$\|$
∇
∇

Contents

(1) The nullity theorem

The theorem
Proofs
Examples related to structured ranks
References
(2) Generalizations of the nullity theorem The $L U$-decomposition
The $Q R$-decomposition
References

The nullity theorem

Outline

(1) The nullity theorem

The theorem
Proofs
Examples related to structured ranks
References
(2) Generalizations of the nullity theorem

The $L U$-decomposition
The $O R$-decomposition

Structured Rank Matrices Lecture 2:
Structure Transport

Marc Van Barel and Raf Vandebril
Dept. of Computer Science, K.U.Leuven, Belgium
Chemnitz, Germany, 26-30 September 2011

The nullity theorem

The nullity theorem

Definition (Right null space)

Given a matrix $A \in \mathbb{R}^{m \times n}$. The right null space $N(A)$ equals

$$
N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=0\right\} .
$$

Definition (Nullity of a matrix)

Given a matrix $A \in \mathbb{R}^{m \times n}$. The nullity $n(A)$ is defined as the dimension of the right null space of A.

Corollary

The dimension of the right null space corresponds to the rank deficiency of the columns of the matrix A

$$
\mathrm{n}(A)=n-\operatorname{rank}(A)=(\text { number of columns })-\operatorname{rank}(A) .
$$

The nullity theorem

Corollaries of the nullity theorem

Corollary

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix，and α, β are nonempty subsets of N with $|\alpha|<n$ and $|\beta|<n$ ．Then

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n
$$

－Proof：
Permuting the matrix such that $A(N \backslash \beta ; N \backslash \alpha)$ moves to the upper left position A_{11} ，will move $A^{-1}(\alpha ; \beta)$ to the position B_{22} ．Using the equalities：

$$
\begin{aligned}
& \mathrm{n}\left(A_{11}\right)=n-|\alpha|-\operatorname{rank}\left(A_{11}\right), \\
& \mathrm{n}\left(B_{22}\right)=|\beta|-\operatorname{rank}\left(B_{22}\right),
\end{aligned}
$$

gives us the proof．

The nullity theorem

シーロロロ

Corollaries of the nullity theorem

Corollary
Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix，and α, β are nonempty subsets of N with $|\alpha|<n$ and $|\beta|<n$ ．Then

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n .
$$

－Examples for 5×5 matrices：

$$
\begin{array}{ll}
\alpha=\{1,2\} \text { and } & \\
N \backslash \beta=\{3,4,5\} \text { and } \\
\beta=\{1,2\} & \\
\left.\begin{array}{ll}
N \backslash \alpha=\{3,4,5\} \\
\times \times \times \times \times \\
\times \times \times \times \times
\end{array}\right] &
\end{array} \quad \leftrightarrow\left[\begin{array}{l}
\times \times \times \times \times \\
\times \times \times \times \times \times
\end{array}\right]
$$

 Corollaries of the nullity theorem

Corollary
Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix，and α, β are nonempty subsets of N with $|\alpha|<n$ and $|\beta|<n$ ．Then

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n
$$

－Examples for 5×5 matrices：

$\alpha=\{1,2\}$ and	$N \backslash \beta=\{4,5\}$ and
$\beta=\{1,2,3\}$	$N \backslash \alpha=\{3,4,5\}$
$\left[\begin{array}{c}\times \times \times \times \times \times \\ \times \times \times \times \times\end{array}\right]$	
$\times\left[\begin{array}{c}\times \times \times \times \times \\ \times \times \times \times \times\end{array}\right]$	

Corollary

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix，and α, β are nonempty subsets of N with $|\alpha|<n$ and $|\beta|<n$ ．Then

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n .
$$

Corollaries of the nullity theorem

Corollary

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix，and α, β are nonempty subsets of N with $|\alpha|<n$ and $|\beta|<n$ ．Then

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n
$$

－Examples for 5×5 matrices：

$$
\begin{aligned}
& \alpha=\{3,4,5\} \text { and } \quad N \backslash \beta=\{3,4,5\} \text { and } \\
& \beta=\{1,2\} \\
& N \backslash \alpha=\{1,2\}
\end{aligned}
$$

－Examples for 5×5 matrices：

$$
\alpha=\{2,4\} \text { and } \quad N \backslash \beta=\{2,4,5\} \text { and }
$$

$$
\beta=\{1,3\}
$$

$$
N \backslash \alpha=\{1,3,5\}
$$

$$
\left[\begin{array}{c}
\times \times \times \times \times \\
\times \times \times \times \times
\end{array}\right] \leftrightarrow\left[\begin{array}{c}
\times \times \times \times \times \\
\times \times \times \times \times \\
\times \times \times \times \times \\
\times \times \times \times \\
\times \times \times \times \\
\times \times \times \times
\end{array}\right]
$$

$\forall \boxtimes \boxtimes$

Some corollaries of the nullity theorem
Corollary
For a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq N$ ，we have：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; N \backslash \alpha)\right)=\operatorname{rank}(A(\alpha ; N \backslash \alpha))
$$

－Proof：
Is a direct consequence of the previous equation：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; \beta)\right)=\operatorname{rank}(A(N \backslash \beta ; N \backslash \alpha))+|\alpha|+|\beta|-n
$$

when posing $\beta=N \backslash \alpha$ ：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; N \backslash \alpha)\right)=\operatorname{rank}(A(\alpha ; N \backslash \alpha))+|\alpha|+|N \backslash \alpha|-n
$$

［ \triangle Q	The nullity theorem
 	Some c

Corollary
For a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq N$ ，we have：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; N \backslash \alpha)\right)=\operatorname{rank}(A(\alpha ; N \backslash \alpha))
$$

－This means that for a matrix the following blocks always have the same rank in A and in A^{-1}

$$
\begin{array}{ll}
\alpha=\{2,3,4,5\} & \text { and } \\
N \backslash \alpha=\{1\} & N=\{3,4,5\} \text { and } \\
{\left[\begin{array}{c}
N \times \alpha=\{1,2\} \\
\times \times \times \times \times \\
\times \times \\
\times \times \times \times \times \\
\times \times \times \times \times \\
\times \times \times \times \times
\end{array}\right]} & {\left[\begin{array}{c}
\times \times \times \times \times \\
\times \times \times \times
\end{array}\right]}
\end{array}
$$

Some corollaries of the nullity theorem

Corollary

For a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq N$ ，we have：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; N \backslash \alpha)\right)=\operatorname{rank}(A(\alpha ; N \backslash \alpha))
$$

－This means that for a matrix the following blocks always have the same rank in A and in A^{-1} ．

$$
\begin{aligned}
& \alpha=\{4,5\} \text { and } \alpha=\{5\} \text { and } \\
& N \backslash \alpha=\{1,2,3\} \quad N \backslash \alpha=\{1,2,3,4\} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \quad\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]}
\end{aligned}
$$

The nullity theorem

Some corollaries of the nullity theorem

Corollary

For a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq N$ ，we have：

$$
\operatorname{rank}\left(A^{-1}(\alpha ; N \backslash \alpha)\right)=\operatorname{rank}(A(\alpha ; N \backslash \alpha))
$$

－This means that for a matrix the following blocks always have the same rank in A and in A^{-1} ．

$$
\begin{aligned}
& \alpha=\{3,5\} \text { and } \alpha=\{2,3\} \text { and } \\
& N \backslash \alpha=\{1,2,4\} \quad N \backslash \alpha=\{1,4,5\}
\end{aligned}
$$

Outline

（1）The nullity theorem
The theorem

Proofs

Examples related to structured ranks
References
（2）Generalizations of the nullity theorem
The $L U$－decomposition
The QR－decomposition

The nullity theorem

Different proofs

There exist different strategies to prove the nullity theorem．
－An important remark，the theorem predicts structures but does not provide inversion formulas．
－Fiedler and Markham proved it，working directly on the ranks and nullities of the blocks，their proof was based on a paper by Gustafson．
－Barrett and Feinsilver were very close to an alternative proof，but they only worked with tridiagonal and semiseparable matrices．
－Recently also Strang and Nguyen proved a weaker formulation of the theorem．

Different proofs

Proof（by Fiedler and Markham）

Suppose $n\left(A_{11}\right) \leq n\left(B_{22}\right)$ ．If this is not true，we can prove the theorem for the matrices

$$
\left[\begin{array}{ll}
A_{22} & A_{21} \\
A_{12} & A_{11}
\end{array}\right], \quad\left[\begin{array}{ll}
B_{22} & B_{21} \\
B_{12} & B_{11}
\end{array}\right],
$$

which are also each others inverse．Suppose $n\left(B_{22}\right)>0$ otherwise $n\left(A_{11}\right)=0$ and the theorem is proved．When $n\left(B_{22}\right)=c>0$ ，then there exists a matrix F with c linearly independent columns，such that $B_{22} F=0$ ．
Remember that

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Structured Rank Matrices Lecture 2：Structure Transport

Proof（by Fiedler and Markham）

Hence，multiplying the following equation to the right by F

$$
A_{11} B_{12}+A_{12} B_{22}=0,
$$

we get

$$
\begin{equation*}
A_{11} B_{12} F=0 . \tag{1}
\end{equation*}
$$

Applying the same operation to the relation：

$$
A_{21} B_{12}+A_{22} B_{22}=I
$$

it follows that $A_{21} B_{12} F=F$ ，and therefore rank $\left(B_{12} F\right) \geq c$ ．Using this last statement together with equation（1），we derive

$$
\mathrm{n}\left(A_{11}\right) \geq \operatorname{rank}\left(B_{12} F\right) \geq c=n\left(B_{22}\right) .
$$

With our assumption $n\left(A_{11}\right) \leq n\left(B_{22}\right)$ ，this proves the theorem．

The nullity theorem

Outline

（1）The nullity theorem
The theorem
Proofs
Examples related to structured ranks
References

The nullity theorem

Some real matrix examples

Example（Upper triangular matrix）

－The inverse of an upper triangular matrix is an upper triangular matrix．
（2）Generalizations of the nullity theorem
The $L U$－decomposition
The QR－decomposition

Some real matrix examples

Example（Upper triangular matrix）

－The inverse of an upper triangular matrix is an upper triangular matrix．
－The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & \times\end{array}\right]$

Example（Upper triangular matrix）

－The inverse of an upper triangular matrix is an upper triangular matrix．
－The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & \times\end{array}\right]$

The nullity theorem

Some real matrix examples

Example（Upper triangular matrix）

－The inverse of an upper triangular matrix is an upper triangular matrix．
－The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & \times\end{array}\right]$

The nullity theorem

Some real matrix examples

Example（Upper triangular matrix）

－The inverse of an upper triangular matrix is an upper triangular matrix．
－The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & \times\end{array}\right]$

Some real matrix examples

Example (Quasiseparable matrix)

- The inverse of a quasiseparable matrix is a quasiseparable matrix.

The nullity theorem

Some real matrix examples

Example (Quasiseparable matrix)

- The inverse of a quasiseparable matrix is a quasiseparable matrix.
- The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{l}\times \times \times \times \times \\ \boxtimes \times \times \times \times \\ \boxtimes \boxtimes \times \times \times \\ \boxtimes \boxtimes \\ \boxtimes \boxtimes \boxtimes \times \times \\ \nabla \boxtimes \boxtimes \boxtimes \times\end{array}\right]$

The nullity theorem

Some real matrix examples

Example (Quasiseparable matrix)

- The inverse of a quasiseparable matrix is a quasiseparable matrix.
- The rank of the red marked blocks is maintained by Corollary 2.
$\left[\begin{array}{c}\times \times \times \times \times \\ \boxtimes \times \times \times \times \\ \boxtimes \boxtimes \times \times \times \\ \boxtimes \boxtimes \boxtimes \times \times \\ \boxtimes \boxtimes \boxtimes \boxtimes \times\end{array}\right]$

Some real matrix examples

Example（Quasiseparable matrix）

－The inverse of a quasiseparable matrix is a quasiseparable matrix．
－The rank of the red marked blocks is maintained by Corollary 2.

$$
\left[\begin{array}{l}
\times \times \times \times \times \\
\boxtimes \times \times \times \times \\
\boxtimes \boxtimes \times \times \times \\
\boxtimes \boxtimes \boxtimes \times \times \\
\boxtimes \boxtimes \boxtimes \boxtimes \times
\end{array}\right]
$$

Example（Tridiagonal vs．semiseparable）

－The inverse of a tridiagonal matrix is a semiseparable matrix．

Some real matrix examples

The nullity theorem

Some real matrix examples

Example（Tridiagonal vs．semiseparable）

－The inverse of a tridiagonal matrix is a semiseparable matrix．
－The rank of the left block plus 1 equals the rank of the right block， according to corollary 1

Example（Tridiagonal vs．semiseparable）

－The inverse of a tridiagonal matrix is a semiseparable matrix．
－The rank of the left block plus 1 equals the rank of the right block， according to corollary 1

and	N
$\beta=\{1,2\}$	$N \backslash \alpha=\{1,2$,
$\left[\begin{array}{ccccc}\times & \times & 0 & 0 & 0 \\ \times & \times & \times & 0 & 0 \\ 0 & \times & \times & \times & 0 \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times\end{array}\right]$	

Some real matrix examples

Some real matrix examples

Example

- The inverse of a $\{p, q\}$-semiseparable matrix is a $\{p, q\}$-band matrix.
- One can predict the structure of the inverse of a generalized Hessenberg matrix.
- One can predict the structure when inverting hierarchically semiseparable and/or \mathcal{H} matrices.
- Structure related: The off-diagonal structure is maintained. For example the inverse of a rank one matrix plus a diagonal is again a rank 1 matrix plus a diagonal.
- Applicable to all structured rank matrices

Outline

The nullity theoremThe theorem
Proofs
Examples related to structured ranks
References
(2) Generalizations of the nullity theorem

The $L U$-decomposition
The $Q R$-decomposition

The nullity theorem

References for the nullity theorem

- W. H. Gustafson, A note on matrix inversion, Linear Algebra and Its Applications 57 (1984), 71-73.
- M. Fiedler, Basic matrices, Linear Algebra and Its Applications 373 (2003), 143-151.
- W. W. Barrett, A theorem on inverse of tridiagonal matrices, Linear Algebra and Its Applications 27 (1979), 211-217.
- W. W. Barrett and P. J. Feinsilver, Gaussian families and a theorem on patterned matrices, Journal of Applied Probability 15 (1978), 514-522.
- W. W. Barrett and P. J. Feinsilver, Inverses of banded matrices, Linear Algebra and Its Applications 41 (1981), 111-130.
- G. Strang and T. Nguyen, The interplay of ranks of submatrices, SIAM Review 46 (2004), 637-646.

Generalizations of the nullity theorem

General remarks

$L U$ and $Q R$-decompositions

- Given a matrix $A \in \mathbb{R}^{m \times n}$. $A=L U$ is called an $L U$-decomposition if L is lower triangular and U is upper triangular.
- Frequently used for solving systems of equations (Gaussian elimination).
- Computing eigenvalues of specialized matrices (quotient-difference algorithms).
- Under some mild conditions both factorizations are unique.

$L U$ and $Q R$-decompositions

- Given a matrix $A \in \mathbb{R}^{m \times n}$. $A=L U$ is called an $L U$-decomposition if L is lower triangular and U is upper triangular.
- Frequently used for solving systems of equations (Gaussian elimination).
- Computing eigenvalues of specialized matrices (quotient-difference algorithms).
- Given a matrix $A \in \mathbb{R}^{m \times n} . A=Q R$ is called a $Q R$-decomposition if Q is unitary $\left(Q Q^{H}=Q^{H} Q=I\right)$ and R is upper triangular.
- Solving systems of equations (more stable than Gaussian eliminiation).
- In the top 10 algorithms of the 20th century for computing eigenvalues of arbitrary matrices.
- Under some mild conditions both factorizations are unique.

Outline

```
The theorem
    Proofs
    Examples related to structured ranks
    References
```

(2) Generalizations of the nullity theorem

The $L U$-decomposition
The QR-decomposition

Generalizations of the nullity theorem

The LU-decomposition

Theorem (LU-factorization)

Given an invertible matrix A, with a $L U$ factorization $A=L U$. Let A be partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

with A_{11} of dimension $p \times q$. Let U be partitioned as

$$
U=\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]
$$

with U_{11} of dimension $p \times q$. Then the nullities $n\left(A_{12}\right)$ and $n\left(U_{12}\right)$ are equal (as well as their ranks).

Outline

Example (Structured rank matrices)

- The L and U factor inherit the structure.
- For a semiseparable matrix: U is upper semiseparable, and L is lower semiseparable.
- For a tridiagonal matrix: U is upper bidiagonal, and L is lower bidiagonal.
- For a $\{p, q\}$-semiseparable matrix: U is $\{q\}$-upper semiseparable, and L is $\{p\}$-lower semiseparable.
- For a $\{p, q\}$-band matrix: U is $\{q\}$-upper band, and L is $\{p\}$-lower band.
- Holds for combinations, and even more general structures.

```
The theorem
Proofs
Examples related to structured ranks
References
```

Generalizations of the nullity theorem
The $L U$-decomposition
The $Q R$-decomposition

Generalizations of the nullity theorem

The QR-decomposition

Example (Structured rank matrices)

- The Q factor inherits the structure of the lower triangular part.
- The structure of R is more complicated (see next slides).
- For a semiseparable matrix: Q has the lower triangular part of lower semiseparable form, and R has the upper triangular structure of rank 2.
- For a tridiagonal matrix: Q has the lower triangular part of bidiagonal form.
- For a $\{p, q\}$-semiseparable matrix: Q has the lower triangular part of $\{p\}$-semiseparable form.
- For a $\{p, q\}$-band matrix: Q has the lower triangular part of $\{p\}$-band form.
- Holds for combinations, and even more general structures

Rank structure of the R－factor

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization．

Rank structure of the R－factor

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization． Starting situation：

囚 \triangle

 －ロロロロ

Generalizations of the nullity theorem
Rank structure of the R－factor
We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization．
First series of Givens transformations：

Generalizations of the nullity theorem
Rank structure of the R－factor
We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization
First series of Givens transformations：

Rank structure of the R－factor

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization．
First series of Givens transformations：
Q_{1}

$=$

Rank structure of the R－factor

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization．
Second series of Givens transformations：

囚
 暗

Rank structure of the R－factor
We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization．
Second series of Givens transformations：

Generalizations of the nullity theorem

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization
Third series of Givens transformations：

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization． Third series of Givens transformations：

We derive this structure by investigating how the original rank structure is transformed when computing the $Q R$－factorization． Third series of Givens transformations：

Q．E．D

Rank structure of the R－factor

$\Delta \boxtimes$ $\Delta \boxtimes$
 $\Delta \boxtimes \Delta \Delta \boxtimes$ $\forall \boxtimes \boxtimes \Delta \boxtimes$

Generalizations of the nullity theorem

Outline

1
The theorem
Proofs
Examples related to structured ranks
ReferencesGeneralizations of the nullity theorem
The LU－decomposition
The QR－d

訩

－R．Vandebril and M．Van Barel，A short note on the nullity theorem， Journal of Computational and Applied Mathematics 189：179－190， 2006.

Generalizations of the nullity theorem

References for these generalizations

References

