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The subject of this paper is determinants of truncated Toeplitz and Wiener-Hopf inte-

gral operators generated by rational matrix functions. We assort a few central results

of this large field, reveal the relationships between them, and outline some ideas un-

derlying their proofs. The paper aims at giving an introduction to this research topic

as well as at providing the reader a little formulary containing both well known results

and certain formulas obtained only recently.

1 Introduction

This is an extended version of the report I gave at the Oberwolfach conference in
December 1989. I started working on Toeplitz determinants jointly with Silbermann
more than ten years ago, and at that time we focussed our efforts on the smoothness
conditions needed to ensure the validity of the Szegö-Widom limit theorem and did not
pay much attention to such “supersmooth” symbols as rational functions. My serious
interest in rational generating functions arose in the early eighties, when I became a
PhD student at Rostov-on-Don University and there met Misha Gorodetsky, who told
me about his fresh results [17] on rationally generated block Toeplitz determinants.
Since then I have become acquainted with various interesting and (seemingly or really)
different formulas for Toeplitz and Wiener-Hopf determinants with rational symbols,
which awakened my desire to collect all these things in a single survey. Thus, the
present article primarily attempts at summarizing what I know about this topic and
at offering the reader a few guiding data in this very extensive field.

We start with some definitions. Let f be a rational matrix function of the size
r × r. If f has no poles on the complex unit circle T, we let f(z) =

∑
fkz

k be the
Laurent series of f in a sufficiently thin annulus 1 − ε < |z| < 1 + ε and define the
(block) Toeplitz determinants Dn(f) for n = 1, 2, . . . by

Dn(f) = det(fi−j)
n
i,j=1.
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Notice that Dn(f) is an nr × nr determinant. In case f does not have poles on the
real line R and f(∞) is the identity matrix I, there is a matrix function k ∈ L2

r×r(R)
whose Fourier-Plancherel transform equals I − f on R, i.e.

f(x) = I − k̂(x) := I −
∫

R

k(t)eixtdt (x ∈ R).

We remark that the rationality of f forces k to be continuous on R \ {0}. For
τ ∈ (0,∞), the truncated Wiener-Hopf operator Wτ (k) on L2

r(0, τ) defined by

(Wτ (k)u)(t) =

∫ τ

0

k(t − s)u(s)ds (0 < t < τ)

is Hilbert-Schmidt, and so the second regularized Fredholm determinant

D̃τ (f) = det2 (I − Wτ (k))

is well-defined. Recall that det2(I −Wτ (k)) may be defined as
∏

(1−λj) exp λj where
λ1, λ2, . . . are the eigenvalues of Wτ (k) counted up to algebraic multiplicity (see e.g.
[15], [25]). The operator Wτ (k) is of trace class if and only if k is continuous at the
origin. In that case one can also consider the usual Fredholm determinants

Dτ (f) = det(I − Wτ (k)) :=
∏

(1 − λj).

The two determinants Dτ (f) and D̃τ (f) are related to one another by the equalities

Dτ (f) = D̃τ (f)e−trWτ (k) = D̃τ (f)e−τ tr k(0),

trF referring to the trace of F .

The problem we shall be concerned with is to find “exact” or asymptotic formulas
for the determinants Dn(f) and D̃τ (f). By an “exact” formula we mean an expression
for the determinants whose complexity is independent of n or τ , that is, we require
that n or τ enters the formula as a parameter only and that the formula does not
become more complicated as n or τ increases.

In the following the Toeplitz and Wiener-Hopf cases are treated separately. In
the Toeplitz case, we first survey some results of Bart, Gohberg, Kaashoek, and van
Schagen (Section 2) and then turn over to the two sets of the Gorodetsky formulas
(Sections 3 and 4). I am embarrassed to report that I have unfortunately not been able
to deduce the formulas of Section 3 from the results of Section 2, although I feel that
this should be possible without undue effort. Once the formulas of Gorodetsky are
available, it is a relatively easy matter to obtain several (but not all!) other expressions
for Dn(f), which were established partly before and independently of Gorodetsky and
mostly by different methods by a series of authors, including Baxter, Schmidt, Day,
Trench, and Tismenetsky (Sections 4 and 5).
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In the Wiener-Hopf case we also start with the BGKvS theory (Section 6). Then we
discuss what we know about Wiener-Hopf analogues of the Gorodetsky formulas, thus
entering a topic which contains still many open questions. I have not yet lost my trust
in solving all these open problems at one blow by understanding how in the Toeplitz
case the first set of Gorodetsky’s formulas can be derived from the BGKvS formula.
Fortunately we have a round theory in the scalar case (Wiener-Hopf analogues of
Day’s formula), whose results are illustrated in Section 7.

2 The BGKvS formula for Toeplitz determinants

2.1. Realizations. If C, A, B are any matrices of the sizes r × m, m × m, m × r,
respectively, then C(zI − A)−1B is a rational matrix function of the size r × r which
equals the zero matrix at infinity. It is well known from linear systems theory that
the converse is also true: if g is a rational matrix function of the size r×r and g(∞) is
the zero matrix, then there exist r×m, m×m, m× r matrices C, A, B such that g(z)
is equal to C(zI − A)−1B. The latter representation is usually called a realization of
g. We remark that each rational matrix function has many different realizations. The
poles of g are clearly just the eigenvalues of A.

Hence, given a rational matrix function f for which f(∞) is a finite and invertible
matrix, we have a realization

f(z) = f(∞)[I + C(zI − A)−1B]. (1)

In case f(0) is finite and invertible, we can realize f(1/z) in the preceding form to
obtain that

f(z) = f(0)[I + C((1/z)I − A)−1B] = f(0)[I + zC(I − zA)−1B]. (2)

Whenever f is realized in the form (1) or (2) we denote by A× the matrix A − BC;
note that A× depends not only on A but also on B and C. Also notice that if (1) or
(2) is in force, then

f−1(z) = [I − C(zI − A×)−1B]f−1(∞)

or
f−1(z) = [I − zC(I − zA×)−1B]f−1(0),

respectively.

2.2. Riesz projections. Throughout what follows we make no distinction between
an m×m matrix T and the linear operator on Cm whose matrix representation with
respect to the standard basis of Cm is T .

Let A be any m × m matrix and G be any open, bounded, and connected subset
of C with a smooth boundary ∂G, and assume no eigenvalue of A lies on ∂G. The
Riesz projection χG(A) is then defined as

χG(A) =
1

2πi

∫

∂G

(zI − A)−1dz,
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where ∂G is given the orientation that leaves G on the left.

Given an m × m matrix A and a projection P on Cm, we denote by PAP |ImP
the compression of (the operator on Cm induced by) A to the image Im P of P :

PAP |ImP : Im P → Im P, x 7→ PAx.

It is easily seen that

det(PAP |ImP ) = det(I − P + PAP ) = det(I − P + PA). (3)

Now suppose P is the Riesz projection χG(A). From identity (3) we infer that
PAP |ImP is invertible if and only if so is I − P + PA, and hence the spectral
theorem can be applied to conclude that PAP |ImP is invertible if and only if G does
not contain the origin.

2.3. The BGKvS formula. Let f be a rational matrix function of the size r × r
which has no poles on T, suppose f(0) is finite and invertible, and assume we are
given a realization of the form (2). Put P = I − χD(A) where D = {z ∈ C : |z| < 1}
is the open unit disk. By what was said in the last paragraph of 2.2, PAP |ImP is
invertible.

Theorem. We have

Dn(f) = (det f(0))n det(P (A×)nP |Im P )

(det(PAP |ImP ))n
for all n ≥ 1.

Alternatively,

Dn(f) = (det f(0))ndet(I − P + P (A×)n)

(det(I − P + PA))n
for all n ≥ 1.

This theorem grew out of the work of Bart, Gohberg, and Kaashoek (e.g. [1],
[2], [3]) and is contained in the form presented here in Gohberg, Kaashoek, and van
Schagen’s paper [14].

2.4. Comments. Thus, the BGKvS formula is an “exact” formula which reduces the
computation of the nr × nr determinant Dn(f) to the evaluation of the determinant
det(P (A×)nP |ImP ), whose order is dim Im P (and independent of n). If the Jordan
canonical form of the projection P is S = diag (1, . . . , 1, 0, . . . , 0) (m units) and P =
R−1SR, then

det(P (A×)nP |ImP ) = det(I − P + P (A×)nP )

= det(I − R−1SR + R−1SR(A×)nR−1SR)

= det(I − S + S(RA×R−1)nS) = det(S(RA×R−1)nS|ImS),

and consequently, we are left with finding the determinant of the m × m north-west
corner of (RA×R−1)n. Analogously, if J denotes the Jordan canonical form of A× and
if A× = Q−1JQ, we have

det(P (A×)nP |Im P ) = det(QPQ−1JnQPQ−1|Im QPQ−1).
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The BGKvS formula requires that f(0) be finite and invertible. If 0 is a pole of f

or if f(0) is not invertible, we may pass over to the matrix function f̃ > defined by

f̃ >(z) = transposed of f(1/z), (4)

because clearly Dn(f) = Dn(f̃ >). The matrix f̃ >(0) is finite and invertible if and
only if so is f(∞), and thus the BGKvS formula is applicable whenever

f(0) is finite and invertible (5)

or
f(∞) is finite and invertible. (6)

Although (5) and (6) are “generically” satisfied, the hypothesis that (5) and (6) be in
force is in fact a serious restriction: it excludes all functions f with a Laurent series
of the form

f(z) =

q∑

k=−p

fkz
k (1 − ε < |z| < 1 + ε)

with p, q ≥ 1 and thus rules out Toeplitz band matrices!

2.5. Proof of the BGKvS formula. ([1], [2], [14].) The philosophy behind the
proof is a simple identity: if X, Y, D, E are q×p, p×q, p×p, q×q matrices, respectively,
and if D and E are invertible, then

det(D + Y E−1X) = (det D)(detE)−1 det(E + XD−1Y ). (7)

This identity is easily verified. It is prompted by the fact that E + XD−1Y is a so-
called indicator of D+Y E−1X (see e.g. [1], [2]), viz that D+Y E−1X and E+XD−1Y
are matricially coupled by the relation

(
D + Y E−1X −Y E−1

−E−1X E−1

)−1

=

(
D−1 D−1Y

XD−1 E + XD−1Y

)
.

Thus, the strategy of the proof is to represent the (block) Toeplitz matrix Tn(f) :=
(fi−j)

n
i,j=1 in the form D+Y E−1X so that E+XD−1Y becomes as simple as possible.

In [14], this is done as follows.

Assume without loss of generality that f(0) = I. Then we have the Laurent series

f(z) = I + zC(I − zA)−1B

= −
0∑

k=−∞

CP (PAP )−k−1PB zk +

∞∑

k=1

CAk−1(I − P )B zk

in the annulus 1 − ε < |z| < 1 + ε and hence

Tn(f) = I +




−CP (PAP )−1PB . . . −CP (PAP )−nPB
C(I − P )B −CP (PAP )−n+1PB
CA(I − P )B −CP (PAP )−n+2PB
...

. . .
...

CAn−2(I − P )B −CP (PAP )−1PB




= I + H − RS
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where

S = (P (PAP )−1PB, P (PAP )−2PB, . . . , P (PAP )−nPB),

H =




0
CB 0
CAB CB 0
...

...
. . .

. . .

CAn−2B CAn−3B . . . CB 0




, R =




C
CA
CA2

...
CAn−1




.

Put D = I + H, E = I, X = −S, Y = R. It is easily seen that

(I + H)−1 =




I
−CB I
−CA×B −CB I
...

...
. . .

. . .

−C(A×)n−2B −C(A×)n−3B . . . −CB I




and consequently,

(I + H)−1R =




C
CA×

...
C(A×)n−1


 ,

which yields that

E + XD−1Y = I − S(I + H)−1R = I −
n∑

j=1

P (PAP )−jPBC(A×)j−1

= I −
n∑

j=1

P (PAP )−jP (A − A×)(A×)j−1

= I + P (PAP )−nP (A×)n − P.

Because det(I + H) = 1, formula (7) finally gives that

Dn(f) = det(I − P + P (PAP )−nP (A×)n)

= det(P (A×)nP |ImP )/(det(PAP |ImP ))n.

2.6. The Szegö-Widom theorem. Let f be as in 2.3. In addition, assume now
that

det f(z) 6= 0 for all z ∈ T, arg det f(eiθ)
∣∣∣
π

θ=−π
= 0. (8)

The Szegö-Widom theorem (see [30], [11] and the references given there) says that
then

lim
n→∞

Dn(f)

G(f)n
= E(f),
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where G(f) 6= 0 and E(f) are certain well-defined constants. Our assumptions ensure
that det f has an analytic logarithm log det f in some annulus 1 − ε < |z| < 1 + ε.
Let

log det f(z) =

∞∑

k=−∞

(log det f)kz
k

be the Laurent series in that annulus. One can show that

G(f) = exp(log det f)0. (9)

Widom [30] discovered that E(f) may be given in the form

E(f) = det T (f)T (f−1), (10)

where T (f) and T (f−1) stand for the semi-infinite (block) Toeplitz operators on `2
r(Z+)

with the symbols f and f−1. Because T (f)T (f−1)−I can be shown to be the product
of two Hilbert-Schmidt Hankel operators, the right-hand side of (10) is well-defined.
In the scalar case (r = 1 and log det = log) one has

det T (f)T (f−1) = exp
∞∑

k=1

k(log f)k(log f)−k.

2.7. The GKvS version of the Szegö-Widom theorem. Again let f be a
rational matrix function of the size r × r, suppose f has no poles on T, and assume
(8) is satisfied. Let f(z) = f(0)[I + zC(I − zA)−1B] be a realization of the form (2).

The condition that det f does not vanish on T is equivalent to the requirement
that A× = A−BC has no eigenvalues on the unit circle T. Hence, the Riesz projection
P× = I − χD(A×) is well-defined. Let P = I − χD(A) be as in 2.3. Under the above
hypotheses, Gohberg, Kaashoek, and van Schagen established the following result in
[14].

Theorem. We have lim Dn(f)/G(f)n = E(f) as n → ∞ where

G(f) = (det f(0))
det(P×A×P×|ImP×)

det(PAP |ImP )
= (det f(0))

det(I − P× + P×A×)

det(I − P + PA)
(11)

and
E(f) = det[(I − P )(I − P×) + PP×] = det(I − P − P×). (12)

Once the formula cited in 2.3 is available, the theorem can be derived from it
almost straightforwardly [14]. Indeed, we have

Dn(f)/G(f)n = det[(I − P + P (A×)n)(I − P× + P×A×)−n]

and

[I − P + P (A×)n][I − P× + P×A×]−n

= (I − P )[I − P× + P×A×]−n + P [(I − P×)A× + P×]n

= (I − P )[I − P× + (P×A×)n]−1 + P [((I − P×)A×)n + P×]

→ (I − P )(I − P×) + PP× = I − P − P×;
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the convergence follows because the eigenvalues of

P×A× = A× − χD(A×)A× and (I − P×)A× = χD(A×)A×

are located in C \ D and D, respectively.

A direct proof of the fact that the right-hand sides of (9) and (11) coincide is in
[14]. In [31], it is shown in a direct way that the right-hand sides of (10) and (12) are
equal to one another.

3 Towards more explicity

3.1. Prologue. The price one has to pay when applying the very compact BGKvS
formula 2.3 to a concrete situation is protracted computations to evaluate the deter-
minant det(P (A×)nP |Im P ). Therefore the search for more “explicit” formulas is of
course desirable.

The formulas cited in this section meet in my opinion the requirement for explicity
in a satisfactory manner. They were found by Gorodetsky [17], [18] in the early
eighties, but due to his slack publication practice they have remained widely unknown.

3.2. The Cramer-Jacobi rule. In the next subsection, we shall make heavy use
of the following result (the “Cramer-Jacobi rule”). Let AX = Y where A, X, Y are
m×m, m× r, m× r matrices, respectively, and let U denote the r× r matrix that is
constituted by the rows k1, . . . , kr of X. Then (det A)(det U) equals the determinant
of the matrix that is obtained from A by replacing the k1st, . . . , krth columns with
the 1st, . . . , rth columns of Y . For example, if




a11 . . . a14
...

...
a41 . . . a44







x11 x12
...

...
x41 x42


 =




y11 y12
...

...
y41 y42


 ,

then



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x11 x12 0 0
x21 x22 1 0
x31 x32 0 0
x41 x42 0 1


 =




y11 y12 a12 a14

y21 y22 a22 a24

y31 y32 a32 a34

y41 y42 a42 a44


 ,

whence ∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣

∣∣∣∣
x11 x12

x31 x32

∣∣∣∣ =

∣∣∣∣∣∣∣∣

y11 a12 y12 a14

y21 a22 y22 a24

y31 a32 y32 a34

y41 a42 y42 a44

∣∣∣∣∣∣∣∣
,

and now it is clear how to prove what is asserted above in the general case.
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3.3. The simple zeros case. Before quoting Gorodetsky’s formula in full generality,
let us explicate his result in the case where the determinant of the numerator matrix
polynomial has only simple zeros.

Let a(z) = asz
s + . . . + a0 (with ak ∈ Cr×r) be a matrix polynomial such that

det as 6= 0 and det a has rs pairwise distinct zeros t1, . . . , trs. Also let g and h be
scalar polynomials of the form

h(z) =

q∏

j=1

(1 − z/cj) (|cj| > 1), g(z) =

p∏

j=1

(z − dj) (|dj| < 1).

Assume that q ≥ 1 and p ≥ 1. Put s = p+q and consider the rational matrix function
f = g−1h−1a.

For j = 1, . . . , rs, define the rows Hj and Gj by

Hj = h(tj)(1, tj, . . . , t
p−1
j ), Gj = g(tj)(1, tj, . . . , t

q−1
j )

let yj = (yj1, . . . , yjr) ∈ Cr be any nonzero row-vector such that yja(tj) = 0, and
denote by Mn(f) (n ≥ 0) the rs × rs matrix whose jth row is

(yj1Hj, . . . , yjrHj, yj1t
n
j Gj, . . . , yjrt

n
j Gj). (13)

The following theorem was stated in [17], [18].

Theorem. We have det M0(f) 6= 0 and

Dn(f) = (−1)qrn(det as)
ndet Mn(f)

det M0(f)
for all n ≥ 1.

Proof outline. Fix n ≥ 1 and suppose for the time being that Dn(f) 6= 0. Then the
system




f0 . . . f−n+1
...

. . .
...

fn−1 . . . f0







w0
...
wn−1


 =




I
0
...
0


 (wk ∈ Cr×r) (14)

has a unique solution, and from the Cramer-Jacobi rule we infer that

det w0 = Dn−1(f)/Dn(f), (15)

where D0(f) := 1. Let w(z) :=
∑

wkz
k. From (14) we obtain that

f(z)w(z) = I + c−(z) + znc+(z), (16)

where
c−(z) =

∑

k≥1

c−k z−k and c+(z) =
∑

k≥0

c+
k zk
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for all z in some annulus 1 − ε < |z| < 1 + ε. Multiplying (16) by g(z) we get

h−1(z)a(z)w(z) = g(z)I + g(z)c−(z) + zng(z)c+(z), (17)

and since h−1aw, g, and c+ are analytic in D, so also is gc−. Hence, gc− is an analytic
matrix polynomial of a degree not exceeding p − 1. Multiplication of (17) by h(z)
gives

a(z)w(z) = h(z)g(z)I + h(z)g(z)c−(z) + zng(z)h(z)c+(z), (18)

from which it is readily seen that hc+ is an analytic matrix polynomial whose degree
is at most q − 1. Letting

u(z) := g(z)I − zpI + g(z)c−(z), v(z) := h(z)c+(z)

we can rewrite (18) in the form

a(z)w(z) = h(z)zpI + h(z)u(z) + zng(z)v(z); (19)

recall that u and v are analytic polynomials of a degree at most p − 1 and q − 1,
respectively.

Now let wk(z), uk(z), vk(z) denote the kth column of w(z), u(z), v(z), respectively.
Putting z = tj in (19) and multiplying the result from the left by yj we obtain that

0 = h(tj)t
p
jyjk + h(tj)yjuk(tj) + tnj g(tj)yjvk(tj). (20)

In order to rewrite (20), let Mn(f) denote the matrix whose jth row is (13) and let wm
`k,

um
`k, vm

`k stand for the coefficient of zm of the `k entry of w(z), u(z), v(z), respectively.
So (20) assumes the form

Mn(f)( Uk Vk )> = Y >
k ,

where

Uk = (u0
1k, . . . , u

p−1
1k , . . . , u0

rk, . . . , u
p−1
rk ),

Vk = (v0
1k, . . . , v

q−1
1k , . . . , v0

rk, . . . , v
q−1
rk ),

Yk = −(h(t1)t
p
1y1k, . . . , h(trs)t

p
rsyrs,k).

Since, by the Cramer-Jacobi rule, det Mn(f) times

det




u0
11 . . . u0

1r
...

...
u0

r1 . . . u0
rr


 = det u(0)

is equal to the determinant of the matrix that results from Mn(f) by replacing the
columns 1, p+1, . . . , (r−1)p+1 by Y >

1 , Y >
2 , . . . , Y >

r , respectively, and since the latter
determinant is obviously

(−1)pr
( rs∏

j=1

tj

)
det Mn−1(f),
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it follows that

(det Mn(f))(det u(0)) = (−1)pr
( rs∏

j=1

tj

)
det Mn−1(f). (21)

On the other hand, setting z = 0 in (19) we see that

a(0)w0 = u0, (22)

and since

det a(0) = (det as)(−1)sr
( rs∏

j=1

tj

)
,

we deduce from (21) and (22) that

det Mn−1(f)

Mn(f)
= (−1)qr(det as)(det w0). (23)

Combining (23) and (15) finally implies that

det Mn−1(f)

Mn(f)
= (−1)qr(det as)

Dn−1(f)

Dn(f)
. (24)

Thus, if Dk(f) 6= 0 for all k ≤ n then (24) yields that

Dn(f)

D0(f)
= (−1)qrn(det as)

n det Mn(f)

det M0(f)
, (25)

and since D0(f) = 1, we arrive at the asserted formula.

By continuity, formula (25) also holds without our working hypothesis that Dk(f)
be nonzero for all k ≤ n.

3.4. Day’s formula. An “exact” formula for Toeplitz determinants generated by
scalar-valued rational functions with simple zeros was first given by Day [12] in the
middle of the seventies. To state this formula, let a(z) = as(z − t1) . . . (z − ts), where
t1, . . . , ts are pairwise distinct complex numbers, and let h(z) and g(z) be as in 3.3.
Assume p ≥ 1, q ≥ 1, s ≥ p + q. Also as above, put f = g−1h−1a.

Theorem. We have

Dn(f) =
∑

M

CMrn
M for all n ≥ 1,

the sum taken over all
(

s
p

)
subsets M ⊂ {1, . . . , s} of cardinality |M | = p. Letting

M := {1, . . . , s} \M , P := {1, . . . , p}, Q := {1, . . . , q}, the constants CM and rM can
be given by

rM = (−1)s−pas

∏

k∈M

tk,

CM =
∏

k∈M,m∈P

(tk − dm)
∏

`∈Q,j∈M

(c` − tj)
∏

`∈Q,m∈P

(c` − dm)−1
∏

k∈M,j∈M

(tk − tj)
−1.
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This theorem was established by Day in [12]. For Toeplitz determinants generated
by Laurent polynomials (which is the case q = 0 and dj = 0 for all j), the theorem
was obtained by Widom [29] in the late fifties (see also [24]). In the s = p+q case, the
theorem results from the theorem in 3.3 (for r = 1) by expanding det Mn(f) according
to Laplace’s theorem with respect to the first p columns and computing the arising
Vandermonde determinants. For s > p + q, the theorem can be derived in the same
way from the theorem that will follow in 3.7. Independent proofs are in [12], [22], [9].

3.5. Assumptions. We now describe the class of rational matrix functions which
are tractable by Gorodetsky’s formula in the general case. Let a(z) = asz

s + . . . + a0

(ak ∈ Cr×r) be a matrix polynomial and suppose that as is invertible and that

det a(z) = (det as)
R∏

j=1

(z − tj)
mj ,

where t1, . . . , tR are pairwise distinct and m1 + . . . + mR = rs. Again let

g(z) =

p∏

j=1

(z − dj) (|dj| < 1), h(z) =

q∏

j=1

(1 − z/cj) (|cj| > 1),

and assume that p ≥ 1, s ≥ p + 1, s ≥ p + q. Put f = g−1h−1a.

Notice that q is allowed to be zero (in which case h(z) = 1); if q = 0 and g(z) = zp,
then (fi−j) is a banded matrix. The restriction to p ≥ 1 and s ≥ p + 1 is no loss of
generality: if p = 0 or if s = p (and hence, because s ≥ p + q, also q = 0), then (fi−j)
is block triangular. Finally, if s < p + q but a0 is invertible, one may replace f(z) by
f(1/z) (which does not affect Dn(f)) to obtain a matrix function satisfying s ≥ p+ q.

3.6. The Smith canonical form. (See e.g. [16].) Given a matrix polynomial a(z)
as in 3.5, there exist (analytic) matrix polynomials y(z) and w(z) of the size r × r
such that the determinants det y(z) and det w(z) are nonzero and independent of z
and

y(z)a(z)w(z) = diag
( R∏

j=1

(z − tj)
mj1 , . . . ,

R∏

j=1

(z − tj)
mjr

)

with 0 ≤ mj1 ≤ . . . ≤ mjr for j = 1, . . . , R. Obviously, mj1 + . . . + mjr = mj. The
occurring diagonal matrix polynomial is referred to as the Smith canonical form of
a(z).

The exponents mjk can be determined as follows. Let ek(z) (k = 1, . . . , r − 1)
denote the greatest common divisor of all minors of the size k × k of a(z) and put
e0(z) = 1 and er(z) = det a(z). Then

∏R
j=1(z − tj)

mjk is a constant multiple of the
polynomial ek(z)/ek−1(z).

3.7. Gorodetsky’s formula. Let f = g−1h−1a be as in 3.5 and y, w, mjk be as in
3.6. Define rows H(z) and G(z) by

H(z) = h(z)(1, z, . . . , zp−1), G(z) = g(z)(1, z, . . . , zs−p−1),
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and for k = 1, . . . , r, let Fk(z) stand for the row

Fk(z) =
(
yk1(z)H(z), . . . , ykr(z)H(z), yk1(z)znG(z), . . . , ykr(z)znG(z)

)
;

here yk`(z) is the k` entry of the matrix polynomial y(z). Note that the length of

Fk(z) is rp + r(s − p) = rs. Then put F
(`)
k (z) = (d/dz)`Fk(z) and let Mn(f) denote

the matrix whose rs rows are

F
(`)
k (tj) (j = 1, . . . , R; k = 1, . . . , r; ` = 0, . . . , mjk − 1),

arranged so that (j, k, `) is in lexicographic order. If mjk = 0, then Mn(f) does not

contain rows of the form F
(`)
k (tj).

Theorem. We have det M0(f) 6= 0 and

Dn(f) = (−1)r(s−p)n(det as)
ndet Mn(f)

det M0(f)
for all n ≥ 1.

This theorem appears in [17],[18]. As to my knowledge, Gorodetsky has never
published a proof (the proof outline given in 3.3 for the case of simple zeros is much
more than what is contained in [17], [18]). In the scalar case a theorem similar to the
one stated above was found independently by Trench [28].

3.8. Asymptotic formulas. The asymptotic behavior of the determinants det Mn(f)
(and thus, by 3.7, of Dn(f)) as n approaches infinity is studied in [6]. There it is shown
that log Dn(f) is always asymptotically equal to A(f)n+B(f) log n+O(1) as n → ∞,
and the constants A(f) and B(f) are identified. To determine A(f) one needs only to
know the moduli |t1|, . . . , |tR| and the multiplicities m1, . . . , mR of the zeros of det f ,
whereas the identification of the coefficient B(f) requires the knowledge of all the
exponents mjk of the Smith canonical form of the numerator of f . If, in addition, the
matrix polynomial y appearing in 3.6 is available, then the O(1) can be made more
precise.

4 Quasitriangular Toeplitz matrices

4.1. Renormalization. Our subject now is the determinants of quasitriangular
(block) Toeplitz matrices of the form




ap . . . a0 0 . . . 0
ap+1 . . . a1 a0 . . . 0
...

. . .
. . .

. . .
...

an−1
. . .

. . . a0

an
. . . a1

...
. . .

...
ap+n−1 . . . . . . . . . . . . ap




, (26)
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where a0, a1, . . . is a given sequence of r×r matrices and a0 is assumed to be invertible.

If the matrix function

a(z) = a0 + a1z + a2z
2 + . . . (27)

is analytic in a disk {|z| < 1 + ε}, then

a0z
−p + . . . + ap−1z

−1 + ap + ap+1z + . . .

is the Laurent series of z−pa(z) in {0 < |z| < 1 + ε} and so the determinant of (26)
may be written as Dn(z−pa(z)).

Throughout this section, however, we shall merely assume that a(z) is analytic in
some open neighborhood of z = 0. This implies that if w > 0 is a sufficiently small
real number, then the matrix function aw(z) := a(wz) is analytic and invertible in a
disk {|z| < 1 + ε} (recall that a0 is supposed to be invertible). Because

det(fi−j)
n
i,j=1 = det(wi−jfi−j)

n
i,j=1

for every w 6= 0 (this is the “renormalization trick”, which was possibly first em-
ployed by Schmidt and Spitzer [24]), we see that the determinant of (26) equals
Dn((wz)−pa(wz)). Thus, the assumption that a(z) be analytic and invertible in a
disk larger than D is actually no loss of generality in comparison with the require-
ment that a(z) be analytic in an open neighborhood of z = 0 and that a0 be invertible.

Instead of assuming that, without loss of generality, a(z) is analytic and invertible
in some disk {|z| < 1+ ε}, we redefine Dn(z−pa(z)). Namely, given a matrix function
a(z) of the form (27) which is analytic and invertible in an open neighborhood of
z = 0, we denote in this and the next section by Dn(z−pa(z) the determinant of (26),
that is, of the matrix (ap+i−j)

n
i,j=1.

4.2. The Baxter-Schmidt-Gorodetsky formula. Let the matrix function a(z)
given by (27) be analytic and invertible in an open neighborhood of z = 0 and let
b(z) := a−1(z) in this neighborhood of z = 0.

Theorem. We have

Dn(z−pa(z)) = (−1)prn(det a0)
n+pDp(z

−nb(z)) for all n ≥ 1.

In the scalar case, this beautiful theorem was established by Baxter and Schmidt
[5] at the beginning of the sixties. The matrix case version was published (and ac-
companied by a full proof) by Gorodetsky [19] only in this year. The following proof
is different from the one of [19], it is an extraction of a proof by Tismenetsky [26] for
banded block Toeplitz matrices and a remark of an (anonymous) referee of [26], cited
on page 173 of that paper. This proof works for n ≥ p only.
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Proof. Let b(z) = b0 + b1z + b2z
2 + . . .. The product of matrix (26) and the matrix




b0 0
b1 b0 0
...

...
...

. . .
...

...
...

. . . b0 0
...

...
...

... I . . . 0
...

...
...

...
...

. . .
...

bn−1 bn−2 bn−3 . . . bn−p 0 . . . I




is a block matrix (
0 D

−R ∗

)

in which R is the p × p matrix whose 1st, 2nd, . . . , pth columns are

(a0bn, . . . , ap−1bn + . . . + a0bp+n−1)
>,

(a0bn−1, . . . , ap−1bn−1 + . . . + a0bp+n−2)
>,

. . . ,

(a0bn−p+1, . . . , ap−1bn−p+1 + . . . + a0bn)>,

respectively, and D is a lower-triangular (n − p)× (n − p) matrix all diagonal entries
of which equal a0. Hence

Dn(z−pa(z))(det b0)
p = (−1)(n−p)pn(det R)(det a0)

n−p,

and since

R =




a0

a1 a0
...

...
. . .

ap−1 ap−2 . . . a0







bn . . . bn−p+1
...

. . .
...

bn+p−1 . . . bn


 ,

we obtain that
det R = (−1)pn(det a0)

pDp(z
−nb(z)),

which implies the asserted formula at once.

4.3. Generalizations. We remark that Gorodetsky [19] did not only prove the
preceding theorem, but even found an exact formula for Dn(f) in the case where
f(z) = g−1(z)zma(z), the function g(z) is a scalar polynomial without zeros on T, m
is an integer, and a(z) is an analytic and invertible (!) matrix function in some disk
{|z| < 1 + ε}.

Note that the (block) Toeplitz matrices generated by such more general matrix
functions are in general not quasitriangular. However, we wish to emphasize that the
requirement that a(z) be invertible in the closed unit disk is a serious restriction; it
cannot be removed by the renormalization trick in the presence of the function g(z).
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5 Toeplitz band matrices

5.1. Consequences of the Baxter-Schmidt-Gorodetsky formula. We now
consider the determinants Dn(z−pa(z)) of the banded block Toeplitz matrices




ap . . . . . . a0
...

. . .
. . .

...
. . .

. . . a0
...

. . .
...

as
. . .

...
. . .

. . .
...

as . . . . . . ap




, (28)

where ak are r × r matrices and a0 is supposed to be invertible. We also assume that
1 ≤ p < s. The matrix function

a(z) = a0 + a1z + . . . + asz
s

is then invertible in a neighborhood {|z| < ε} of the origin and we may define

a−1(z) = b(z) = b0 + b1z + b2z
2 + . . .

in this neighborhood of zero. From the theorem in 4.2 we infer that

Dn(z−pa(z)) = (−1)prn(det a0)
n+pDp(z

−nb(z)) (29)

for all n ≥ 1. Notice that the size of

Dp(z
−nb(z)) = det




bn . . . bn−p+1
...

. . .
...

bn+p−1 . . . bn


 (30)

is independent of n.

The Taylor coefficients bj can be expressed in the form

bj =
1

2πi

∫

|z|=ε/2

a−1(z)z−j−1dz. (31)

Realizing a−1(z) in the form

a−1(z) = a−1
0 [I + zC(I − zA)−1B] = a−1

0

(
I +

∞∑

j=1

zjCAj−1B
)
,

we also obtain that b0 = a−1
0 and

bj = a−1
0 CAj−1B (32)
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for all j ≥ 1. The two formulas resulting from combining (29), (30) with (31) on the
one hand hand and with (32) on the other are Theorem 2 of Tismenetsky’s paper [26]
(the exponent (n − p)r2 + p of −1 given there is incorrect). In [26] one can also find
expressions for (30) in terms of so-called solvents.

We remark that Tismenetsky’s article was written some years before Gorodet-
sky’s work [19], but that the proof given in 4.2 makes heavy use of the approach of
Tismenetsky. But Tismenetsky has still another formula ...

5.2. Tismenetsky’s formula. Let a(z) be as in the preceding subsection. There
we derived an exact formula for the determinant Dn(z−pa(z)) in terms of a pr × pr
block Toeplitz matrix. Our aim here is to express Dn(z−pa(z)) via an sr× sr matrix.
Although sr > pr, the formula that will established here has some computational
advantages.

The matrix function (as + as−1z + . . .+ a0z
s)−1 vanishes at infinity. Hence we can

find matrices C ∈ Cr×rs, A ∈ Crs×rs, B ∈ Crs×r such that

(as + as−1z + . . . + a0z
s)−1 = C(zI − A)−1B.

It follows (see e.g. [16]) that

asC + as−1CA + . . . + a0CAs = 0. (33)

Put q = s − p + 1 and denote by Vn the rs × rs matrix

Vn =




C
...
CAq−2

CAq−1+n

...
CAs−1+n




.

The following theorem as well as the proof that will be given below are Tismenetsky’s
[26].

Theorem. We have det V0 6= 0 and

Dn(z−pa(z)) = (−1)qrn(det a0)
n det Vn

det V0
for all n ≥ s + 1.

Proof outline. Let Fn stand for the rn × rn matrix

Fn =

(
S

0
I

)

where S is the rn × rs matrix

S =




CAq−1

CAq

...
CAq−1+n−1


 ,
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0 is the rs × r(n − s) zero matrix, and I is the r(n − s) × r(n − s) identity matrix.
Multiply (28) from the right by Fn. Using (33) we see that the resulting matrix Gn

is of the form

Gn =




U1 01

02 T
U2 ∗


 ,

where 01 ∈ Cr(q−1)×r(n−s) and 02 ∈ Cr(n−s)×rs are the zero matrices, the matrices
U1 ∈ Cr(q−1)×rs and U2 ∈ Crp×rs are given by

(
U1

U2

)
= −

(
W1 0
0 W2

)
Vn,

W1 =




as . . . aq−2

. . .
...
as


 , W2 =




a0
...

. . .

ap−1 . . . a0


 ,

and T ∈ Cr(n−s)×r(n−s) is lower triangular with all diagonal entries equal to a0. Since

Dn(z−pa(z))(det Fn) = det Gn

and

det Fn = det




CAq−1

...
CAq−1+s−1


 = (det V0)(det A)q−1,

det Gn = (−1)(n−s)rq(det a0)
n−s det

(
U1

U2

)
,

det

(
U1

U2

)
= (−1)rs(det as)

q−1(det a0)
p(det Vn),

det A = (−1)rs det as

det a0

(the last formula following from the similarity theorem for minimal realizations along
with the fact that A can be chosen as a companion matrix), we arrive at the desired
formula.

5.3. Trench’s formula. Now let a(z) be a scalar polynomial with pairwise distinct
zeros t1, . . . , tR of the multiplicities m1, . . . , mR:

a(z) = a0 + . . . + asz
s = as

R∏

j=1

(z − tj)
mj .

Assume a0 6= 0 and as 6= 0. Given integers n and p such that n > s and 1 ≤ p < s,
put q = s − p + 1 and denote by v(z) the column

v(z) = (1, z, . . . , zq−2, zq−1+n, . . . , zs−1+n)>.
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Let v(j)(z) be the jth derivative of v(z) and denote by Vn the s×s matrix whose first m1

columns are v(t1), . . . , v
(m1−1)(t1), whose next m2 columns are v(t2), . . . , v

(m2−1)(t2),
etc.

Theorem. We have det V0 6= 0 and

Dn(z−pa(z)) = (−1)qnan
0

det Vn

det V0

for all n ≥ 1.

This theorem was established by Trench [27] for n ≥ s + 1 and subsequently by
Berg [4] for all n ≥ 1. Tismenetsky [26] has shown how this theorem (for n ≥ s + 1)
can be derived from his theorem in 5.2: it suffices to verify that (33) is satisfied by

C = (Q1, . . . , QR), A = diag (J1, . . . , JR),

Qj = (1, 0, . . . , 0)︸ ︷︷ ︸
mj

, Jj =




tj 1
tj 1

. . .
. . .

tj 1
tj




∈ Cmj×mj .

Clearly, there is great similarity between the Trench-Tismenetsky formulas and the
formulas by Gorodetsky quoted in 3.7.

6 The BGKvS formula for Wiener-Hopf determinants

6.1. Preliminaries. Henceforth let f be a rational matrix function which has no
poles on R and equals I at infinity. Define k, Wτ (k), D̃τ (f), and Dτ (f) as in Section 1.

Let f(z) = I+C(zI−A)−1B be a realization of the form (1) and put A× = A−BC.
We denote by U+ any open, bounded, connected subset of the upper complex half-
plane containing all eigenvalues of A (= poles of f) in the upper complex half-plane
and we let P stand for the Riesz projection χU+

(A). We then have

k(t) =

{
iCe−itA(I − P )B for t > 0,
−iCe−itAPB for t < 0.

The following conditions are easily seen to be equivalent:
(i) Wτ (k) is a trace class operator;
(ii) k̂ = (I − f)|R belongs to L1

r×r(R);
(iii) k(0 − 0) = k(0 + 0);
(iv) CB = 0.

6.2. The BGKvS formula. This is the following expressions for the determinants
D̃τ (f) and Dτ (f).
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Theorem. We have

D̃τ (f) = eτg(f)(det PeiAP |Im P )τ(det Pe−iτA×

P |ImP )

= eτg(f) det(I − P + PeiτAe−iτA×

)

for all τ > 0 with

g(f) = −tr
1

2π

∫

∂U+

f(z)dz.

If Wτ (k) is of trace class, then

Dτ (f) = (det PeiAP |ImP )τ(det Pe−iτA×

P |ImP )

for all τ > 0.

In the trace class case this theorem follows from the results of [1], [2], a proof for
the Hilbert-Schmidt case is in [14]. The proof proceeds along the lines of the proof
given in 2.5. Viz, one can show that

I − P + PeiτAe−iτA×

is an indicator of I − Wτ (k), which implies that

D̃τ (f) = etr K det(I − P + PeiτAe−iτA×

)

where K : L2
r(0, τ) → L2

r(0, τ) is the finite rank operator

(Kf)(t) = −
∫ τ

0

iCei(t−s)APB f(s)ds (0 < t < τ),

and the trace of K can be shown to be −τg(f). If Wτ (k) is a trace class operator,
then simply

Dτ (f) = det(I − P + PeiτAe−iτA×

).

6.3. The Achiezer-Kac-Mikaelyan formula. Let f be as in 6.1. In addition,
assume now that

det f(x) 6= 0 for all x ∈ R, arg det f(x)
∣∣∣
∞

x=−∞
= 0.

Theorems of the Achiezer-Kac-Mikaelyan type say that then

lim
τ→∞

D̃τ (f)

G̃(f)τ
= E(f),

where G̃(f) 6= 0 and E(f) are certain constants (see [20], [21], [23], [12], [31], [11] and
the references in these works). Under our assumptions, det f possesses a continuous
logarithm log det f on the real line R. We have (see [31])

G̃(f) = exp

(
1

2π

∫ ∞

−∞

[log det f(x) + tr (I − f(x))]dx

)
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and
E(f) = det W (f)W (f−1), (34)

where W (f) and W (f−1) stand for the Wiener-Hopf operators on the space L2
r(0,∞)

with the symbols f and f−1, respectively. The product W (f)W (f−1) can be shown
to differ from I by a trace class operator only. In the scalar case (r = 1) we also have

E(f) = exp

∫ ∞

−∞

xs(x)s(−x)dx

where s is defined by ŝ(x) = log f(x) for x ∈ R. If Wτ (k) is of trace class, then

lim
τ→∞

Dτ (f)

G(f)τ
= E(f)

where E(f) is as above and G(f) 6= 0 can be given by

G(f) = exp

(
1

2π

∫ ∞

−∞

log det f(x)dx

)
.

For other identifications of E(f) see [23] and [13]. We remark that Dym and Ta’assan
[13] provide an approach to the subject that amalgamates the Szegö-Widom and
Achiezer-Kac-Mikaelyan theorems into a single (abstract) theorem.

6.4. The Gohberg-Kaashoek-van Schagen version. Assume f is as in 6.3. Let
U be an open, bounded, connected subset of the complex plane that contains all
poles of f (= eigenvalues of A) and let U×

+ be an open, bounded, connected subset of
the upper half-plane containing all poles of f−1 (= eigenvalues of A×) in the upper
half-plane. We then have

1

4π

∫

∂U

tr f(z) dz =
i

2
tr

(
C

1

2πi

∫

∂U

(zI − A)−1dz B

)

=
i

2
tr CB =

i

2
tr BC =

i

2
(tr A − trA×),

and this quantity vanishes whenever BC = 0, i.e., whenever Wτ (k) is of trace class.
Finally, put P× = χU×

+
(A×).

By arguments similar to those of Section 2.7, Gohberg, Kaashoek, and van Schagen
[14] derived the results of 6.3 from their formula cited in 6.2. They obtained that

G(f) = eg(f) exp

(
1

2π
p.v.

∫ ∞

−∞

log det f(x)dx +
1

4π

∫

∂U

tr f(z) dz

)

= eg(f) det PeiAP |ImP

det P×eiA×P×|Im P×
,

and their expression for E(f) is

E(f) = det[(I − P )(I − P×) + PP×] = det(I − P − P×). (35)

Widom [31] gave a direct proof of the fact that the right-hand sides of (34) and (35)
coincide.

21



7 Wiener-Hopf analogues of formulas by Gorodetsky and

Day

7.1. General assumptions. Every rational matrix function f which has no poles
on R and is I at infinity can be written in the form f = g−1h−1a where

a(z) = zsI + zs−1as−1 + . . . + a0 (ak ∈ Cr×r),

h(z) =

q∏

j=1

(z + icj) (Re cj > 0), g(z) =

p∏

j=1

(z − idj) (Re dj > 0),

and s = p + q. If p = 0 or q = 0, then Wτ (k) is of Volterra type and therefore

D̃τ (f) = 1 for all τ > 0. Thus, we consistently assume that p ≥ 1 and q ≥ 1.

7.2. The simple zeros case. Let f = g−1h−1a be as in 7.1. In addition, suppose
now that det a(z) has rs pairwise distinct zeros t1, . . . , trs in C. For j = 1, . . . , rs, let
Hj and Gj denote the rows

Hj = h(tj)(1, tj, . . . , t
p−1
j ), Gj = g(tj)(1, tj, . . . , t

q−1
j ),

and let yj = (yj1, . . . , yjr) be any nonzero row-vectors such that yja(tj) = 0. Given
τ ≥ 0, we denote by Nτ (f) the rs × rs matrix whose jth row equals

(yj1Hj, . . . , yjrHj, yj1e
itjτGj, . . . , yjre

itjτGj).

Define finally δ(f) by

δ(f) = tr k(0 + 0) − r

q∑

j=1

cj = tr k(0 − 0) − r

p∑

j=1

dj.

Theorem. We have det N0(f) 6= 0 and

D̃τ (f) = eτδ(f) det Nτ (f)

det N0(f)
for all τ > 0.

This theorem was established in [8] and is a Wiener-Hopf analogue of Gorodetsky’s
formula in 3.3. The article [8] contains a complete proof. The proof is rather long,
and so we confine ourselves to merely pointing out some of its main ideas.

The first step consists in “discretizing” the determinants D̃τ (f). More precisely,
one can show that

D̃τ (f) = det2(I − Wτ (k)) = lim
n→∞

Dn(fn,τ )

where

fn,τ (z) = I − τ

n

∞∑

j=1

k
(
j

τ

n

)
zj − τ

n

∞∑

j=1

k
(
−j

τ

n

)
z−j .
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Thus, D̃τ (f) is represented as the limit of a sequence of rationally generated block
Toeplitz determinants both the size n and the generating function fn,τ of which depend
on n. These determinants are computed using the theorem in 3.3, which reduces the
problem to finding the limit of

det Mn(fn,τ)

det M0(fn,τ )

as n goes to infinity. This limit passage requires precise information about the zeros
of fn,τ . Namely, one must verify that the zeros of fn,τ are of the form

1 + itj
τ

n
+ O

(
1

n2

)
.

Showing this is the difficult part of the proof and is also the point where the proof
makes heavy use of the circumstance that all zeros of det a are simple.

7.3. Wiener-Hopf analogues of Gorodetsky’s formula. I do presently not know
any sufficiently general Wiener-Hopf analogue of the formula contained in 3.7. A few
results in this direction were established in [8] by first perturbing a(z) so as to obtain a
matrix function whose determinant has only simple zeros, then applying the theorem
of 7.2, and after that removing the perturbation. Here is a sample result achieved in
this way.

We first need two notations: given any two scalar polynomials

u(z) = u0 + u1z + . . . + umzm, v(z) = v0 + v1z + . . . + vkz
k,

we denote by Res (u, v) their resultant,

Res (u, v) = det




u0 . . . . . . um

. . .
. . .

u0 . . . . . . um

v0 . . . vk

. . .
. . .

. . .
. . .

v0 . . . vk




,

which has k rows with u’s and m rows with v’s, and by Rj,j(u, v) the 2j × 2j deter-
minant

Rj,j(u, v) = det




u0 u1 . . . . . . . . .
. . .

. . .

u0 u1 . . .
v0 v1 . . . . . . . . .

. . .
. . .

v0 v1 . . .




,
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having j rows with u’s and j rows with v’s.

Let now f = g−1h−1a be as in 7.1. Assume r = 2 and det a(z) = z2s. Denote by
a11 and a12 the 1, 1 and 1, 2 entries of a and suppose a11 and a12 have no common
divisor. This guarantees that Res (a11, a12) 6= 0.

Theorem. We have the asymptotic formula

D̃τ (f) = eτδ(f)
[
α(f)β(f) τ 4pq + O(τ 4pq−1)

]
as τ → ∞,

where

α(f) = (−1)pq
( q∏

j=1

c2p
j

)( p∏

j=1

d2p
j

)G(2p + 1)G(2q + 1)

G(2p + 2q + 1)
,

G(m) := (m − 2)! . . . 2!1!0! (m ≥ 2), G(1) := 1,

β(f) =
Rp,p(a12, a11) Rq,q(a12, a11)

[Res (g, h)]2 Res (a12, a11)
.

7.4. The Wiener-Hopf analogue of Day’s formula. Again let f = g−1h−1a be
as in 7.1. Assume now that r = 1 and that a(z) has s pairwise distinct zeros t1, . . . , ts.

Theorem. We have

D̃τ (f) = eτδ(f)
∑

M

WMewMτ for all τ > 0.

Here the sum is taken over all sets M ⊂ {1, . . . , s} with exactly p elements, and letting
M = {1, . . . , s} \ M , P = {1, . . . , p}, Q = {1, . . . , q}, i =

√
−1, we have

wM =
∑

k∈M

itk,

WM =
∏

k∈M,m∈P

(itk + dm)
∏

`∈Q,j∈M

(c` − itj)
∏

`∈Q,m∈P

(c` + dm)−1
∏

k∈M,j∈M

(itk − itj)
−1.

This theorem was established in [7] and proved there by the argument sketched in
7.2. Of course, in the same way as Day’s formula 3.4 may be derived from the theorem
in 3.3 by using the Laplace expansion theorem, one may get the present formula from
the theorem stated in 7.2.

7.5. The Achiezer-Kac case. Now let f be a scalar-valued function subject to the
hypotheses of 6.3. A little thought reveals that then f can be written in the form
f−f+ where

f−(z) =

p∏

m=1

z − ivm

z − idm
, f+(z) =

q∏

`=1

z + iu`

z + ic`
,

where Re vm, Re dm, Re u`, Re c` are all positive. Notice that f = f−f+ is nothing but
the (normalized) Wiener-Hopf factorization of f .
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The constants G̃(f), G(f), E(f) appearing in the Achiezer-Kac-Mikaelyan formu-
las 6.3 can now be specified as follows:

G̃(f) = exp
(
k(0 + 0) +

q∑

`=1

(c` − u`)
)

= exp
(
k(0 − 0) +

p∑

m=1

(vm − um)
)
,

G(f) = exp

q∑

`=1

(c` − u`) = exp

p∑

m=1

(vm − dm),

E(f) =

q∏

`=1

f−(−ic`)

f−(−iu`)
=

p∏

m=1

f+(idm)

f+(ivm)
=

q∏

`=1

p∏

m=1

(c` + vm)(u` + dm)

(c` + dm)(u` + vm)
.

A proof is in [7].

7.6. Asymptotic formulas. In [7], the formula of 7.4 was employed to obtain
asymptotic formulas for Wiener-Hopf determinants generated by arbitrary (!) rational
scalar-valued functions. Thus, although the formula in 7.4 is restricted to the case
of simple zeros, precise descriptions of the asymptotic behavior of D̃τ (f) as τ → ∞
are available also for functions f with multiple zeros. Despite its high explicity, the
result of [7] is too complex to be repeated here. We therefore limit ourselves to a few
important examples. In what follows xτ ∼ yτ means that yτ 6= 0 for all sufficiently
large τ and xτ/yτ → 1 as τ → ∞.

A single zero. If p ≥ 1 and q ≥ 1 are arbitrary integers, then the following asymp-
totic formula holds:

D̃τ

[
zp+q

(z − i)p(z + i)q

]
∼ eτ [k(0+0)−q]

(τ

2

)pq G(p + 1)G(q + 1)

G(p + q + 1)
,

where

k(0 + 0) = q − p +
1

2q

p∑

j=1

(
p + q

p − j

) (
q + j − 2

j − 1

) (
−1

2

)j−1

,

G(m) = (m − 2)! . . . 2!1!0! (m ≥ 2), G(1) = 1.

If p = q, then Wτ (k) is of trace class and

Dτ

[
z2p

(z2 + 1)p

]
∼ e−pτ

(τ

2

)p2 G(p + 1)2

G(2p + 1)
.

I propose to verify that the last formula is also true for all complex numbers p with
−1/2 < Re p < 1/2. Once this had been shown the reasoning of [10] would result
in a proof of the continual analogue of the Fisher-Hartwig conjecture for Toeplitz
determinants.
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Several zeros of modulus type. Let x1, . . . , xm be pairwise distinct real numbers
and let p1, . . . , pm be positive integers. Suppose b = 1 − v̂ is a rational function such
that

b(∞) = 1, b(x) 6= 0 for all x ∈ R, arg b(x)
∣∣∣
∞

x=−∞
= 0,

and Wτ (v) is of trace class. Put

f(x) =

m∏

j=1

[
(x − xj)

2

(x − xj)2 + 1

]pj

b(x) =: 1 − k̂(x)

for x ∈ R. Then Wτ (k) is of trace class and

Dτ (f) ∼ e−τ
Pm

j=1
pjG(b)τ

(τ

2

)Pm
j=1

p2
j

m∏

j=1

G(pj + 1)2

G(2pj + 1)

×E(b)

m∏

j=1

[
b−(xj − i)b+(xj + i)

b(xj)

]pj

×
∏

k<j

[
((xk − xj)

2 + 1)2

((xk − xj)2 + 4)(xk − xj)2

]pkpj

,

where G(b), E(b), b− and b+ are as in 7.5.
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