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The nullity theorem

The nullity theorem

Definition (Right null space)

Given a matrix A ∈ Rm×n. The right null space N(A) equals

N(A) = {x ∈ Rn|Ax = 0}.

Definition (Nullity of a matrix)

Given a matrix A ∈ Rm×n. The nullity n(A) is defined as the dimension
of the right null space of A.

Corollary

The dimension of the right null space corresponds to the rank deficiency
of the columns of the matrix A:

n(A) = n − rank (A) = (number of columns)− rank (A).
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The nullity theorem

The nullity theorem

Theorem (Nullity theorem)

Suppose the following invertible matrix A ∈ Rn×n is partitioned as

A =

[
A11 A12

A21 A22

]

with A11 of size p × q. The inverse B of A is partitioned as

A−1 = B =

[
B11 B12

B21 B22

]

with B11 of size q×p. Then the nullities n(A11) and n(B22) are equal:

n(A11) = n(B22).
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The nullity theorem

Corollaries of the nullity theorem

Corollary

Suppose A ∈ Rn×n is a nonsingular matrix, and α, β are nonempty
subsets of N with |α| < n and |β| < n. Then

rank
(
A−1(α;β)

)
= rank (A(N\β; N\α)) + |α|+ |β| − n.

Proof:
Permuting the matrix such that A(N\β;N\α) moves to the upper left
position A11, will move A−1(α;β) to the position B22. Using the
equalities:

n(A11) = n − |α| − rank (A11) ,

n(B22) = |β| − rank (B22) ,

gives us the proof.

Examples for 5× 5 matrices:

5 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Corollaries of the nullity theorem

Corollary

Suppose A ∈ Rn×n is a nonsingular matrix, and α, β are nonempty
subsets of N with |α| < n and |β| < n. Then

rank
(
A−1(α;β)

)
= rank (A(N\β; N\α)) + |α|+ |β| − n.

Examples for 5× 5 matrices:

α = {1, 2} and N\β = {3, 4, 5} and
β = {1, 2} N\α = {3, 4, 5}


×××××
×××××
×××××
×××××
×××××



↔




×××××
×××××
×××××
×××××
×××××




5 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Corollaries of the nullity theorem

Corollary

Suppose A ∈ Rn×n is a nonsingular matrix, and α, β are nonempty
subsets of N with |α| < n and |β| < n. Then

rank
(
A−1(α;β)

)
= rank (A(N\β; N\α)) + |α|+ |β| − n.

Examples for 5× 5 matrices:

α = {1, 2} and N\β = {4, 5} and
β = {1, 2, 3} N\α = {3, 4, 5}


×××××
×××××
×××××
×××××
×××××



↔




×××××
×××××
×××××
×××××
×××××




5 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N



The nullity theorem

Corollaries of the nullity theorem

Corollary

Suppose A ∈ Rn×n is a nonsingular matrix, and α, β are nonempty
subsets of N with |α| < n and |β| < n. Then

rank
(
A−1(α;β)

)
= rank (A(N\β; N\α)) + |α|+ |β| − n.

Examples for 5× 5 matrices:

α = {3, 4, 5} and N\β = {3, 4, 5} and
β = {1, 2} N\α = {1, 2}


×××××
×××××
×××××
×××××
×××××




↔




×××××
×××××
×××××
×××××
×××××




5 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem
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subsets of N with |α| < n and |β| < n. Then

rank
(
A−1(α;β)

)
= rank (A(N\β; N\α)) + |α|+ |β| − n.

Examples for 5× 5 matrices:

α = {2, 4} and N\β = {2, 4, 5} and
β = {1, 3} N\α = {1, 3, 5}


×××××
×××××
×××××
×××××
×××××



↔




×××××
×××××
×××××
×××××
×××××




5 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Some corollaries of the nullity theorem

Corollary

For a nonsingular matrix A ∈ Rn×n and α ⊆ N, we have:

rank
(
A−1(α; N\α)

)
= rank (A(α; N\α)) .

Proof:
Is a direct consequence of the previous equation:

rank
(
A−1(α;β)

)
= rank (A(N\β;N\α)) + |α|+ |β| − n,

when posing β = N\α:

rank
(
A−1(α;N\α)

)
= rank (A(α;N\α)) + |α|+ |N\α| − n.

This means that for a matrix the following blocks always have the same
rank in A and in A−1.
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The nullity theorem

Different proofs
There exist different strategies to prove the nullity theorem.

An important remark, the theorem predicts structures but does not
provide inversion formulas.

Fiedler and Markham proved it, working directly on the ranks and nullities
of the blocks, their proof was based on a paper by Gustafson.

Barrett and Feinsilver were very close to an alternative proof, but they
only worked with tridiagonal and semiseparable matrices.

Recently also Strang and Nguyen proved a weaker formulation of the
theorem.
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The nullity theorem

Different proofs

Proof (by Fiedler and Markham)

Suppose n(A11) ≤ n(B22). If this is not true, we can prove the theorem
for the matrices [

A22 A21

A12 A11

]
,

[
B22 B21

B12 B11

]
,

which are also each others inverse. Suppose n(B22) > 0 otherwise
n(A11) = 0 and the theorem is proved. When n(B22) = c > 0, then
there exists a matrix F with c linearly independent columns, such that
B22F = 0.
Remember that

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
I 0
0 I

]
.
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The nullity theorem

Different proofs

Proof (by Fiedler and Markham)

Hence, multiplying the following equation to the right by F

A11B12 + A12B22 = 0,

we get
A11B12F = 0. (1)

Applying the same operation to the relation:

A21B12 + A22B22 = I

it follows that A21B12F = F , and therefore rank (B12F ) ≥ c . Using
this last statement together with equation (1), we derive

n(A11) ≥ rank (B12F ) ≥ c = n(B22).

With our assumption n(A11) ≤ n(B22), this proves the theorem.
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The nullity theorem

Some real matrix examples

Example (Upper triangular matrix)

The inverse of an upper triangular matrix is an upper triangular
matrix.

The rank of the red marked blocks is maintained by Corollary 2.

11 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N



The nullity theorem

Some real matrix examples

Example (Upper triangular matrix)

The inverse of an upper triangular matrix is an upper triangular
matrix.

The rank of the red marked blocks is maintained by Corollary 2.




×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×




11 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Some real matrix examples

Example (Upper triangular matrix)

The inverse of an upper triangular matrix is an upper triangular
matrix.

The rank of the red marked blocks is maintained by Corollary 2.




×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×




11 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Some real matrix examples

Example (Upper triangular matrix)

The inverse of an upper triangular matrix is an upper triangular
matrix.

The rank of the red marked blocks is maintained by Corollary 2.




×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×




11 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Some real matrix examples

Example (Upper triangular matrix)

The inverse of an upper triangular matrix is an upper triangular
matrix.

The rank of the red marked blocks is maintained by Corollary 2.




×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×




11 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N



The nullity theorem

Some real matrix examples

Example (Quasiseparable matrix)

The inverse of a quasiseparable matrix is a quasiseparable matrix.

12 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N

The nullity theorem

Some real matrix examples

Example (Quasiseparable matrix)
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The nullity theorem

Some real matrix examples

Example (Tridiagonal vs. semiseparable)

The inverse of a tridiagonal matrix is a semiseparable matrix.
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The nullity theorem

Some real matrix examples

Example (Tridiagonal vs. semiseparable)

The inverse of a tridiagonal matrix is a semiseparable matrix.

The rank of the left block plus 1 equals the rank of the right block,
according to corollary 1

α = {3, 4, 5} and N\β = {2, 3, 4, 5} and
β = {1} N\α = {1, 2}
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The nullity theorem

Some real matrix examples

Example (Tridiagonal vs. semiseparable)

The inverse of a tridiagonal matrix is a semiseparable matrix.

The rank of the left block plus 1 equals the rank of the right block,
according to corollary 1

α = {4, 5} and N\β = {3, 4, 5} and
β = {1, 2} N\α = {1, 2, 3}
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The nullity theorem

Some real matrix examples

Example (Tridiagonal vs. semiseparable)

The inverse of a tridiagonal matrix is a semiseparable matrix.

The rank of the left block plus 1 equals the rank of the right block,
according to corollary 1

α = {5} and N\β = {4, 5} and
β = {1, 2, 3} N\α = {1, 2, 3, 4}


×× 0 0 0
××× 0 0
0 ××× 0
0 0 ×××
0 0 0 ××
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The nullity theorem

Some real matrix examples

Example

The inverse of a {p, q}-semiseparable matrix is a {p, q}-band matrix.

One can predict the structure of the inverse of a generalized
Hessenberg matrix.

One can predict the structure when inverting hierarchically
semiseparable and/or H matrices.

Structure related: The off-diagonal structure is maintained. For
example the inverse of a rank one matrix plus a diagonal is again a
rank 1 matrix plus a diagonal.

Applicable to all structured rank matrices.
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The nullity theorem

References for the nullity theorem
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Generalizations of the nullity theorem

General remarks

LU and QR-decompositions

Given a matrix A ∈ Rm×n. A = LU is called an LU-decomposition if L
is lower triangular and U is upper triangular.

Frequently used for solving systems of equations (Gaussian
elimination).
Computing eigenvalues of specialized matrices (quotient-difference
algorithms).

Given a matrix A ∈ Rm×n. A = QR is called a QR-decomposition if Q
is unitary (QQH = QHQ = I ) and R is upper triangular.

Solving systems of equations (more stable than Gaussian eliminiation).
In the top 10 algorithms of the 20th century for computing eigenvalues
of arbitrary matrices.

Under some mild conditions both factorizations are unique.
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Generalizations of the nullity theorem

The LU-decomposition

Theorem (LU-factorization)

Given an invertible matrix A, with a LU factorization A = LU. Let A
be partitioned as

A =

[
A11 A12

A21 A22

]

with A11 of dimension p × q. Let U be partitioned as

U =

[
U11 U12

0 U22

]

with U11 of dimension p× q. Then the nullities n(A12) and n(U12) are
equal (as well as their ranks).
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Generalizations of the nullity theorem

The LU-decomposition

Example (Structured rank matrices)

The L and U factor inherit the structure.

For a semiseparable matrix: U is upper semiseparable, and L is lower
semiseparable.

For a tridiagonal matrix: U is upper bidiagonal, and L is lower
bidiagonal.

For a {p, q}-semiseparable matrix: U is {q}-upper semiseparable, and
L is {p}-lower semiseparable.

For a {p, q}-band matrix: U is {q}-upper band, and L is {p}-lower
band.

Holds for combinations, and even more general structures.
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Generalizations of the nullity theorem

The QR-decomposition

Theorem (QR-factorization)

Given an invertible matrix A, with a QR-factorization A = QR. Let A
be partitioned as

A =

[
A11 A12

A21 A22

]
,

with A11 of dimension p × q. Let Q be partitioned as

Q =

[
Q11 Q12

Q21 Q22

]
,

with Q11 of dimension p× q. Then the nullities n(A21) and n(Q21) are
equal.
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Generalizations of the nullity theorem

The QR-decomposition

Example (Structured rank matrices)

The Q factor inherits the structure of the lower triangular part.

The structure of R is more complicated (see next slides).

For a semiseparable matrix: Q has the lower triangular part of lower
semiseparable form, and R has the upper triangular structure of rank
2.

For a tridiagonal matrix: Q has the lower triangular part of bidiagonal
form.

For a {p, q}-semiseparable matrix: Q has the lower triangular part of
{p}-semiseparable form.

For a {p, q}-band matrix: Q has the lower triangular part of {p}-band
form.

Holds for combinations, and even more general structures.
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Generalizations of the nullity theorem

Rank structure of the R-factor

We derive this structure by investigating how the original rank structure
is transformed when computing the QR-factorization.
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Generalizations of the nullity theorem

Rank structure of the R-factor

We derive this structure by investigating how the original rank structure
is transformed when computing the QR-factorization.
Starting situation:

Rk s
aRk r
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We derive this structure by investigating how the original rank structure
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Generalizations of the nullity theorem

Rank structure of the R-factor

We derive this structure by investigating how the original rank structure
is transformed when computing the QR-factorization.
Second series of Givens transformations:

a Rk s+r
Rk 0

2Q
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Generalizations of the nullity theorem

Rank structure of the R-factor

We derive this structure by investigating how the original rank structure
is transformed when computing the QR-factorization.
Third series of Givens transformations:

Rk 0

a

Rk s+r
Q

3
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Rank structure of the R-factor

We derive this structure by investigating how the original rank structure
is transformed when computing the QR-factorization.
Third series of Givens transformations:

Rk 0

a

Rk s+r

Rk s+rRk 0

a

Q
3

=

Q.E.D.
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Generalizations of the nullity theorem

References for these generalizations

R. Vandebril and M. Van Barel, A short note on the nullity theorem,
Journal of Computational and Applied Mathematics 189:179–190, 2006.

26 / 26
Structured Rank Matrices Lecture 2: Structure Transport

N


