Contents

Structured Rank Matrices Lecture 1： What are they？

Marc Van Barel and Raf Vandebril
Dept．of Computer Science，K．U．Leuven，Belgium
Chemnitz，Germany，26－30 September 2011
（1）Setting
Cooperations and general information
Overview of the lectures
（2）Structured rank matrices
What are structured rank matrices？
Definition
Generalizations
References

『凶ロ凶ロ
Outline

Setting
Cooperations and general information
Overview of the lectures
（2）Structured rank matrices
What are structured rank matrices？
Definition
Generalizations
References

Cooperations

Many of the results described in this lecture series were derived in cooperation with：
－Bernd Beckermann，
－Gianna Del Corso，
－Steven Delvaux，
－Dario Fasino，
－Katrijn Frederix，
－Luca Gemignani
－Stefan Güttel
－Nicola Mastronardi，
－Yvette Vanberghen，
－Ellen Van Camp，
－Paul Van Dooren
－David Watkins，
－and many others．

Extra information,

but not all, since these lectures will contain new developments

Vandebril R., Van Barel M. and Mastronardi N
Matrix Computations \& Semiseparable Matrices I: Linear Systems,
The Johns Hopkins University Press, Baltimore, December 2007 (xviii+575 pp)

Quote from Gauss

Theory attracts practice as the magnet attracts iron.

- Many examples.
- Matlab demos illustrating the theoretical results
- If something is not clear, please ask!

Motto

- Vandebril R., Van Barel M. and Mastronardi N. Matrix Computations \& Semiseparable Matrices II: Eigenvalue and Singular Value Methods,
The Johns Hopkins University Press, Baltimore, December 2008 (xvi+498 pp)

	Setting
$\triangle \otimes \triangle \otimes \boxtimes$	
	utline
	utine

Setting

Cooperations and general information
Overview of the lectures
(2) Structured rank matrices

What are structured rank matrices?
Definition
Generalizations
Outline
(1) Introduction: structured rank matrices
(2) Structure transfer via inversion and factorizations
(3) The interplay of rotations and the $Q R$-factorization
(4) Similarity transformation to semiseparable form and convergence theory
(5) Novel similarity transformations
(6) The connection with orthogonal rational functions
(7) Computing eigenvalues of a companion matrix
(8) Orthogonal functions and matrix computations

Outline

Sparse and dense matrices

Wilkinson defined a sparse matrix as

＂any matrix with enough zeros that it pays to take advan－ tage of them．＂
－The other matrices are dense．
－Example of a sparse and dense matrix
$\left[\begin{array}{llllll}1 & 2 & & & \\ 3 & 2 & 1 & & \\ & 5 & 2 & 3 & \\ & & 8 & 8 & 10 \\ & & 9 & 1\end{array}\right]$ versus $\left[\begin{array}{llllll}1 & 6 & 3 & 9 & 12 \\ 4 & 2 & 1 & 3 & 4 \\ 6 & 3 & \frac{3}{2} & 3 & 6 \\ 2 & 1 & \frac{1}{2} & 8 & 10 \\ 8 & 4 & 2 & 9 & 1\end{array}\right]$
－Sparse matrices are and have been an interesting topic for many years． They are easily representable and they occur frequently in practice． （Discretization of ODE＇s，PDE＇s．）
－Structure is readily available．

Structured rank matrices
Dense does not mean unstructured
Almost＇trivial＇example

The red block has rank 1.
The underlined block is of rank 1 ．
$\left[\begin{array}{ccccc}1 & 6 & 3 & \frac{9}{12} \\ 4 & \frac{2}{1} & \frac{1}{3} & \frac{3}{4} & \frac{4}{6} \\ 6 & 3 & \frac{3}{2} & 3 & 6 \\ 2 & 1 & \frac{1}{2} & 8 & 10 \\ 8 & 4 & 2 & 9 & 1\end{array}\right]$

Structured rank matrix

＂any matrix with enough＇low＇rank blocks that it pays to take advan－ tage of them．＂
－In a certain sense this is a natural extension of sparse matrices （A block of zeros has rank 0．）
－Problem：the structure is sort of hidden in the matrix．

Structured rank matrices
More sophisticated examples

What is a hierarchical matrix？（from http：／／www．hlib．org） Hierarchical matrices（or short \mathcal{H}－matrices）are efficient data－sparse representations of certain densely populated matrices．The basic idea is to split a given matrix into a hierarchy of rectangular blocks and approximate each of the blocks by a low－rank matrix．

[^0]
1D Hierarchical semiseparable

（S．Chandrasekaran，M．Gu et al．）
$A_{i, j}=\log \left\|x_{i}-x_{j}\right\|, x_{i} \in \mathbb{R}$ ．

Matrices without－have low rank，the other ones are of full rank
uctured Rank Matrices Lecture 1: What are they?

Structured rank matrices

暗

昡

2D Hierarchical semiseparable

$A_{i, j}=\log \left\|z_{i}-z_{j}\right\|^{\alpha}, z_{i} \in \mathbb{R}^{2}$.

Empty submatrices are of limited rank，the colored ones of full rank．

Matrices without • have low rank，the other ones are of full rank

Structured rank matrices

Few remarks

What to do with and why use these matrices？
－Solving systems of equations or computing eigenvalues．
－Efficient storage leads to less memory consumption．
Efficient algorithms lead to faster obtainable results．
－These improvements can lead to more accurate results or to increased problem sizes which one can solve．

How to find the structure？
－Quite often it is readily available，e．g．，coming from discretization problems．
－Adaptive skeleton cross－approximation （see，e．g．，E．Tyrtyshnikov and co－workers） （see also，e．g．，M．Bebendorf）

What are structured rank matrices？

What are structured rank matrices？

Definition

Structured rank matrices are matrices for which a specific part in the matrix（the so－called structure），satisfies a certain rank condition．

Example

Tridiagonal（left）and semiseparable（right）matrices
（Only the lower triangular part is shown．）

凶区

> Cooperations and general information
> Overview of the lectures
（2）Structured rank matrices
What are structured rank matrices？
Definition
Generalizations
References

A definition

Definition
A is an $m \times n$ matrix，with

$$
\begin{aligned}
M=\{1,2, \ldots, m\}, & & N=\{1,2, \ldots, n\}, \\
\alpha \subset M & \text { and } & \beta \subset N .
\end{aligned}
$$

Then，$A(\alpha ; \beta)$ stands for the submatrix of A with row indices in α and column indices in β ．

A definition

Some standard structures

Definition

－The subset

$$
\Sigma_{I}=\{(i, j) \mid i \geq j, i \in M, j \in N\}
$$

is called the lower triangular structure（including the diagonal）
－The subset

$$
\Sigma_{w l}=\{(i, j) \mid i>j, i \in M, j \in N\}
$$

is the weakly lower triangular structure（excluding the diagonal）．

Definition

A structure Σ is a nonempty subset of $M \times N$ ．
The structured $\operatorname{rank} r(\Sigma ; A)$ is defined as ：

$$
\mathrm{r}(\Sigma ; A)=\max \{\operatorname{rank}(A(\alpha ; \beta)) \mid \alpha \times \beta \subseteq \Sigma\}
$$

where $\alpha \times \beta$ denotes the set $\{(i, j) \mid i \in \alpha, j \in \beta\}$ ．
Structured Rank Matrices Lecture 1：What are they？

Definition

－The subset

$$
\Sigma_{l}^{(p)}=\{(i, j) \mid i>j-p, i \in M, j \in N\}
$$

is the p－lower triangular structure and corresponds with all the indices of the matrix，below the p th diagonal．
The p th diagonal refers to the p th superdiagonal（for $p>0$ ）；
the $-p$ th diagonal refers to the p th subdiagonal（for $p>0$ ）．
－Similarly：upper triangular structures $\left(\Sigma_{u}\right)$ ．

Resulting equivalences

－The lower triangular structure：$\Sigma_{l}=\Sigma_{l}^{(1)}$ ．
－The weakly lower triangular structure：$\Sigma_{w l}=\Sigma_{l}^{(0)}$
－Similar relations hold for the upper triangular structures．

Example（Tridiagonal matrix）

－A tridiagonal matrix A is a structured rank matrix with：

$$
\mathrm{r}\left(\Sigma_{l}^{(-1)} ; A\right)=0 \text { and } \mathrm{r}\left(\Sigma_{u}^{(-1)} ; A\right)=0
$$

this means that all the blocks taken out of the matrix below the subdiagonal have rank equal to 0 ．
－All the red blocks are of rank 0.
Consider only the lower triangular part．

$$
\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
$$

Structured Rank Matrices Lecture 1：What are they？

》凶『 《凶『 《 昡

Structured rank matrices

A tridiagonal matrix

Example（Tridiagonal matrix）

－A tridiagonal matrix A is a structured rank matrix with：

$$
r\left(\Sigma_{l}^{(-1)} ; A\right)=0 \text { and } r\left(\Sigma_{u}^{(-1)} ; A\right)=0
$$

this means that all the blocks taken out of the matrix below the subdiagonal have rank equal to 0 ．
－All the red blocks are of rank 0 ．
Consider only the lower triangular part．

$$
\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
$$

Structured rank matrices

A semiseparable matrix

Example（Semiseparable matrix）

－A semiseparable matrix is a structured rank matrix A with：

$$
r\left(\Sigma_{l} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1
$$

this means that all blocks taken out of the lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

Structured rank matrices

A semiseparable matrix

A semiseparable matrix

Example (Semiseparable matrix)

- A semiseparable matrix is a structured rank matrix A with:

$$
r\left(\Sigma_{l} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the lower triangular part have rank at most 1. (Similar for the upper triangular part.)

- All the red blocks are of rank at most 1 .

$$
\left[\begin{array}{l}
\boxtimes \times \times \times \times \times \\
\boxtimes \times \times \times \times
\end{array}\right]
$$

Example (Semiseparable matrix)

- A semiseparable matrix is a structured rank matrix A with:

$$
r\left(\Sigma_{1} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the lower triangular part have rank at most 1. (Similar for the upper triangular part.)

- All the red blocks are of rank at most 1.

$$
\left[\begin{array}{l}
\times \times \times \times \times \\
\boxtimes \boxtimes \times \times \times
\end{array}\right.
$$

Structured rank matrice

A semiseparable matrix

Example (Semiseparable matrix)

- A semiseparable matrix is a structured rank matrix A with:

$$
r\left(\Sigma_{1} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1
$$

this means that all blocks taken out of the lower triangular part have rank at most 1. (Similar for the upper triangular part.)

- All the red blocks are of rank at most 1

Structured rank matrices

A semiseparable matrix

Example (Semiseparable matrix)

- A semiseparable matrix is a structured rank matrix A with:

$$
r\left(\Sigma_{l} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the lower triangular part have rank at most 1. (Similar for the upper triangular part.)

- All the red blocks are of rank at most 1 .

\times

A quasiseparable matrix

Example（Semiseparable matrix）

－A semiseparable matrix is a structured rank matrix A with：

$$
r\left(\Sigma_{l} ; A\right) \leq 1 \text { and } r\left(\Sigma_{u} ; A\right) \leq 1
$$

this means that all blocks taken out of the lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1 ．

Example（Quasiseparable matrix）

－A quasiseparable matrix is a structured rank matrix A with：

$$
r\left(\Sigma_{w l} ; A\right) \leq 1 \text { and } r\left(\sum_{w u} ; A\right) \leq 1
$$

this means that all blocks taken out of the weakly lower triangular part have rank at most 1 ．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

Structured Rank Matrices Lecture 1：What are they？

《凶『『『 $\boxtimes \boxtimes \boxtimes \boxtimes \boxtimes$『ロ凶ロ『『『『『『『『『『『

Structured rank matrices

A quasiseparable matrix

Example（Quasiseparable matrix）

－A quasiseparable matrix is a structured rank matrix A with：

$$
r\left(\sum_{w} ; A\right) \leq 1 \text { and } r\left(\sum_{w u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the weakly lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.

Structured rank matrices

A quasiseparable matrix

Example（Quasiseparable matrix）
－A quasiseparable matrix is a structured rank matrix A with：

$$
r\left(\sum_{w \mid} ; A\right) \leq 1 \text { and } r\left(\sum_{w u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the weakly lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.
$\left[\begin{array}{lllll}\times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \boxtimes \boxtimes & \times & \times & \times \\ \boxtimes \boxtimes & \times & \times & \times \\ \boxtimes \boxtimes & \times & \times & \times\end{array}\right]$

A quasiseparable matrix

A quasiseparable matrix

Example（Quasiseparable matrix）

－A quasiseparable matrix is a structured rank matrix A with：

$$
r\left(\Sigma_{w} ; A\right) \leq 1 \text { and } r\left(\sum_{w u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the weakly lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.

《凶

Structured rank matrices

Relations

Relations

－The quasiseparable class is the most general one．
－Quasiseparables include：
－semiseparables，
－tridiagonals．

Example（Quasiseparable matrix）

－A quasiseparable matrix is a structured rank matrix A with：

$$
r\left(\sum_{w} ; A\right) \leq 1 \text { and } r\left(\sum_{w u} ; A\right) \leq 1,
$$

this means that all blocks taken out of the weakly lower triangular part have rank at most 1．（Similar for the upper triangular part．）
－All the red blocks are of rank at most 1.

$\begin{aligned} & \times \times \times \times \\ & \times \times \times \times \end{aligned}$

Cooperations and general information Overview of the lectures

（2）Structured rank matrices
What are structured rank matrices？
Definition
Generalizations

Band matrices

Structured rank matrices

Band matrices

Definition ($\{p, q\}$-band)

A matrix A is called a $\{p, q\}$-band matrix if

$$
r\left(\Sigma_{I}^{(-p)} ; A\right) \leq 0 \text { and } r\left(\Sigma_{u}^{(-q)} ; A\right) \leq 0 .
$$

Definition ($\{p, q\}$-band)

A matrix A is called a $\{p, q\}$-band matrix if

$$
r\left(\Sigma_{1}^{(-p)} ; A\right) \leq 0 \text { and } r\left(\Sigma_{u}^{(-q)} ; A\right) \leq 0 .
$$

Example (A \{3,2\}-band matrix)

$$
\left[\begin{array}{ll}
\times & \times \\
\times & \\
\times & \times \times \\
\times & \times \\
\times & \times \times \\
\times & \times \times \times \times \\
& \times \times \times \times \\
& \times \times \times \times
\end{array}\right]
$$

Structured Rank Matrices Lecture 1: What are they?

Generalized semiseparable matrices
Definition (Generalized semiseparable)
A matrix A is called $\{p, q\}$-semiseparable if

$$
r\left(\Sigma_{l}^{(p)} ; A\right) \leq p \text { and } r\left(\Sigma_{u}^{(q)} ; A\right) \leq q .
$$

(Note: the rank blocks cross the diagonal.)

Generalized semiseparable matrices

Definition（Generalized semiseparable）
A matrix A is called $\{p, q\}$－semiseparable if

$$
r\left(\Sigma_{l}^{(p)} ; A\right) \leq p \text { and } r\left(\Sigma_{u}^{(q)} ; A\right) \leq q
$$

（Note：the rank blocks cross the diagonal．）

Generalized quasiseparable matrices

Definition（Generalized quasiseparable）
A matrix A is called $\{p, q\}$－quasiseparable if

$$
r\left(\Sigma_{w} ; A\right) \leq p \text { and } r\left(\Sigma_{w u} ; A\right) \leq q .
$$

（Note：the rank blocks do not cross the diagonal．）

Example（A $\{3,1\}$－semiseparable matrix）
All blocks taken out of the red part of rank at most 1
$\left[\begin{array}{cccc}\times & \times & \times & \times \\ \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times\end{array}\right]$

Structured Rank Matrices Lecture 1：What are they？ 27 ／ 32

$\backslash \boxtimes \boxtimes \boxtimes \boxtimes$凶凶凶凶® $\forall \boxtimes \boxtimes \boxtimes \boxtimes$『『『『『

Structured rank matrices

Generalized quasiseparable matrices

Definition（Generalized quasiseparable）
A matrix A is called $\{p, q\}$－quasiseparable if

$$
r\left(\Sigma_{w l} ; A\right) \leq p \text { and } r\left(\Sigma_{w u} ; A\right) \leq q
$$

（Note：the rank blocks do not cross the diagonal．）
Example（ $\mathbf{A}\{3,1\}$－quasiseparable matrix）
All blocks taken out of the red part of rank at most 3
Structured rank matrices

Generalized quasiseparable matrices

Definition（Generalized quasiseparable）
A matrix A is called $\{p, q\}$－quasiseparable if

$$
r\left(\Sigma_{w} ; A\right) \leq p \text { and } r\left(\Sigma_{w u} ; A\right) \leq q .
$$

（Note：the rank blocks do not cross the diagonal．）
Example（ $\mathbf{A}\{3,1\}$－quasiseparable matrix）
All blocks taken out of the red part of rank at most 1

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- $\{p, q\}$-semiseparable (cross the diagonal).

$$
\mathrm{r}\left(\Sigma_{l}^{(p)} ; A\right) \leq p \text { and } \mathrm{r}\left(\Sigma_{u}^{(q)} ; A\right) \leq q .
$$

- $\{p, q\}$-band (zero outside the band).

$$
\mathrm{r}\left(\Sigma_{I}^{(-p)} ; A\right) \leq 0 \text { and } \mathrm{r}\left(\Sigma_{u}^{(-q)} ; A\right) \leq 0
$$

- $\{p, q\}$-quasiseparable (do not cross the diagonal).

$$
r\left(\Sigma_{w l} ; A\right) \leq p \text { and } r\left(\Sigma_{w u} ; A\right) \leq q .
$$

- Very special structures entail summations of the above.

Structured rank matrices

Outline

Cooperations and general information
Overview of the lectures

(2) Structured rank matrices

What are structured rank matrices?
Definition
Generalizations
References

Structured rank matrices

References to structured rank matrices

All the material presented in this first part can be contributed to Fiedler.

- M. Fiedler, Structure ranks of matrices, Linear Algebra and Its Applications 179 (1993), 119-127.
- M. Fiedler and T. L. Markham, Completing a matrix when certain entries of its inverse are specified, Linear Algebra and Its Applications 74 (1986), 225-237.
- M. Fiedler and Z. Vavřín, Generalized Hessenberg matrices, Linear Algebra and Its Applications 380 (2004), 95-105.
- M. Fiedler Basic matrices, Linear Algebra and Its Applications 373 (2003), 143-151.

[^0]: E．g．，discretisation of integral equations．
 －W．Hackbusch et al．，Max－Planck Institute in Leipzig．

