we
are looking for.
notation: H = S−1 is upper Hessenberg with subdiagonal
elements b0, b1, . . . , bn−1. The jth column Hj of H has the form

HT
j =: [~hTj , bj ,~0

T ].
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Recurrence relation for Qj

Let Q =: [Q0,Q1, . . . ,Qn].
The columns Qj satisfy the following recurrence relation

(Dz − yj+1I )bjQj+1 = Qj

+ ([Q0,Q1, . . . ,Qj ]Dy ,j − Dz [Q0,Q1, . . . ,Qj ])~hj

j = 0, 1, . . . , n − 1

with

Q0 =
w

‖w‖
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Proof

Because QHw = e1‖w‖, it follows that Q0 = w
‖w‖ .

Multiplying QHDzQ = S + Dy to the left by Q, leads to

DzQ = Q(S + Dy ).

Multiplying this to the right by H = S−1, gives us

DzQH = Q(I + DyH).

Considering the jth column from the left and right-hand side gives
us the recurrence relation:

(Dz − yj+1I )bjQj+1 = Qj

+ ([Q0,Q1, . . . ,Qj ]Dy ,j − Dz [Q0,Q1, . . . ,Qj ])~hj

j = 0, 1, . . . , n − 1.
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Recurrence relation

Looking at the recurrence relation for Qj

(Dz − yj+1I )bjQj+1 = Qj

+ ([Q0,Q1, . . . ,Qj ]Dy ,j − Dz [Q0,Q1, . . . ,Qj ])~hj

j = 0, 1, . . . , n − 1

we can compute an orthonormal basis [a0, a1, . . . , an] for Pn using
a similar recurrence relation

aj+1(z) =

aj(z) + ([a0, a1, . . . , aj ]Dy ,j − z [a0, a1, . . . , aj ])~hj
(z − yj+1)bj

,

for j = 0, 1, . . . , n − 1 and
with a0(x) = 1/

√∑ |wi |2.
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Theorem

For j = 0, 1, . . . , n we have that

Qj = diag(w) [aj(zi )]

aj ∈ P j \ P j−1
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Proof

Filling in zi for z in the recurrence relation for aj+1(z), we get

(Dz − yj+1I )bj [aj+1(zi )] = aj(zi )

+ [a0(zi ), a1(zi ), . . . , aj(zi )]Dy ,j
~hj

−Dz [a0(zi ), a1(zi ), . . . , aj(zi )]~hj .

Because Q0 = diag(w) [a0(zi )] and because diag(w) is diagonal as
well as all the other square matrices involved, first part of the
theorem is proved.

Orthogonal functions
and matrix

computations

Marc Van Barel

Introduction

Discrete inner product

Computing the
recurrence parameters
by solving IEP

One-variable
orthogonal polynomials

Two-variable
orthogonal polynomials

Numerical examples

Orthogonal
polyanalytic
polynomials

Orthogonal Laurent
polynomials

Orthogonal rational
functions

Appendix

Proof (continued)

We have to prove that aj ∈ P j \ P j−1.
This is clearly true for j = 0.
Suppose it is true for j = 0, 1, 2, . . . , k < n.
From the recurrence relation, we derive that ak+1(z) has the form

ak+1(z) =

rat. function with possible poles in y0, y1, . . . , yk
(z − yj+1)

.

Also limz→∞ ak+1(z) ∈ C.
Hence, aj ∈ P j \ P j−1.
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Orthonormality of ~an

The functions ~an = [a0, a1, . . . , an] form an orthonormal basis for
Pn with respect to the inner product 〈·, ·〉. Moreover,
i ∈ P i \ P i−1.
Proof The only thing that remains to be proven is 〈ai , aj〉 = δi,j .
This follows immediately from the fact that Q = diag(w) [aj(zi )]
and Q is unitary.
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Recurrence relation

za(z) = a(z)(S + Dy ) + can+1(z)sn

with sn the last row of the semiseparable matrix S and

an+1(z) =
∏n

j=0(z−zj )∏n
j=1(z−yj ) .
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Proof

The recurrence relation for the aj , j = 0, 1, . . . , n can also be
written as

a(z)(zI − Dy )H = a(z) + can+1(z)en.

Multiplying to the right by S = H−1, we derive the recurrence
formula.
To determine an+1 we look at the last column of the previous
relation. It follows that an+1 is a rational function having degree
of numerator at most one more than the degree of the
denominator and having possible poles in y1, y2, . . . , yn.

Orthogonal functions
and matrix

computations

Marc Van Barel

Introduction

Discrete inner product

Computing the
recurrence parameters
by solving IEP

One-variable
orthogonal polynomials

Two-variable
orthogonal polynomials

Numerical examples

Orthogonal
polyanalytic
polynomials

Orthogonal Laurent
polynomials

Orthogonal rational
functions

Appendix

Proof (continued)

Let us evaluate the previous equation in the points zi

Dz [aj(zi )]H − [aj(zi )]DyH = [aj(zi )] + c [an+1(zi )] en.

Multiplying to the left by diag(w) = Dw and because
DwDz = DzDw , we obtain

DzQH − QDyH = Q + cDw [an+1(zi )] en.

From
DzQH = Q(I + DyH)

it follows that an+1 has zeros in zi , i = 0, 1, . . . , n and this proves
the theorem.
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Note

Note that an+1 is orthogonal to all ai , i = 0, 1, 2, . . . , n.
The norm squared is

‖an+1‖2 = 〈an+1, an+1〉 = 0.
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Special cases

I if all zi and yi are real: QTDzQ = S + Dy

Hence, S is symmetric.

I if all zi are real but yi can be complex then the strictly upper
triangular part R is also of rank 1.

I if zi are all on the unit circle, then the strictly upper
triangular part R is also of rank 1.

In all these cases the computational complexity reduces to O(n2).
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Connection between Q, H and the OPs

Consider the following recurrence relation for bi :

b0 =
1

‖w‖ , z [b0, b1, . . . , bn−1] = [b0, b1, . . . , bn−1]H. (2)

H Hessenberg ⇒ derive b1 from 1st col, b2 from 2nd, . . .

QHw = ‖w‖e1 ⇒ Qe1 =
w

‖w‖ = diag(w)[b0(zi )]

DzQ = QH ⇒ Qek = diag(w)[bk−1(zi )], k = 1, 2, . . . , n.

Since QHQ = I , we have that:
(1) bi are OPs wrt (1), (2) ai = bi and thus (3) WA = Q
with W = diag(wi ) and Ai,j = [aj(zi )].
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Vector case of discrete LS approximation

Discrete vector LS approximation
Given: L functions fj(z), z ∈ D ⊂ C, N points zi ∈ D ⊂ C and
corresponding weights wi

Find: L polynomials pj(z): deg pj 6 αj and a normalization s.t.

N∑

i=1

w2
i |
[
f1 f2 · · · fL

]


p1

...
pL




∣∣∣∣∣∣∣
z=zi

|2 is minimal.

Special case: discrete LS approximation
Find: the polynomial p(z) of degree 6 α s.t.

N∑

i=1

w2
i |f (xi )− p(zi )|2 =

N∑

i=1

w2
i |
[
f (zi ) −1

] [ 1
p(zi )

]
|2 is min.

[VB, Bultheel]


